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ARTICLE INFO ABSTRACT

Keywords: The role of hominins in the hunting and processing of megafauna is one of the most contentious topics in

Neotaphonomy Pleistocene archaeology. Determining whether the remains of very large mammals (>800 kg) were shaped by

I(\:/[arm}/ore taphonomy human activity or carnivore modification requires robust neotaphonomic frameworks. Systematic patterns of
egarauna

carcass consumption by carnivores have been established, particularly for long bones. Yet research on mega-
fauna, and especially on their cranial remains, are scarce despite their recurrent presence in archaeological
contexts. This study investigates bone surface modification patterns on rhinoceros (Ceratotherium simum) and
elephant (Loxodonta africana) cranial elements consumed by free-ranging spotted hyenas (Crocuta crocuta) in the
Timbavati Private Nature Reserve, South Africa. The sample includes 20 cranial specimens (MNE = 20; 12
rhinoceros, 8 elephant) from individuals of different age groups that died naturally and were subsequently
scavenged. Analyses using 40x hand lenses and Dino-Lite digital microscope to document bone surface modifi-
cations. Distinct patterns emerged: in rhinoceroses, near-complete destruction of mandibular condyles, coronoid
processes, nuchal crest, and maxilla; in elephants, pronounced furrowing on mandibular condyles and the
symphyseal region. Integrating these observations with published taphonomic analyses of Eurasian assemblages,
a five-stage sequence of cranial exploitation is proposed, paralleling models established for long bone con-
sumption. These results highlight prey species-specific differences in modification intensity linked to bone
density, tissue distribution, and feeding strategies. More broadly, they provide comparative criteria for dis-
tinguishing hyena from hominin-induced modifications, and the paleoecological significance of megafauna in
Pleistocene ecosystems.

Wild scavengers
Bone damage patterns

1. Introduction

Archaeological and paleontological Pleistocene records consistently
demonstrates that hominins, from the earliest representatives to Homo
sapiens (Linnaeus, 1758), coexisted with hyenas and other carnivores
across a variety of landscapes. Caves and rock-shelters often served as
recurrent occupation sites for both groups, either in temporal succession
or not (e.g., Straus, 1982; Brugal and Jaubert, 1991; Villa et al., 2004;
Miracle, 2005; Brugal, 2010; Discamps et al., 2012; Morley et al., 2019).
At many of these sites, the cumulative and overlapping modifications
produced by both hominins and carnivores frequently result in complex

palimpsests, making it difficult to identify the respective contributions
of each agent to site formation processes.

Carnivore modifications on bones provide essential information for
identifying the origins of fossil assemblages, offering valuable insights
into both hominin and carnivore subsistence strategies. Spotted hyenas
(Crocuta crocuta, Erxleben, 1777) have been responsible for many of the
non-human bone accumulations during the Pleistocene in Africa and
Eurasia (e.g., Mills and Mills, 1977; Fosse et al., 1998; Stiner, 2004; Villa
et al., 2004; Diedrich and Zak, 2006; Kuhn et al., 2010; Diedrich,
2014b). Due to the considerable overlap in prey species and their
bone-accumulating and modifying behaviours, hyena-generated
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assemblages can exhibit taphonomic signatures that closely mimic those
produced by hominins, resulting in equifinality and complicating the
differentiation between these agents. In this context, neotaphonomic
and experimental studies of carnivore bone modifications have become
increasingly important for the analysis and interpretation of fossil faunal
assemblages.

Previous taphonomic research has mainly focused on reconstructing
the timing of hominin and carnivore access to animal carcasses (e.g.,
Binford, 1981; Blumenschine, 1986; Selvaggio, 1994; Pante et al.,
2012); documenting skeletal part representation and bone fragmenta-
tion (e.g., Blumenschine, 1986; Marean and Spencer, 1991); and char-
acterizing bone surface modifications, including their anatomical
distribution and frequency on long limb bones, to infer the carnivore
taxa responsible for tooth-marking bone remains (e.g., Blumenschine,
1986; Haynes, 1983; Pickering et al., 2004; Coard, 2007; Young et al.,
2015; Koungoulos et al., 2018). In addition, researchers are now
employing a variety of advanced high-resolution imaging techniques (e.
g., Pante et al., 2017; Arriaza et al., 2017; Courtenay et al., 2019),
multivariate analyses (e.g., Dominguez-Rodrigo and Yravedra, 2009),
and machine learning techniques (e.g., Harris et al., 2017; Domi-
nguez-Rodrigo, 2019; Moclan et al., 2020; Abellan et al., 2022). How-
ever, the majority of these studies have concentrated on small, medium,
and large-sized ungulates, while actualistic studies specifically
addressing megafaunal remains are still rare.

In Eurasia, hominins and hyenas coexisted with different rhinoceros
species during the Pleistocene, highlighting Stephanorhinus hund-
sheimensis (Toula, 1902), Stephanorhinus kirchbergensis (Jager, 1939),
Stephanorhinus hemitoechus (Falconer, 1868), and Coelodonta antiquitatis
(Blumenbach, 1799a); and with several proboscidean species, like
Mammuthus meridionalis (Nesti, 1825), Mammuthus trogontherii (Pohlig,
1885), Mammuthus primigenius (Blumenbach, 1799b), Palaeoloxodon
antiquus (Falconer and Cautley, 1847). These megafaunal taxa represent
a recurrent component of many Pleistocene faunal assemblages, pre-
sumably due to the substantial resources they provided, both for con-
sumption (skin, meat, brain, viscera, fat and marrow; e.g. Fladerer,
2003; Mosquera et al, 2015; Daujeard et al., 2018) and for
non-subsistence purposes, including tool production and shelter con-
struction using hair, bones, and tusks (e.g. Germonpré et al., 2008; Pante
et al., 2020; Demay et al., 2021).

The importance of improving our understanding of megafaunal bone
assemblage formation processes has been recognized by Echassoux
(2004), Moigne et al. (2006), Niven (2006) and Smith (2015), and
specifically for proboscideans by Diedrich (2014a), Agam and Barkai
(2018), and Haynes et al. (2020, 2021), and for rhinoceroses by Dis-
camps (2011), Diedrich (2015), Daujeard et al. (2018), Daschek (2021),
among others. However, neotaphonomic studies focused on bone mod-
ifications in megafaunal carcasses remain relatively scarce and focused
on particular elements (i.e., long limb bones, scapula and pelvis in
Haynes et al., 2020, 2021).

However, the recurrent presence of cranial and mandibular elements
in sites of anthropic origin (e.g., Arago F (Chen and Moigne, 2018) and
Gesher Benot Ya’aqov (Goren-Inbar et al., 1994; Rabinovich and Biton,
2011), carnivore origin (e.g., Bottrop (Diedrich, 2012b) and Vogelherd
(Niven, 2006)) and mixed origin (e.g., Cotte de Saint Brelade (Scott,
1980, 1989; Smith, 2015) and Ambrona (Villa et al., 2005)) would
confirm the transport and consumption of megaherbivores head’s parts
(including meat, brain, tongue, mandibular fat, etc.).

Discriminating between cultural and non-cultural patterns of bone
modification is essential for the archaeological interpretation of mega-
faunal assemblages, particularly in assessing how hominins and carni-
vores, such as hyenas, interacted with these very large mammals.
Although it is generally accepted that hominins exploited very large
animals for food and raw materials, and that hyenas similarly utilized
these carcasses, neotaphonomic studies providing detailed comparative
data on the modification of cranial and mandibular remains are still
largely lacking and represent an area of research that remains to be
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further explored.

This study presents the first neotaphonomic analysis of cranial re-
mains from rhinoceros (Ceratotherium simum, Burchell, 1817) and
modern African elephant (Loxodonta africana, Blumenbach, 1797)
consumed by free-ranging spotted hyenas (C. crocuta) in the Timbavati
Private Nature Reserve (South Africa). Here we document bone surface
modifications, skeletal disturbances, and consumption patterns pro-
duced by hyenas, providing new data on carnivore modification of
megafaunal cranial elements and their potential archaeological signifi-
cance. These findings are further discussed in relation to similar modi-
fications observed in Pleistocene archaeo-paleontological assemblages
across Eurasia.

2. Materials and methods

The modern elephant’s and rhinoceros’ carcasses were recorded in
the Timbavati Private Nature Reserve, located along the western
boundary of Kruger National Park, spanning the Mpumalanga and
Limpopo provinces in South Africa (Fig. 1A and B). The reserve covers
over 53,000 ha, sharing open boundaries with Kruger National Park,
which allows free wildlife movement between reserves. The landscape
lies within the dry savanna biome, characterized by a mixed vegetation
structure of grasslands, shrublands, and open woodland mosaics
(Fig. 1C).

The sample comprises 3 crania and 5 mandibles from five elephants
(Loxodonta africana; Supplementary Fig. 1), representing two adult and
three senile individuals. Specimens E.C.01 and E.M.04 correspond to the
same individual, while the rest specimens were found partially dis-
articulated. Additionally, 5 crania and 7 mandibles from seven white
rhinoceroses (Ceratotherium simum; Supplementary Fig. 2) are included,
representing two immature, four adult, and one late adult individual.
Specimens R.C.05 and R.M.01 belong to the same rhinoceros.

Carcasses were located by the park’s team of ecologists during their
daily routine monitoring activities. The elephants died of starvation
during drought events, while the cause of death for the rhinoceroses
could not be determined, as it remains unclear whether they were pre-
dated by carnivores or died of natural causes, although active predation
is considered unlikely. The bones derive from carcasses and skeletons
that were neither skinned nor butchered by humans. However, in
accordance with park management protocols, tusks and horns were
collected by the Natural Reserve authorities 7-10 days after death, when
the roots had sufficiently dried to allow safe removal without cutting the
tusk or damaging the bone. Also, some mandibles were retrieved after
natural skeletonization to assess the ontogenetic ages of deceased ele-
phants and rhinoceroses, storing them in an open-air enclosure at the
research centre inside the park.

The specimens analysed in this study include remains located and
monitored during the end of the dry season of 2024 (September—Oc-
tober; Fig. 1C) between five days and two months after death, as well as
specimens collected by park authorities over a five-year period (Fig. 1D).
To minimize variability in gnawing intensity related to exposure time,
only carcasses that had been systematically monitored and exposed to
scavengers for approximately one to two months were included,
matching the period park authorities usually wait before collecting re-
mains. This timeframe is sufficient for bones in this area to be clean
enough by carrion-eaters and environmental processes for analysis,
leaving the bones found in situ mostly free of soft tissue but still greasy,
whereas those previously collected were already dry and weathered
after prolonged exposure. Importantly, the remains were not damaged
during collection and only exhibit modifications resulting from scav-
enging by carnivores.

The anatomical identification of cranial and mandibular sections was
conducted following the criteria outlined by Van der Merwe et al. (1995)
and Todd (2010) for elephants, and Deng et al. (2021) for rhinoceroses.

Three age groups were established: immature (including perinatal
and juvenile individuals), adult (including prime adult and late adult
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Fig. 1. A: Map of South Africa showing the general location of the study area. B: Detail of the Timbavati Private Nature Reserve in the northeastern part of the
country. C: Typical landscape of the park at the end of the dry season, characterized by sparse vegetation and limited water availability. D: Accumulation of rhi-
noceros and elephant mandibles collected by park authorities during monitoring activities.

individuals), and senile. Given that the study focuses on cranial remains
(crania and mandibles), age classification was based on the degree of
dental crown development, the presence of deciduous or permanent
teeth, and the degree of occlusal wear (e.g., Foster, 1965; Tong, 2001;
Todd, 2010; Laws, 1966).

Specimen quantification was performed using the number of iden-
tified specimens (NISP), the minimum number of elements (MNE), and
the minimum number of individuals (MNI), following the guidelines set
out by Lyman (1994, 2008), Klein and Cruz-Uribe (1984), Brain (1969)
and Pickering (2002). Bone surface modifications were examined in situ,
using a 40x hand lens and natural light. When higher magnification was
required, a Dino-Lite digital microscope with magnifications ranging
from 10 to 70x up to 200x connected to a laptop were employed.

Individual bones were then examined and photographed to qualify

and quantify bite marks and damages in detailed. Carnivore activity
(Fig. 2) was determined by the presence of pits, punctures, scores,
crenulated edges, gnawing and furrowing, following Haynes (1980,
1983), Binford (1981), Selvaggio (1994), and Pickering (2001).

3. Results: bone surface modification by carnivores

Owing to their large size and structural density, megafaunal bones
display carnivore-induced modifications that often differ markedly from
those observed in smaller-bodied species (White and Diedrich, 2012;
Haynes and Klimowicz, 2015). In this study, we present new data on the
modifications produced by free-ranged spotted hyenas (Crocuta crocuta)
on megafaunal cranial remains, an anatomical region that remains un-
derrepresented in neotaphonomic studies. The observations provided

Type of Description/shape Gaiise Teeth used to make the
modification £ P modification
Linear or sinuous marks, U ) . .
Score i Dragging over the surface Incisors - Canines \/\
section
Small, oval to round superficial A . X
Pit b Press into the bone Incisors - Canines
marks
Preassure that perforate 113
Puncture Deep oval to round marks P Incisors - Canines 1/—\" !
the bone
Gnawin Polished/worn edge Removal of bone =
¢ / § Removal of bone and | Nistiing
Furrowing Loss of bone tissue A Canines - Premolars - Molar BB Nibbling/Catching 113
repeated scraping [0 Catching \
Irregular broken outline of the Sawtoothed fracture B Cracking T
Crenulated edge outline Premolars - Molar B Cutting

edge

Fig. 2. Types of modifications made by spotted hyenas. Hyena skull modified from Diedrich (2013).
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here aim to serve as a comparative reference for identifying
hyena-related damage on proboscidean and rhinocerotid cranial ele-
ments. While the sample size is limited, these data contribute valuable
insights for identifying the taphonomic signatures of hyena activity on
megafaunal cranial remains within the fossil record.

3.1. Spotted hyena modifications of proboscidean cranial specimens
(Loxodonta africana)

Specimen E.C.01 (Senile, Cranium): Scores, punctures, and furrow-
ing were documented (Fig. 3A). Affected areas by scores include the
processus alveolaris and palatinus (Fig. 3B), as well as the condylus
occipitalis. Four pits were identified on the zygomatic bone (Fig. 3C), in
contact with the fossa mandibularis. The pars tympanica, pars basalis,
and pars lateralis were affected by furrowing.

Specimen E.C.02 (Senile, Cranium): This cranium showed scores on
the corpus of the maxilla, the parietal bone, and the nasal bone.

Journal of Archaeological Science 186 (2026) 106458

Furrowing was also observed on the processus frontalis and zygomatic
region.

Specimen E.C.03 (Adult, Cranium): Clear evidence of scoring, pits,
furrowing, and chewing was recorded (Fig. 3). There was advanced
chewing of the zygomatic bones, processus zygomaticus of the temporal,
and the incisive bone (Fig. 3D), extending through the processus
alveolaris and palatinus of the maxilla. Scores were concentrated in the
occipital region, both condyli occipitales and the zygomatic processes on
both sides. The corpus of the maxilla also showed scores, along with
furrowing on the ventral area of the temporal and occipital bones.

Specimen E.M.01 (Adult, Mandible): Scores were observed on both
rami mandibulae and corpus mandibulae. Also, both coronoid processes
were affected by continuous nibbling. Complete consumption of the
processus condylaris and caput mandibulae was observed on both sides
(Fig. 4A), leaving crenulated edges and scratches on the ramus
(Supplementary Fig. 3A-B). The posterior part of the mandible was
heavily modified, with the fossa pterygoidea heavily altered, nearly

o

Scratches,

Fig. 3. Spotted hyena modifications of proboscidean cranium specimens. A-C: Specimen E.C.01, D: Specimen E.C.03 (explanations for A-D see text).
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Fig. 4. Spotted hyena modifications of proboscidean mandible specimens. A: Specimen E.M.01, B: Specimen E.M.02 (explanations for A-B see text).

reaching the mandibular foramen, and the pars incisiva also consumed.

Specimen E.M.02 (Senile, Mandible): In this mandible, scores were
noted on the left caput mandibulae and both rami mandibulae, and
furrowing was observed on both coronoid processes. The right processus
condylaris and caput mandibulae were completely chewed by the hy-
enas (Fig. 4B). The fossa pterygoidea showed advanced consumption,
nearly reaching the mandibular foramen, with similar damage on the
left processus condylaris.

Specimen E.M.03 (Adult, Mandible): This mandible displayed
consistent evidence of scoring across both rami mandibulae. The left
coronoid process was particularly affected by furrowing. Complete loss
of the processus condylaris and caput mandibulae on both sides was
documented, along with deep chewing in the fovea pterygoidea,
extending close to the foramen mandibulae.

Specimen E.M.04 (Senile, Mandible): Scores were observed on the
right corpus mandibulae and around the pars incisiva of this specimen.
Also, there were furrowing on the processus coronoideus.

Specimen E.M.05 (Old adult, Mandible): Scores and pits were present
on both sides of the caput mandibulae and processus condylaris. Scores
were also documented on both corpus mandibulae (Supplementary
Fig. 3C). Additional damage was noted because of nibbling in the
angulus mandibulae and both processus coronoideus.

3.2. Spotted hyena modifications of rhinocerotid cranial specimens
(Ceratotherium simum)

Specimen R.C.01 (Adult, Cranium): Evidence of scoring and chewing
was observed on this cranium (Fig. 5C). Scores were concentrated on the
right zygomatic bone and the internal surfaces of both zygomatic pro-
cesses. Additionally, extensive consumption was documented on the
premaxilla, reaching the first premolars (Fig. 5D). The paraoccipital
processes, nuchal crest, parietal crest, and nuchal tubercle, extending up
to the occipital crest, were also chewed by the hyenas.

Specimen R.C.02 (Adult, Cranium): In this specimen, scores pri-
marily affected both sides of the maxilla and the external face of the
zygomatic bone, while furrowing was observed on the internal surface of
the zygomatic bones. There was furrowing in the cornis/nasal horn boss
derived from the consumption of part of the left side (Fig. 5A). The
posterior part of the cranium was completely chewed (Fig. 5B), reaching
the occipital crest. These areas showed evidence of advanced exploita-
tion, with facial and occipital elements heavily altered, likely reflecting
attempts to access soft tissue and/or cranial contents.

Specimen R.C.03 (Adult, Cranium): Furrowing was concentrated on
the zygomatic bones and chewing of the nuchal crest in the occipital
region (Supplementary Fig. 4A and B). Several scores can be observed on
the corpus mandibulae (Supplementary Fig. 4C). The integrity of the
facial skeleton was compromised by the consumption by the hyenas.
There was evidence of chewing and advanced bone loss on the
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Fig. 5. Spotted hyena modifications of rhinocerotid cranial specimens. A-B: Specimen R.C.02, C-D: Specimen R.C.01.

premaxillae, extending up to the second premolars, and the end of the
cornis.

Specimen R.C.04 (Adult, Cranium): This cranium presented scores on
the nuchal crest, and furrowing on the cornis. The facial region was
again heavily modified, notably the premaxillae, extending to the first
premolars, creating the typical crenulated edges (Supplementary Fig. 5).
The maxillae were also chewed up to the infraorbital foramen on the
right side, and nearly to the same extent on the left.

Specimen R.C.05 (Old adult, Cranium): The specimen exhibited
scores on the right maxilla and the premaxillae was chewed
(Supplementary Fig. 6).

Specimen R.M.01 (Old adult, Mandible): Abundant scores were
recorded on several parts of this mandible. The ramus and angulus
mandibulae showed furrowing, scores and pits, indicative of prolonged
nibbling and biting (Supplementary Fig. 10B). The coronoid process and
postglenoid process groove were severely affected, with advanced con-
sumption reaching up the molars. The symphysis mandibulae was
destroyed, with damage extending to the premolars.

Specimen R.M.02 (Juvenile, Mandible): This specimen exhibited
scores in both ramus mandibulae, along with furrowing in the left

coronoid depression and posterior wall of groove. The right postglenoid
process groove was consumed by hyenas (Fig. 6A), with bone removal
extending to the coronoid depression, and the left show less consump-
tion (Fig. 6B). Additionally, the symphysis mandibulae was heavily
modified, with bone loss reaching nearly to the level of the premolars
(Fig. 6C).

Specimen R.M.03 (Adult, Mandible): The postglenoid process
grooves were chewed and the glenoid processes exhibited furrowing
(Supplementary Fig. 7). The symphysis and the external surface of the
ramus mandibulae presented scores (Supplementary Fig. 10A).

Specimen R.M.04 (Juvenile, Mandible): The symphysis mandibulae
was chewed up to the level of the first premolars. Similarly, the coronoid
and glenoid processes were completely removed on both sides
(Supplementary Fig. 8A), with bone loss extending into the coronoid
depression. Several scores were identified on the corpus and ramus
mandibulae (Supplementary Fig. 8B), as well as near the mental
foramina.

Specimen R.M.05 (Juvenile, Mandible): This mandible was heavily
modified. Both rami were chewed (Supplementary Fig. 9A), as well as
the symphyseal region (Supplementary Fig. 9B) and the coronoid and
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Fig. 6. Spotted hyena modifications of rhinocerotid cranial specimens. A-C: Specimen R.M.02, D-E: Specimen R.M.05.

condylar areas (Fig. 6D). On the right side, bone loss extends below the
coronoid depression, while on the left it is slightly less pronounced. The
mandible presented scores and pits on the ramus mandibulae (Fig. 6E;
Supplementary Fig. 9C and F; Supplementary Fig. 10C), as well as fur-
rowing on the edges of these areas (Supplementary Fig. 9D).

Specimen R.M.06 (Adult, Mandible): The symphysis mandibulae was
chewed by the hyenas, and on the right side, bone loss along the
mandibular corpus extended to the level of the first molar, with the P2
absent. The ramus exhibited clear evidence of furrowing and scoring in
several areas.

Specimen R.M.07 (Adult, Mandible): In the anterior portion, the
symphysis mandibulae was slightly consumed. On the posterior portion,
the coronoid and condylar areas are also slightly chewed
(Supplementary Fig. 11). Furrowing and scores were observed on both
sides of the corpus and ramus mandibulae.

3.3. Patterns of cranial and mandibular consumption

Based on the bone surface modifications recorded in the analysed
sample, several categories of cranial and mandibular consumption can
be distinguished. These categories reflect increasing degrees of
destruction and differ slightly between elephants and rhinoceroses.

Low-intensity consumption: Specimens show only minimal hyaena

modification, limited to light tooth scores on the most prominent sur-
faces. Overall bone loss does not exceed ~5 % in either taxon. Examples
include specimens E.C.02, E.M.04, and R.M.07.

Moderate consumption of protruding elements: Remains exhibit
more advanced damage affecting prominent structures such as the
zygomatic arch, mandibular symphysis, and mandibular condyles.
Estimated bone loss ranges between 5 and 15 %. Examples include
Specimens E.C.01, R.C.05, R.M.02, and R.M.03.

Intermediate consumption: Specimens display substantial destruc-
tion, with 15-30 % of the bone missing accompanied by abundant tooth
marks and crenulated edges, like rhinoceros specimens R.C.04, R.M.04,
R.M.05, and R.M.06. Elephant specimen E.M.05 shows comparable
levels of modification, though slightly lower than that observed in
rhinoceroses (15-20 %). The left hemimandible of E.M.02 also fits
within this range.

Advanced consumption: Specimens present advanced destruction of
the posterior portions and other prominent areas. Rhinoceros remains
show 30-50 % bone loss, whereas elephants typically present 20-30 %,
particularly in mandibular elements. The right hemimandible of E.M.02
and specimens E.M.01, E.M.03, R.C.01, R.C.02, and R.M.01 are exam-
ples of this category.

Atypical cases: Elephant cranium E.C.03 exhibits the most advanced
consumption observed for this taxon, with destruction affecting the
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posterior cranium, zygomatic arches, and incisive bones. Even so,
overall bone loss does not exceed ~30-35 %. Also, specimen R.C.03
represents an intermediate pattern that does not fully align with the
categories above: while the entire posterior portion of the cranium is
missing, other raised structures, such as the zygomatic arches or the
nasal/cornis boss, remain largely unmodified.

4. Discussion

4.1. Evaluating hyena-modified cranial remains of elephant and
rhinoceros

The results reveal a consistent pattern of selective bone modification
by spotted hyenas, with clear distinctions between cranial and
mandibular elements, as well as between the two megafaunal taxa
analysed. Overall, mandibles exhibit more frequent and severe alter-
ations than crania in both elephants (Loxodonta africana) and rhinoc-
eroses (Ceratotherium simum), suggesting that hyenas prioritize these
elements, likely due to their easier accessibility and greater association
with soft tissue.

In elephant crania (n = 3), the occipital region, including the con-
dylus occipitalis, displayed furrowing in the 33 % of the cases, while
scores were present in all specimens. These patterns suggest focused
feeding on the posterior cranium, potentially reflecting attempts to ac-
cess musculature near the neck and foramen magnum. The zygomatic
bones and processus zygomaticus were modified in all specimens to
varying degrees, with furrowing likely due to their fragility and prox-
imity to meat-rich areas. Additional modifications were noted on the
nasal and frontal processes, reinforcing the idea of progressive exploi-
tation of the facial region tissue.

In comparison, rhinoceros’ crania (n = 5) showed more intense
damage to structurally robust areas. In the facial area, consumption of
the maxillae and premaxillae reached the premolars in most specimens
(80 %), accompanied by scores. Complete or near-complete bone loss of
the zygomatic bones and advanced furrowing on the cornis were also
recorded. Posteriorly, the nuchal and parietal crests showed advanced
chewing and, in one case, complete consumption of this area. These
modifications would likely be associated with attempts to access the
brain, a nutrient-rich target despite the resistance of cranial bone.

Mandibular elements, particularly the symphysis, condyles, and
coronoid processes, were systematically targeted in both taxa. In ele-
phants (n = 5), the symphysis mandibulae was damaged in 60 % of the
sample. The processus condylaris and caput mandibulae were either
heavily altered or chewed, reflecting continued access to the temporo-
mandibular joint. Notably, all specimens exhibited furrowing on the
coronoid process, and 100 % presented scores along the ramus and
corpus, reflecting repeated tooth contact during skull manipulation and/
or muscle removal during carcass processing.

Similarly, rhinoceros mandibles (n = 7) showed extensive alteration.
The symphysis was completely or extensively consumed in all cases,
sometimes reaching the premolars. Scores and pits were frequently
observed on the ramus, corpus, and angulus mandibulae, with the latter
showing bone loss in some cases, suggesting muscle detachment as a
feeding strategy. The coronoid process and postglenoid groove were
heavily modified, often displaying deep furrowing in the coronoid
depression, pointing to systematic targeting of posterior and prominent
mandibular regions.

Despite their robustness, structurally dense areas such as the nuchal
crest, condyles, and coronoid processes were also damaged. On the
contrary, they often showed the most intensive damage, underscoring a
feeding strategy aimed at maximizing nutritional return, even at the cost
of increased processing effort. The presence of crenulated edges, along
with furrowing and scores, suggests repeated chewing rather than biting
and nibbling, reflecting both the resistance of these skeletal elements
and potential constraints in hyena feeding behaviour when processing
megafaunal carcasses.
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Species-specific differences were also observed. In elephants, dam-
age was more concentrated in the condyles and symphysis, while in
rhinoceroses, greater damage occurred on the posterior skull, with
emphasis on the coronoid and condylar processes, nuchal crest, and
occipital area. These contrasts likely reflect variations in bone density,
anatomy projection, and tissue distribution, influencing carcass acces-
sibility and processing.

Collectively, these findings enhance our understanding of hyena-
mediated bone modification in large-bodied taxa and offer compara-
tive data for interpreting similar patterns in the fossil record. They
highlight the importance of considering anatomical structure, bone
density, and feeding behaviour when reconstructing taphonomic his-
tories in archaeological and paleontological contexts. Further research
should explore how these variables influence selective consumption
across different carnivore species and ecological settings.

4.2. Megafaunal accumulation and skull exploitation across Eurasia in
cultural and non-cultural assemblages

Rhinoceroses and proboscideans can represent between 20 and 77 %
of hyena’s prey choice in non-cultural accumulations (Table 1), as
documented in Koneprusy Cave (Diedrich, 2011), Nad Kacakem Cave
(Diedrich, 2017), Vallonnet Cave (Echassoux, 2004), Bad
Widlungen-Biedensteg (Diedrich, 2006a, 2013), Bottrop (Diedrich,
2011, 2012b), Hohle Stein Cave (Diedrich, 2011), Hyaena Den (Currant
and Jacobi, 2004) and Perick Caves (Diedrich, 2008), among others
(Table 1). In contrast, in anthropogenic accumulations (Table 1), as-
semblages containing only rhinoceros remains, or both rhinoceros and
proboscidean remains, exhibit lower values in the percentage of mega-
faunal specimens relative to the total NISP (%NISP), ranging from 0.2 %
at Covalejos (Yravedra et al., 2016, 2019) to 25 % at Terra Amata
(Valensi, 2001). However, assemblages exclusively composed by pro-
boscidean remains may show substantially higher %NISP values, such as
the 77.7 % recorded at EDAR Culebro 1 (Yravedra et al., 2014) or the 99
% recorded at Pit site in La Boella (Mosquera et al., 2015).

A different pattern emerges in mixed accumulations, with mega-
faunal %NISP tending to be higher in assemblages where humans acted
as the primary accumulating agent and carnivores played a secondary
role. This is observed at sites such as Castel di Guido, where megafauna
represent 42.6 % of the NISP (Sacca, 2012), Ambrona with 61.9 % (Villa
etal., 2005), Molodova I with 84.2 % (Demay et al., 2012) and Aridos 2,
where megafauna account for 100 % of the assemblage (Yravedra et al.,
2010), among others (Table 1). Conversely, in assemblages where car-
nivores had primary access to rhinoceros and proboscidean carcasses (or
where their role remains unclear), megafaunal representation is
considerably lower, with values not exceeding 7.18 % at Balver Hohle
(Kindler, 2012), 11.2 % in the upper levels (UAL) of Fuente Nueva 3
(Espigares et al., 2013; Yravedra et al., 2021; Palmqvist et al., 2024), and
3.1 % and 0.2 % at El Forn and La Mina respectively at Barranc de la
Boella (Pineda et al., 2017).

Meat, viscera, and fat represent the most immediately attractive re-
sources provided by megafaunal carcasses for both hominins and car-
nivores. Consumption of these tissues by carnivores, particularly hyenas,
has been documented in most macrofaunal assemblages (Table 1).
Rhinoceros remains bearing cut marks are relatively abundant in the
archaeological record, as observed at sites such as Caours (Antoine et al.,
2006), Abric Romani (Rosell et al., 2012), Boxgrove (Parfitt and Roberts,
1998), and La Biache Sant Vast (Auguste, 1995), among others (see also
references on Tong, 2000, 2001; Daujeard et al., 2018; Chen and
Moigne, 2018, Table 1). In contrast, proboscidean remains with cut
marks are comparatively rare (Table 1), largely due to the substantial
thickness of cartilage and periosteal tissues that complicate defleshing
activities (Haynes and Klimowicz, 2015). Nevertheless, such modifica-
tions have been recorded at several sites, including Fuente Nueva 3
(Espigares et al., 2013; Yravedra et al., 2021; Palmqvist et al., 2024),
Barranc de la Boella (Mosquera et al., 2015; Pineda et al., 2017), Gesher



Table 1
Summary of archaeological and paleontological sites with megafaunal remains.
Country Site Level Chronology NISP MF %NISP ™ CM Others Origin References
MF
Austria Krems-Wachtberg (1) ~27 ka 350 MA 53 yes yes AS, LI, FI H Fladerer (2003)
Belgium Scladina Cave 5 1871 MA, C.a 3.3 no yes Abrams et al., 2013
Belgium Spy 10000 MA, C.a 11.8 no no AS H** Germonpré et al., 2014
China Dadong Cave MIS 6-7 7045 RH (R.s) 24 yes no AS, LI, PP H/C Miller-Antonio, et al., 1999; Schepartz and Miller-Antonio
(2010)
China Guanyindong Cave RH no no AS H** Li and Wen, 1986; Tong (2000)
China Nanjing Man Cave 500 ka RH yes no AS H/C Tong (2001)
China Shanshenmiaozui 1.2 Ma RH (C.n) yes LI Tong et al., 2011; Liu et al., 2016
China Zhoukoudian RH no no FI Chow, 1978; Tong (2000)
Czech Prosek Dome Early Pleistocene C.a yes no C Diedrich (2006b)
Republic
Czech Koneprusy Cave Middle Pleistocene 126 Ca 25 yes no C Diedrich (2011), 2017
Republic
Czech Nad Kacakem Cave 40 C.a 30 yes no C Diedrich (2017)
Republic
Czech Sloup Cave 63 MA, C.a 17 yes no C Diedrich, 2012c
Republic
Czech Srbsko Chlum-Komin Upper Pleistocene 3569 C.a 4 yes no C Diedrich (2006b), 2017
Republic Cave
Czech Axamitova Brana Cave Middle-Upper Ca yes  yes H/C Diedrich (2006b)
Republic m Paleolithic
Djibuti Borogali EL LI Berthelet and Chavaillon, 2001
France Biache St Vaast IIa & IIb MIS 7 20000 PAL, RH 7.5 yes  yes H Louguet-Lefebvre, 2005; Auguste (1995); Bahain et al.,
2015
France Camiac (1) MIS 3 2526 RH 20 yes yes LI C/H Guadelli (1989); Discamps (2011)
France Caours 4a & 6b MIS 5e 892 PAL, RH 1 no yes Antoine et al. (2006)
France Caune de I'Arago F MIS 12 7404 RH (S.h.) 5.71 yes  yes H Moigne et al. (2006); Chen and Moigne (2018)
France Caune de I’'Arago C MIS 11 RH (S.h.), EL 6.13 Moigne et al. (2006)
France Caune de I'Arago J MIS 13 RH (S.h.) 7.63 Moigne et al. (2006)
France Caune de I’Arago Q MIS 14 RH (S.h.) 2.12 Moigne et al. (2006)
France Cleon (1) 1,2,3,56 MIS 10-7 PAL, D.h. Patrick et al., 2003;
France Mont Dol 6&8 MIS 5b 4159 MA, C.a 37.9 yes  yes Louguet-Lefebvre, 2005
France Payre G MIS 8-7 815 RH (S.k., 17.3 yes yes C Daujeard et al. (2018)
S.h)
France Payre F MIS 8-7 3027 RH (Sk., 8.77 yes  yes C Daujeard et al. (2018)
S.h)
France Payre D MIS 6-5 963 RH 8.93 yes yes C Daujeard et al. (2018)
France Plumettes Upper (II) MIS 3 2537 MA, C.a 1.64 yes no LI C Beauval and Morin, 2010
France Plumettes Lower (IV, VI, VIII) MIS 3 3328 Ca 0.61 yes no LI C Beauval and Morin, 2010
France Ranville 698 PAL, RH 17.9 yes Auguste, 2008
France Rochers de Villeneuve J MIS 3 5282 C.a 0.58 yes no LI C Beauval and Morin, 2010
France Rochers de Villeneuve N MIS 3 1242 MA, C.a 2.64 yes no LI C Beauval and Morin, 2010
France Saint Cesaire 10, 11, 12 MIS 3 1682 MA, C.a 2 yes yes Morin, 2012
France Terra Amata Cl ~380 ka ~2400 EL, RH (S.h) 25 no AS, BPR, H Valensi (2001)
PP
France Vallonnet Cave 1.2-1.1 Ma 7204 MA, RH (S.hu., 20.07 yes yes C Echassoux (2004)
C.s)
Georgia Dmanisi 1.8 Ma MA, RH (S.e) 159 H Gabunia et al., 2000; Ros-Montoya et al., 2025
Germany Ariendorf 2 Bed I & II MIS 8 336 MA, C.a 60.1 yes Turner, 1998; Turner et al., 1997
Germany Bad Widlungen- MIS 5 260 MA, C.a 34 yes no C Diedrich (2006a), 2013
Biedensteg
Germany Balver Hohle MIS 5 5796 MA, C.a 7.18 yes  yes LI C/H Kindler (2012)
Germany Bollschweil 22093 MA, C.a 57.4 no no Conard and Niven, 2001

(continued on next page)
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Table 1 (continued)

Country Site Level Chronology NISP MF %NISP ™ CM Others Origin References
MF
Germany Bottrop 63.3-101.5 ka 3820 MA, C.a 61 yes no C Diedrich (2011), 2012b
Germany Groben MIS 6 PAL, RH yes yes LI H Gaudzinski (2004); Gaudzinski-Windheuser et al. (2023)
Germany Hohle Stein Cave 151 MA, C.a 52 yes no C Diedrich (2011)
Germany Koneprusy Cave Main Dome area Upper Pleistocene 711 Ca yes no C Diedrich and Zak (2006); Diedrich (2011)
Germany Krolpa (1) Late Pleistocene 43 C.a 77 yes no C Diedrich (2015)
Germany Lehringen Middle Pleistocene PAL, RH yes no C Thieme and Veil, 1985; Gaudzinski (2004)
Germany Neumark-Nord Lake 1 MIS 5e PAL, RH yes no C Mania et al., 1990; Mania, 2010; Gaudzinski (2004);
Diedrich (2013)
Germany Perick Caves 2275 MA, C.a 20 yes no C Diedrich (2008)
Germany Salzgitter-Lebenstedt 2860 MA, C.a 14.3 yes  yes H/C-C/ Gaudzinski and Roebroeks, 2000
H
Germany Selm-Ternsche C.a yes no C Diedrich (2012b), 2013
Germany Selm-Ternsche Late Pleistocene C.a yes no C Diedrich (2012b)
Germany Srbsko-Chlum-Komin 260 C.a 4 yes no C Diedrich (2012a)
Germany Taubach (!) bone sand MIS 5e 4864 PAL, RH 36.2 yes yes LI H Bratlund (2000); Gaudzinski (2004);
Gaudzinski-Windheuser et al. (2023)
Germany Teufelskammer Cave (!) Lower Weichselian 199 MA, C.a 29 yes no C Diedrich (2011)
Germany Tonchesberg 2B 921 RH 1 yes  yes H/C-C/ Conard, 1992
H
Germany Untermassfeld Early Pleistocene S.hu *n = yes no C Kotowski et al. (2020)
1065
Germany Vogelherd Cave Layers IV-V 29-36 ka 17000 C.a 4.7 yes no AS H** Niven (2006)
Germany Vogelherd Cave Layer VII Middle Paleolithic 518 Ca 13.3 yes no C Niven (2006)
Germany Weinberg Caves MA yes no C Diedrich (2011)
Hungary Erd EnsL MIS 5b MA, C.a LI H Daschek (2021)
Hungary Erd EnsU MIS 3 MA, C.a *n = 251 yes yes LI, AS, H/C-C/ Daschek (2021)
BPR H
Israel Gesher Benot Ya’aqov 1 EL 100 yes LI H/C Goren-Inbar et al., 1994; Rabinovich and Biton (2011)
Italy Asolo all MIS 4 50 MA 100 no no Mussi and Villa, 2008
Italy Castel di Guido MIS 9 3245 PAL 42.6 yes yes LI, PP, H/C Sacca, 2012
Italy Notarchirico A 675-610 ka 85 PAL 44.7 no no LI Natural?  Pineda et al., 2024
Russia Kosténki 21 (1) layer III, complexes 21-23 ka 758 MA 66.7 yes LI H Reynolds et al., 2019; Demay et al. (2021)
3-6
Russia Kosténki 21 (1) layer III, complexes 21-23 ka 655 MA, C.a 71.87 no yes LI H Reynolds et al., 2019; Demay et al. (2021)
1-3
Russia Yudinovo complexes 3-4 ~14.5 ka MA *n=>517 yes yes AS, ST, LI H/C Germonpré et al. (2008)
Spain Abric Romani J MIS 3 1265 RH (S.h.) 4.74 no yes LI, FI H Rosell et al. (2012)
Spain Ambrona AS1, AS2, AS3 400-350 ka 611 EL 61.9 yes yes LI H/C Villa et al. (2005)
Spain Arenero Pedro Jaro Middle Pleistocene RH yes LI H Yravedra et al. (2019)
Spain Aridos 1 MIS 9 EL no LI Villa, 1990; Soto et al., 2001
Spain Aridos 2 MIS 11 EL 100 yes yes LI H/C Yravedra et al. (2010)
Spain Bolomor Cave ~350 ka-100 ka EL yes LI, FI H Blasco and Fernandez Peris (2012); Blasco et al. (2013)
Spain Covalejos J MIS 3-5 3990 RH 0.2 yes LI H Yravedra et al. (2016), 2019
Spain Cueva Des-Cubierta 3 MIS 5/4 333 RH (S.h) 25.8 yes  yes LI, FI H/C Baquedano et al., 2023
Spain EDAR Culebro 1 2&3 45 MA 77.7 no yes H Yravedra et al. (2014)
Spain ETB-H02 MIS 6/7 947 EL, RH (S.sp.) 2.1 no no LI Yravedra et al. (2019)
Spain Fuente Nueva 3 lower (LAL) Early Pleistocene 1400 EL 5.8 yes  yes LI H/C Espigares et al. (2013); Yravedra et al. (2021); Palmqvist
et al. (2024)
Spain Fuente Nueva 3 5 1.2 Ma MA, RH (S.e) yes yes LI C/H Yravedra et al., 2024
Spain Fuente Nueva 3 upper (UAL) Early Pleistocene 7692 EL 11.2 yes  yes LI C/H Espigares et al. (2013); Yravedra et al. (2021); Palmqvist
et al. (2024)
Spain La Boella (El Forn) 1-4 0.96-0.781 Ma 736 MA, RH (S.hu) 3.1 yes no LI, PP C/H Pineda et al. (2017)
Spain La Boella (La Mina) Unit II level 2 0.96-0.781 Ma 578 MA 0.2 yes no LI, PP C/H Pineda et al. (2017)
Spain La Boella (Pit) 2 1.07-0.87 Ma 164 MA 99 no yes LI H Mosquera et al. (2015)

(continued on next page)
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882 =S Benot Ya’Akov (Goren Inbar et al., 1994), Ambrona (Shipman and Rose,
é gc A E E 1983; Villa et al., 2005), Aridos 2 (Yravedra et al., 2010), La Cotte de St.
SEELZE Brelade (Scott, 1980, 1986; Smith, 2015), Castel di Guido (Mussi, 2005),
& o g § g 8 Taubach and Grobern (Gaudzinski-Windheuser et al., 2023).
2 S S8 § Eo Hyenas are capable of gnawing and consuming the fat stored within
,:E g = ,S E E megafaunal long bones after the death of the animal. In the case of el-
& oo § @ Z‘L S ephants across African environments, from semi-arid savannas to trop-
8 —~ 5 a gg = E §o g § E ical woodlands, this process may occur one to three years post-mortem,
8 E © S g = g > § g or even longer when sheltered by vegetation or shade (Haynes and
< S - § g :,,1 ;;), —: E g fff & § Klimowicz, 2015). Although the feasibility of hominins accessing
= E g & § %‘é 8 §3E=% £ marrow in proboscidean bones remains a subject of debate (Haynes
g 2“ E E"-o ) £z é S ‘JS § _éf 8 4 et al., 2021), bones could be used as fuel (Perles, 1977; Théry-Parisot
j% S & g5 8 is¥s 5 g s 2 f é % et al., 2005; Glazewski, 2006), as documented in Krems-Wachtberg
; S % E § g? § 2 S 583 '§ ‘§ L:} E "E (Fladerer et al., 2014); as material for the construction of shelters and
g8 Z E X3 58§ s Z f 8§83 s k= dwelling structures, as seen at Yudinovo (Germonpré et al., 2008) or
% g ; g ;{3 ?g —,‘f é % 2 ; § S é g E Ketrosy and Molodova I/4 (David, 1980; Demay et al., 2012, 2021); and
53 S8z=zdS83zs8a|8 9 : ; % as tools, at several Olduvai localities, includying BK (Leakey, 1971),
i é “ % % Beds I-IV at Olduvai (Pante et al., 2020), and The T69 Complex (De la
g VY oE oo o Z“ g g § et Torre et al., 2025); or other sites such as La Polledrara (Villa et al.,
§ |= o s 83E5 1999).
E § 5 g ?o Although the attention has been given mainly to the exploitation of
" E E S T g meat, viscera, fat, and marrow from postcranial elements, skull provided
2 5 E 5 EG E g g ; (i« S access to nutrient-rich tissues during carcass exploitation by both
S = === v = Z}E % hominins and carnivores. Thus, cranial remains of rhinoceroses and
7§ § E 5 Z proboscideans have been identified at least at 43 archaeological and
g 8¢ ¢ ] e8¢ E % § E ‘qa: paleontological sites (Supplementary Table 1), both in ‘cave contexts and
& o o 8 E open-air deposits, excluding assemblages where only isolated teeth are
E |28 g8 888 g TERETS present. o ,
_‘; g 4] 2 ;g When megaffiunal s.kulls are con51de1.red in cultural cor.ltexts, their
& . 9 o - o . “qi) _§ 5 ﬁ 3 presenc.e is typically 1n.terpreted.as .eV1dence of proce551.ng for the
z = g oN g I ¥|ESSEE extraction and consumption of brain tissue and tongue. For instance, at
. £ ® -§ § § E i~ Bolomor Cave, a Palaeoloxodon antiquus mandible bearing cut marks was
% % gg -% 5 recovered (Blasco and Fernandez Peris, 2012; Blasco et al.., 2013).’At
4 wd WA N T::: E E i gz Yudinovo, 37 megafaunal skulls ha.\fe been found, and theu.* fracturing
& 2 Z ; Z é’ g Z é’ § ;{ ::{ E 2 ‘g g g 2 ?atteins suggest t?Galt humans exp1101t2e(()iog;er; f(){ th.e :xtrac:u? of gesh
= = = == =2 X E atty brain tissue (Germonpre et al., . Similar interpretations have
%0 § E g E g been proposed for other sites such as Gesher Benot Ya’Aqov
g ; é 3] g E (Goren-Inbar et al., 1994), Erd (Daschek, 2021), and Arago F (Chen and
& 2 8@ ® 38|<ES 52 Moigne, 2018).
= = = @ U % § g E ; £ However, as noted by Haynes et al. (2020), fracturing of modern
g .é ”5: _% '§~ & megafaunal cranial elements may also result from other
_52 fé; 3 § i ,go E non-anthropogenic factors, such as being kicked or trampled by large
cZo S - s, E g g E g 5 mammals. In addition, Diedr%ch (20064, b, 2012a, b., 2913, 2015) has
El @ o 2 238 ® 2y “% g a documented hyena consumption of megafaunal remains in non-cultural
,59 =S = ET = § £ Té ‘é’ % fossil accumulations, including several crania and mandibles of
o S ,§ Z5=8 rhinoceros.
; _“:’ § ;;;“ .§ g 5 Given that many Pleistocene assemblages in Eurasia were accumu-
E <] é ks ) “5 lated by cave hyenas (C. crocuta spelaea), it is important to consider the
N i’ _;:f E E’ g £ morphological and behavioural distinctions between these extinct
= 3 g g g § 8 g S populations and modern spotted hyenas. Over the years, cave hyenas
g <] g < 5 .é ; % % Eo have been considered distinct from the extant spotted hyenas:
© 2 SAE Q5 Morphologically, C. spelaea shows shorter distal limb elements (Sauqué
é i é.f ,go g i et al., 2017) and a le.ss trenchant chee:k tooth morphology, possiply
G482z 5 2 E linked to a greater reliance on scavepglng rathfsr than a}ctlve hunting
2 ol § Tg g é 4 (Ehrenberg et al., 1938). However, as illustrated in Sauque et a.l. (201?),
5 N E SEE LY these traits often overlap or are reversed. Nevertheless, genetic studies
j": 5 g2 E g E based on mtDNA have demonstrated that both cave and modern spotted
% s 5 § 8 g -2 § '% § & E hyenas belong to the same species (Crocuta crocuta), with differences
5 E E S § v = o %5 g é E % g 2 reflecting regional adaptations rather than taxonomic separation
é % §‘::J 2 ‘ii ;g E % AR g g A E (Rohland et al., 2005; Westbury et al., 2020).
% ACEEE SSRRTMZ 28 g g % g In terms of behavioural ecology, direct inferences are necessarily
5 ;5 5 § % g g limited. Still, Vinuesa et al. (20?6) documented reduced anterl(.)r brain
§ § 4 £ o~ volumes in C. spelaea and C. ultima compared to C. crocuta, which may
el ggg|lc8s2c g § indicate less complex social structures that should be considered when
28 £ EEE|E 8% & £ assessing the bone accumulations they produced.
al R A M oM MMM ME S 3‘::“-9983 g Yy P
sl ° Soom2 mREeEee SEES &8 Having these considerations in mind, and by documenting the full
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range of taphonomic modifications produced by modern Crocuta cro-
cuta, the neotaphonomic data obtained in this study provides a useful
comparative framework to assess the modifications observed on mega-
faunal cranial remains in Pleistocene Eurasian assemblages. The pat-
terns documented in the experimental sample are consistent with many
of the damage types described in fossil contexts (e.g., Diedrich, 2006a,b,
2012a,b, 2013, 2015; Schepartz and Miller-Antonio, 2010; Kotowski
et al., 2020), supporting the interpretive value of the current neo-
taphonomic observations for evaluating carnivore involvement in the
formation of archaeological and paleontological megafaunal bone
accumulations.

The experimental sample reveals clear parallels with fossil assem-
blages in the anatomical regions most frequently targeted by hyenas
during cranial exploitation. In Pleistocene assemblages where rhinoc-
eros crania display extensive damage in the occipital and parietal re-
gions (Fig. 7A-E, F, G), the modifications are comparable to the damage

A. Selm-Ternsche
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observed on Specimen R.C.01 and Specimen R.C.02. The zygomatic area
is commonly consumed (Fig. 7B, C, D, E, G) and the premaxilla
frequently show bone loss (Fig. 7A-G F), similarly to the five cases
presented in this study.

Mandibular elements display consistent damage patterns across both
modern and fossil samples (Figs. 6 and 8), with severe bone loss and
edge rounding at the symphyseal region, especially in Fig. 8A1, B, and D,
which are similar to specimens R.M.01, R.M.02, R.M.04, R.M.05, R.
M.06 and R.M.07, reaching up the premolars. The condyles and rami
appear to be more extensively consumed in the fossil record, with
modification sometimes extending into the mandibular corpus
(Fig. 8A1, A2, B, C) as observed in specimens such as R.M.01 or R.M.05.

The fossil record also exhibits evidence of more advanced stages of
cranial destruction, often resulting in the near-complete consumption or
disintegration of cranial bones. This may be related to morphological
differences between modern and fossil hyena species, or to extended or

B. Bochum

D. Turska Mastal Cave

(e~ -=a
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Fig. 7. Hyena-induced modifications on rhinoceros cranial remains from non-cultural assemblages extracted from Diedrich (2006a),b, 2011, 2012a,b, 2013, 2015

and 2017.
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A.1. Srbsko-Chlum-Komin

B. Bad Wildungen-Biedensteg

C. PoBneck
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A2. Srbsko-Chlum-Komin

Fig. 8. Hyena-induced modifications on rhinoceros mandibles remains from non-cultural assemblages extracted from Diedrich (2006a),b, 2011, 2013, 2015

and 2017.

repeated access to megafaunal carcasses, producing in some cases,
almost total fragmentation of crania and mandibular elements
(Fig. 7D-G, and Fig. 8B). In contrast, the neotaphonomic sample ana-
lysed here, while showing substantial modification of specific cranial
regions, does not reach the extreme levels of bone destruction docu-
mented in some fossil contexts, likely due to shorter exposure periods
and more limited access by hyenas to the remains.

The present neotaphonomic study provides new reference data for
understanding the modification of megafaunal cranial remains by hy-
enas. The observed damage modifications closely mirror many of the
modifications documented in Pleistocene assemblages. Importantly,
these neotaphonomic observations allow for a more precise character-
ization of hyena-induced modification patterns, offering a comparative
framework to distinguish carnivore-generated damage from hominin
processing in fossil contexts. This distinction is particularly relevant
given the equifinality that often arises when both hominins and carni-
vores exploit similar cranial resources, such as brain tissue, sinusal fat,
and mandibular marrow (Smith, 2015; Agam and Barkai, 2016; Gaud-
zinski-Windheuser et al., 2023). By incorporating neotaphonomic data
into archaeological and paleontological analyses, this study contributes
to a more accurate identification of bone-modifying agents and offers
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new perspectives for reconstructing hominin and carnivore subsistence
behaviours, as well as the broader ecological dynamics that character-
ized Pleistocene ecosystems.

4.3. Feeding sequence and stages of hyena-induced cranial modification
in megafaunal carcasses

The degree of modification observed on very large mammal bones
often reflects the extent and duration of carnivore feeding, which can
vary spatially and temporally depending on prey availability and
interspecific competition (Haynes, 1980, 1982, 1991; White and Die-
drich, 2012; Haynes and Klimowicz, 2015). Spotted hyenas follow a
consistent feeding sequence, as described Haynes and Hutson (2020:
Table 2) for selected elephant bones (i.e., scapula, humerus, radius,
ulna, femur, tibia, and pelvis). In Stage 1, initial gnawing produces tooth
marks and ragged edges. Stage 2 involves moderate gnawing, with
epiphyses exhibiting increasing crenulation. During Stage 3, feeding
intensifies, resulting in deep furrowing, diaphyseal breakage, and
near-destruction of major joints. Finally, Stage 4 represents the
advanced consumption and fragmentation phase, leaving only scattered,
heavily tooth-marked fragments of bone.
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Stage 3

Stage 4

Stage 5

Furrowing and partial
bone loss of zygomatic
bones, nuchal, and parietal
crests. Crenulated edges

Intense furrowing in
postglenoid grooves and
coronoid processes and
corpus tooth marked

Furrowing and bone loss in
occipital condyles, fossa
pterygoidea, maxilla and
incisive bone

C. Mielgo et al.
Table 2
Proboscidean and rhinoceros bone damage types which can be divided in five stages for cranial bones.
Stage 1 Stage 2
Rhinoceros Cranium Superficial scores and pitsin ~ Maxillae and cornis
premaxillae and maxillae furrowed, protruded
surfaces tooth marked
Mandible  Initial modification of Chewing of the symphysis
symphysis mandibulae. and initial furrowing of the
Condyle/process and projected structures
angulus mandibulae with
tooth marks
Proboscidea  Cranium Light scoring in maxilla and  Tooth marks and initial
processus nasalis furrowing in zygomatic
bones and processus
zygomaticus and occipital
areas.
Mandible  Pars incisiva and joint areas  Increased numbers of

tooth marked

scores and pits in ramus
and corpus mandibulae.
Initial furrowing

Chewing of caput
mandibulae and condylar
processes. Crenulated
edges

Crests and posterior
cranium chewed,
zygomatic bones and
maxilla consumed.
Crenulated edges
Symphysis and condylar
area absent. Ramus
completely chewed.
Crenulated edges

Advanced furrowing in
condilus occipitalis,
maxilla, and incisive bone

Symphysis and ramus
mandibulae near-total
chewed. Crenulated edges

Near-total breakdown of
facial/posterior cranium

Near-total breakdown of
ramus and corpus

Structural breakdown of
the posterior cranium,
furrowing in structurally
prominent regions

Advanced furrowing,
only the horizontal
ramus remains

Similar occurred for rhinoceroses’ same skeletal elements, with a
simpler three-stage framework proposed by Diedrich (2012b: fig. 20B):
Stage 1 shows limited gnawing at proximal or distal epiphyses, in Stage
2 one epiphysis is lost through heavy chewing, and in Stage 3 only the
diaphysis with jagged and irregularly broken ends remains.

The cranial and mandibular modifications documented in this study,
together with the taphonomic analyses available for those archaeolog-
ical and paleontological sites with studied cranial remains included in
this work, reveal a structured sequence of skull exploitation by spotted
hyenas, progressing through five stages of increasing intensity (Table 2;
Fig. 9). Building upon previous models that defined consumption stages

Stage 1

for long bones, scapula, and pelvis, this study extends the framework to
skull remains by integrating neotaphonomic observations from free-
ranging hyenas with published fossil evidence, filling a gap in current
taphonomic research. Elements assigned to advanced modification
stages often retain traces of the alterations characteristic of preceding
stages.

In Stage 1, comparable to the low-intensity consumption category,
alterations affect accessible and fragile regions such as the pars incisiva
and symphysis mandibulae, typically displaying superficial scores and
isolated pits, indicating superficial interaction. Specimens E.C.02, E.
M.04, and R.M.07 from the neotaphonomic study would fall within

Stage 5

Rhinoceros

Proboscidea

Fig. 9. Proboscidean and rhinoceros bone damage types which can be divided in five stages for cranial bones. Red lines represent the most probable location of tooth
marks, reconstructed from the observations in this study and from the comparative literature reviewed herein. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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stage 1. Stage 2, comparable to the moderate consumption category, is
characterized by tooth marking and initial furrowing focused on muscle-
rich or structurally weaker zones, such as the zygomatic bones, sym-
physis, and condyles (Fig. 9). Examples of stage 2 include specimens E.
C.01, R.C.05, R.M.02, and R.M.03 from this study.

Stage 3, comparable to the intermediate consumption category, re-
flects intensified processing, with cranial modifications extending to
more robust zones and, in mandibles, involving destruction of joints and
fracturing of protruding portions to access marrow, grease, or soft tis-
sues (Table 2). Specimens E.M.05, R.C.04, and R.M.06 from the Neo-
taphonomic sample would be representative examples of stage 3, as well
as the cranium from Selm-Ternsche and Srbsko-Chlum-Komin
(Fig. 7A-E). The cranium from PoBneck shows characteristics from stage
2 and 3 (Fig. 7F).

Stage 4, comparable to the advanced consumption category, involves
loss of cranial robustness due to near-complete structural breakdown of
the facial and posterior cranium in rhinoceroses (Fig. 9). In mandibles,
severe chewing with loss of mandibular projected structures is observed.
From this study, specimens E.M.02, R.C.03, R.M.04, and R.M.05 illus-
trate how a single sample may display features corresponding to more
than one stage, showing characteristics of both stage 3 and stage 4. This
also occurred in the craniums from Bochum and Konéprusy Caves-
Prosek Dome (Fig. 7B and C). In contrast, E.M.01, E.M.03, R.C.01, R.
C.02, and R.M.01 and all the mandibles shown in Fig. 8 are best clas-
sified as stage 4.

Finally, Stage 5 encompasses advanced consumption stages, marked
by pronounced nibbling and furrowing on elephant crania, and near or
complete destruction of rhinoceros cranial bones (Table 2, Fig. 9),
together with almost total consumption of the ramus and corpus man-
dibulae. The only specimen from the neotaphonomic sample exhibiting
characteristics of both stage 4 and stage 5 is E.C.03. Stage 5 stage was
not directly observed in the present study but is inferred from compar-
ative analyses of damage modifications described in non-cultural as-
semblages, particularly in relation to rhinoceros cranial remains as
previously documented (e.g., Tong, 2001; Moigne et al., 2006; Gor-
en-Inbar et al., 1994; Diedrich, 2006a,b, 2012b, 2013, 2014; Schepartz
and Miller-Antonio, 2010; Agam and Barkai, 2016). The crania from
Turska Mastal Cave and Bad Wildungen-Biedensteg are two such ex-
amples documented in the literature (Fig. 7D-G).

The anatomical location and severity of modifications vary between
taxa, particularly in Stages 3-5. Elephant remains exhibit more frequent
damage in the temporomandibular and pterygoid regions, whereas
rhinoceros crania show greater alteration of the nuchal and facial crests.
These differences may reflect contrasts in cranial robustness and soft
tissue distribution, influencing hyena feeding behaviour and carcass
processing strategies. Altogether, the progressive modification patterns
observed emphasize both the dietary specialization of hyenas and their
ability to exploit highly resistant skeletal elements.

5. Conclusion

This study provides new neotaphonomic data on cranial modifica-
tion patterns produced by free-ranging spotted hyenas (Crocuta crocuta)
on modern elephant (Loxodonta africana) and rhinoceros (Ceratotherium
simum) remains from Timbavati Private Nature Reserve, South Africa.
The observed sequences of damage, which complements and builds on
previous similar studies, reveal a pattern of carcass exploitation, with
preferential targeting of anatomical regions based on their exposure and
structural properties. Progressive chewing, furrowing, cortical removal,
and advanced fracturing were documented across both cranial and
mandibular elements, demonstrating the capacity of hyenas to modify
even highly resistant skeletal tissues when carcasses remain accessible
over prolonged periods.

Prey species-specific differences in modification intensity may result
from hyena feeding behaviour, as well as from contrasts in cranial bone
density, tissue distribution, and body size, with rhinoceros exhibiting
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greater destruction than those of elephants possibly due to lower
structural resistance. Expanding neotaphonomic research to include
megafauna and cranial elements, particularly under natural conditions
with free-ranging animals, provides a valuable comparative framework
for distinguishing carnivore and hominin modifications in fossil as-
semblages, ultimately improving our ability to reconstruct the tapho-
nomic histories of Pleistocene megafaunal bone accumulations.
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