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A B S T R A C T

The role of hominins in the hunting and processing of megafauna is one of the most contentious topics in 
Pleistocene archaeology. Determining whether the remains of very large mammals (>800 kg) were shaped by 
human activity or carnivore modification requires robust neotaphonomic frameworks. Systematic patterns of 
carcass consumption by carnivores have been established, particularly for long bones. Yet research on mega
fauna, and especially on their cranial remains, are scarce despite their recurrent presence in archaeological 
contexts. This study investigates bone surface modification patterns on rhinoceros (Ceratotherium simum) and 
elephant (Loxodonta africana) cranial elements consumed by free-ranging spotted hyenas (Crocuta crocuta) in the 
Timbavati Private Nature Reserve, South Africa. The sample includes 20 cranial specimens (MNE = 20; 12 
rhinoceros, 8 elephant) from individuals of different age groups that died naturally and were subsequently 
scavenged. Analyses using 40x hand lenses and Dino-Lite digital microscope to document bone surface modifi
cations. Distinct patterns emerged: in rhinoceroses, near-complete destruction of mandibular condyles, coronoid 
processes, nuchal crest, and maxilla; in elephants, pronounced furrowing on mandibular condyles and the 
symphyseal region. Integrating these observations with published taphonomic analyses of Eurasian assemblages, 
a five-stage sequence of cranial exploitation is proposed, paralleling models established for long bone con
sumption. These results highlight prey species-specific differences in modification intensity linked to bone 
density, tissue distribution, and feeding strategies. More broadly, they provide comparative criteria for dis
tinguishing hyena from hominin-induced modifications, and the paleoecological significance of megafauna in 
Pleistocene ecosystems.

1. Introduction

Archaeological and paleontological Pleistocene records consistently 
demonstrates that hominins, from the earliest representatives to Homo 
sapiens (Linnaeus, 1758), coexisted with hyenas and other carnivores 
across a variety of landscapes. Caves and rock-shelters often served as 
recurrent occupation sites for both groups, either in temporal succession 
or not (e.g., Straus, 1982; Brugal and Jaubert, 1991; Villa et al., 2004; 
Miracle, 2005; Brugal, 2010; Discamps et al., 2012; Morley et al., 2019). 
At many of these sites, the cumulative and overlapping modifications 
produced by both hominins and carnivores frequently result in complex 

palimpsests, making it difficult to identify the respective contributions 
of each agent to site formation processes.

Carnivore modifications on bones provide essential information for 
identifying the origins of fossil assemblages, offering valuable insights 
into both hominin and carnivore subsistence strategies. Spotted hyenas 
(Crocuta crocuta, Erxleben, 1777) have been responsible for many of the 
non-human bone accumulations during the Pleistocene in Africa and 
Eurasia (e.g., Mills and Mills, 1977; Fosse et al., 1998; Stiner, 2004; Villa 
et al., 2004; Diedrich and Žák, 2006; Kuhn et al., 2010; Diedrich, 
2014b). Due to the considerable overlap in prey species and their 
bone-accumulating and modifying behaviours, hyena-generated 
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assemblages can exhibit taphonomic signatures that closely mimic those 
produced by hominins, resulting in equifinality and complicating the 
differentiation between these agents. In this context, neotaphonomic 
and experimental studies of carnivore bone modifications have become 
increasingly important for the analysis and interpretation of fossil faunal 
assemblages.

Previous taphonomic research has mainly focused on reconstructing 
the timing of hominin and carnivore access to animal carcasses (e.g., 
Binford, 1981; Blumenschine, 1986; Selvaggio, 1994; Pante et al., 
2012); documenting skeletal part representation and bone fragmenta
tion (e.g., Blumenschine, 1986; Marean and Spencer, 1991); and char
acterizing bone surface modifications, including their anatomical 
distribution and frequency on long limb bones, to infer the carnivore 
taxa responsible for tooth-marking bone remains (e.g., Blumenschine, 
1986; Haynes, 1983; Pickering et al., 2004; Coard, 2007; Young et al., 
2015; Koungoulos et al., 2018). In addition, researchers are now 
employing a variety of advanced high-resolution imaging techniques (e. 
g., Pante et al., 2017; Arriaza et al., 2017; Courtenay et al., 2019), 
multivariate analyses (e.g., Domínguez-Rodrigo and Yravedra, 2009), 
and machine learning techniques (e.g., Harris et al., 2017; Domí
nguez-Rodrigo, 2019; Moclán et al., 2020; Abellán et al., 2022). How
ever, the majority of these studies have concentrated on small, medium, 
and large-sized ungulates, while actualistic studies specifically 
addressing megafaunal remains are still rare.

In Eurasia, hominins and hyenas coexisted with different rhinoceros 
species during the Pleistocene, highlighting Stephanorhinus hund
sheimensis (Toula, 1902), Stephanorhinus kirchbergensis (Jäger, 1939), 
Stephanorhinus hemitoechus (Falconer, 1868), and Coelodonta antiquitatis 
(Blumenbach, 1799a); and with several proboscidean species, like 
Mammuthus meridionalis (Nesti, 1825), Mammuthus trogontherii (Pohlig, 
1885), Mammuthus primigenius (Blumenbach, 1799b), Palaeoloxodon 
antiquus (Falconer and Cautley, 1847). These megafaunal taxa represent 
a recurrent component of many Pleistocene faunal assemblages, pre
sumably due to the substantial resources they provided, both for con
sumption (skin, meat, brain, viscera, fat and marrow; e.g. Fladerer, 
2003; Mosquera et al., 2015; Daujeard et al., 2018) and for 
non-subsistence purposes, including tool production and shelter con
struction using hair, bones, and tusks (e.g. Germonpré et al., 2008; Pante 
et al., 2020; Demay et al., 2021).

The importance of improving our understanding of megafaunal bone 
assemblage formation processes has been recognized by Echassoux 
(2004), Moigne et al. (2006), Niven (2006) and Smith (2015), and 
specifically for proboscideans by Diedrich (2014a), Agam and Barkai 
(2018), and Haynes et al. (2020, 2021), and for rhinoceroses by Dis
camps (2011), Diedrich (2015), Daujeard et al. (2018), Daschek (2021), 
among others. However, neotaphonomic studies focused on bone mod
ifications in megafaunal carcasses remain relatively scarce and focused 
on particular elements (i.e., long limb bones, scapula and pelvis in 
Haynes et al., 2020, 2021).

However, the recurrent presence of cranial and mandibular elements 
in sites of anthropic origin (e.g., Arago F (Chen and Moigne, 2018) and 
Gesher Benot Ya’aqov (Goren-Inbar et al., 1994; Rabinovich and Biton, 
2011), carnivore origin (e.g., Bottrop (Diedrich, 2012b) and Vogelherd 
(Niven, 2006)) and mixed origin (e.g., Cotte de Saint Brelade (Scott, 
1980, 1989; Smith, 2015) and Ambrona (Villa et al., 2005)) would 
confirm the transport and consumption of megaherbivores head’s parts 
(including meat, brain, tongue, mandibular fat, etc.).

Discriminating between cultural and non-cultural patterns of bone 
modification is essential for the archaeological interpretation of mega
faunal assemblages, particularly in assessing how hominins and carni
vores, such as hyenas, interacted with these very large mammals. 
Although it is generally accepted that hominins exploited very large 
animals for food and raw materials, and that hyenas similarly utilized 
these carcasses, neotaphonomic studies providing detailed comparative 
data on the modification of cranial and mandibular remains are still 
largely lacking and represent an area of research that remains to be 

further explored.
This study presents the first neotaphonomic analysis of cranial re

mains from rhinoceros (Ceratotherium simum, Burchell, 1817) and 
modern African elephant (Loxodonta africana, Blumenbach, 1797) 
consumed by free-ranging spotted hyenas (C. crocuta) in the Timbavati 
Private Nature Reserve (South Africa). Here we document bone surface 
modifications, skeletal disturbances, and consumption patterns pro
duced by hyenas, providing new data on carnivore modification of 
megafaunal cranial elements and their potential archaeological signifi
cance. These findings are further discussed in relation to similar modi
fications observed in Pleistocene archaeo-paleontological assemblages 
across Eurasia.

2. Materials and methods

The modern elephant’s and rhinoceros’ carcasses were recorded in 
the Timbavati Private Nature Reserve, located along the western 
boundary of Kruger National Park, spanning the Mpumalanga and 
Limpopo provinces in South Africa (Fig. 1A and B). The reserve covers 
over 53,000 ha, sharing open boundaries with Kruger National Park, 
which allows free wildlife movement between reserves. The landscape 
lies within the dry savanna biome, characterized by a mixed vegetation 
structure of grasslands, shrublands, and open woodland mosaics 
(Fig. 1C).

The sample comprises 3 crania and 5 mandibles from five elephants 
(Loxodonta africana; Supplementary Fig. 1), representing two adult and 
three senile individuals. Specimens E.C.01 and E.M.04 correspond to the 
same individual, while the rest specimens were found partially dis
articulated. Additionally, 5 crania and 7 mandibles from seven white 
rhinoceroses (Ceratotherium simum; Supplementary Fig. 2) are included, 
representing two immature, four adult, and one late adult individual. 
Specimens R.C.05 and R.M.01 belong to the same rhinoceros.

Carcasses were located by the park’s team of ecologists during their 
daily routine monitoring activities. The elephants died of starvation 
during drought events, while the cause of death for the rhinoceroses 
could not be determined, as it remains unclear whether they were pre
dated by carnivores or died of natural causes, although active predation 
is considered unlikely. The bones derive from carcasses and skeletons 
that were neither skinned nor butchered by humans. However, in 
accordance with park management protocols, tusks and horns were 
collected by the Natural Reserve authorities 7–10 days after death, when 
the roots had sufficiently dried to allow safe removal without cutting the 
tusk or damaging the bone. Also, some mandibles were retrieved after 
natural skeletonization to assess the ontogenetic ages of deceased ele
phants and rhinoceroses, storing them in an open-air enclosure at the 
research centre inside the park.

The specimens analysed in this study include remains located and 
monitored during the end of the dry season of 2024 (September–Oc
tober; Fig. 1C) between five days and two months after death, as well as 
specimens collected by park authorities over a five-year period (Fig. 1D). 
To minimize variability in gnawing intensity related to exposure time, 
only carcasses that had been systematically monitored and exposed to 
scavengers for approximately one to two months were included, 
matching the period park authorities usually wait before collecting re
mains. This timeframe is sufficient for bones in this area to be clean 
enough by carrion-eaters and environmental processes for analysis, 
leaving the bones found in situ mostly free of soft tissue but still greasy, 
whereas those previously collected were already dry and weathered 
after prolonged exposure. Importantly, the remains were not damaged 
during collection and only exhibit modifications resulting from scav
enging by carnivores.

The anatomical identification of cranial and mandibular sections was 
conducted following the criteria outlined by Van der Merwe et al. (1995)
and Todd (2010) for elephants, and Deng et al. (2021) for rhinoceroses.

Three age groups were established: immature (including perinatal 
and juvenile individuals), adult (including prime adult and late adult 
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individuals), and senile. Given that the study focuses on cranial remains 
(crania and mandibles), age classification was based on the degree of 
dental crown development, the presence of deciduous or permanent 
teeth, and the degree of occlusal wear (e.g., Foster, 1965; Tong, 2001; 
Todd, 2010; Laws, 1966).

Specimen quantification was performed using the number of iden
tified specimens (NISP), the minimum number of elements (MNE), and 
the minimum number of individuals (MNI), following the guidelines set 
out by Lyman (1994, 2008), Klein and Cruz-Uribe (1984), Brain (1969)
and Pickering (2002). Bone surface modifications were examined in situ, 
using a 40x hand lens and natural light. When higher magnification was 
required, a Dino-Lite digital microscope with magnifications ranging 
from 10 to 70x up to 200x connected to a laptop were employed.

Individual bones were then examined and photographed to qualify 

and quantify bite marks and damages in detailed. Carnivore activity 
(Fig. 2) was determined by the presence of pits, punctures, scores, 
crenulated edges, gnawing and furrowing, following Haynes (1980, 
1983), Binford (1981), Selvaggio (1994), and Pickering (2001).

3. Results: bone surface modification by carnivores

Owing to their large size and structural density, megafaunal bones 
display carnivore-induced modifications that often differ markedly from 
those observed in smaller-bodied species (White and Diedrich, 2012; 
Haynes and Klimowicz, 2015). In this study, we present new data on the 
modifications produced by free-ranged spotted hyenas (Crocuta crocuta) 
on megafaunal cranial remains, an anatomical region that remains un
derrepresented in neotaphonomic studies. The observations provided 

Fig. 1. A: Map of South Africa showing the general location of the study area. B: Detail of the Timbavati Private Nature Reserve in the northeastern part of the 
country. C: Typical landscape of the park at the end of the dry season, characterized by sparse vegetation and limited water availability. D: Accumulation of rhi
noceros and elephant mandibles collected by park authorities during monitoring activities.

Fig. 2. Types of modifications made by spotted hyenas. Hyena skull modified from Diedrich (2013).

C. Mielgo et al.                                                                                                                                                                                                                                  Journal of Archaeological Science 186 (2026) 106458 

3 



here aim to serve as a comparative reference for identifying 
hyena-related damage on proboscidean and rhinocerotid cranial ele
ments. While the sample size is limited, these data contribute valuable 
insights for identifying the taphonomic signatures of hyena activity on 
megafaunal cranial remains within the fossil record.

3.1. Spotted hyena modifications of proboscidean cranial specimens 
(Loxodonta africana)

Specimen E.C.01 (Senile, Cranium): Scores, punctures, and furrow
ing were documented (Fig. 3A). Affected areas by scores include the 
processus alveolaris and palatinus (Fig. 3B), as well as the condylus 
occipitalis. Four pits were identified on the zygomatic bone (Fig. 3C), in 
contact with the fossa mandibularis. The pars tympanica, pars basalis, 
and pars lateralis were affected by furrowing.

Specimen E.C.02 (Senile, Cranium): This cranium showed scores on 
the corpus of the maxilla, the parietal bone, and the nasal bone. 

Furrowing was also observed on the processus frontalis and zygomatic 
region.

Specimen E.C.03 (Adult, Cranium): Clear evidence of scoring, pits, 
furrowing, and chewing was recorded (Fig. 3). There was advanced 
chewing of the zygomatic bones, processus zygomaticus of the temporal, 
and the incisive bone (Fig. 3D), extending through the processus 
alveolaris and palatinus of the maxilla. Scores were concentrated in the 
occipital region, both condyli occipitales and the zygomatic processes on 
both sides. The corpus of the maxilla also showed scores, along with 
furrowing on the ventral area of the temporal and occipital bones.

Specimen E.M.01 (Adult, Mandible): Scores were observed on both 
rami mandibulae and corpus mandibulae. Also, both coronoid processes 
were affected by continuous nibbling. Complete consumption of the 
processus condylaris and caput mandibulae was observed on both sides 
(Fig. 4A), leaving crenulated edges and scratches on the ramus 
(Supplementary Fig. 3A–B). The posterior part of the mandible was 
heavily modified, with the fossa pterygoidea heavily altered, nearly 

Fig. 3. Spotted hyena modifications of proboscidean cranium specimens. A–C: Specimen E.C.01, D: Specimen E.C.03 (explanations for A-D see text).
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reaching the mandibular foramen, and the pars incisiva also consumed.
Specimen E.M.02 (Senile, Mandible): In this mandible, scores were 

noted on the left caput mandibulae and both rami mandibulae, and 
furrowing was observed on both coronoid processes. The right processus 
condylaris and caput mandibulae were completely chewed by the hy
enas (Fig. 4B). The fossa pterygoidea showed advanced consumption, 
nearly reaching the mandibular foramen, with similar damage on the 
left processus condylaris.

Specimen E.M.03 (Adult, Mandible): This mandible displayed 
consistent evidence of scoring across both rami mandibulae. The left 
coronoid process was particularly affected by furrowing. Complete loss 
of the processus condylaris and caput mandibulae on both sides was 
documented, along with deep chewing in the fovea pterygoidea, 
extending close to the foramen mandibulae.

Specimen E.M.04 (Senile, Mandible): Scores were observed on the 
right corpus mandibulae and around the pars incisiva of this specimen. 
Also, there were furrowing on the processus coronoideus.

Specimen E.M.05 (Old adult, Mandible): Scores and pits were present 
on both sides of the caput mandibulae and processus condylaris. Scores 
were also documented on both corpus mandibulae (Supplementary 
Fig. 3C). Additional damage was noted because of nibbling in the 
angulus mandibulae and both processus coronoideus.

3.2. Spotted hyena modifications of rhinocerotid cranial specimens 
(Ceratotherium simum)

Specimen R.C.01 (Adult, Cranium): Evidence of scoring and chewing 
was observed on this cranium (Fig. 5C). Scores were concentrated on the 
right zygomatic bone and the internal surfaces of both zygomatic pro
cesses. Additionally, extensive consumption was documented on the 
premaxilla, reaching the first premolars (Fig. 5D). The paraoccipital 
processes, nuchal crest, parietal crest, and nuchal tubercle, extending up 
to the occipital crest, were also chewed by the hyenas.

Specimen R.C.02 (Adult, Cranium): In this specimen, scores pri
marily affected both sides of the maxilla and the external face of the 
zygomatic bone, while furrowing was observed on the internal surface of 
the zygomatic bones. There was furrowing in the cornis/nasal horn boss 
derived from the consumption of part of the left side (Fig. 5A). The 
posterior part of the cranium was completely chewed (Fig. 5B), reaching 
the occipital crest. These areas showed evidence of advanced exploita
tion, with facial and occipital elements heavily altered, likely reflecting 
attempts to access soft tissue and/or cranial contents.

Specimen R.C.03 (Adult, Cranium): Furrowing was concentrated on 
the zygomatic bones and chewing of the nuchal crest in the occipital 
region (Supplementary Fig. 4A and B). Several scores can be observed on 
the corpus mandibulae (Supplementary Fig. 4C). The integrity of the 
facial skeleton was compromised by the consumption by the hyenas. 
There was evidence of chewing and advanced bone loss on the 

Fig. 4. Spotted hyena modifications of proboscidean mandible specimens. A: Specimen E.M.01, B: Specimen E.M.02 (explanations for A-B see text).
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premaxillae, extending up to the second premolars, and the end of the 
cornis.

Specimen R.C.04 (Adult, Cranium): This cranium presented scores on 
the nuchal crest, and furrowing on the cornis. The facial region was 
again heavily modified, notably the premaxillae, extending to the first 
premolars, creating the typical crenulated edges (Supplementary Fig. 5). 
The maxillae were also chewed up to the infraorbital foramen on the 
right side, and nearly to the same extent on the left.

Specimen R.C.05 (Old adult, Cranium): The specimen exhibited 
scores on the right maxilla and the premaxillae was chewed 
(Supplementary Fig. 6).

Specimen R.M.01 (Old adult, Mandible): Abundant scores were 
recorded on several parts of this mandible. The ramus and angulus 
mandibulae showed furrowing, scores and pits, indicative of prolonged 
nibbling and biting (Supplementary Fig. 10B). The coronoid process and 
postglenoid process groove were severely affected, with advanced con
sumption reaching up the molars. The symphysis mandibulae was 
destroyed, with damage extending to the premolars.

Specimen R.M.02 (Juvenile, Mandible): This specimen exhibited 
scores in both ramus mandibulae, along with furrowing in the left 

coronoid depression and posterior wall of groove. The right postglenoid 
process groove was consumed by hyenas (Fig. 6A), with bone removal 
extending to the coronoid depression, and the left show less consump
tion (Fig. 6B). Additionally, the symphysis mandibulae was heavily 
modified, with bone loss reaching nearly to the level of the premolars 
(Fig. 6C).

Specimen R.M.03 (Adult, Mandible): The postglenoid process 
grooves were chewed and the glenoid processes exhibited furrowing 
(Supplementary Fig. 7). The symphysis and the external surface of the 
ramus mandibulae presented scores (Supplementary Fig. 10A).

Specimen R.M.04 (Juvenile, Mandible): The symphysis mandibulae 
was chewed up to the level of the first premolars. Similarly, the coronoid 
and glenoid processes were completely removed on both sides 
(Supplementary Fig. 8A), with bone loss extending into the coronoid 
depression. Several scores were identified on the corpus and ramus 
mandibulae (Supplementary Fig. 8B), as well as near the mental 
foramina.

Specimen R.M.05 (Juvenile, Mandible): This mandible was heavily 
modified. Both rami were chewed (Supplementary Fig. 9A), as well as 
the symphyseal region (Supplementary Fig. 9B) and the coronoid and 

Fig. 5. Spotted hyena modifications of rhinocerotid cranial specimens. A–B: Specimen R.C.02, C–D: Specimen R.C.01.
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condylar areas (Fig. 6D). On the right side, bone loss extends below the 
coronoid depression, while on the left it is slightly less pronounced. The 
mandible presented scores and pits on the ramus mandibulae (Fig. 6E; 
Supplementary Fig. 9C and F; Supplementary Fig. 10C), as well as fur
rowing on the edges of these areas (Supplementary Fig. 9D).

Specimen R.M.06 (Adult, Mandible): The symphysis mandibulae was 
chewed by the hyenas, and on the right side, bone loss along the 
mandibular corpus extended to the level of the first molar, with the P2 
absent. The ramus exhibited clear evidence of furrowing and scoring in 
several areas.

Specimen R.M.07 (Adult, Mandible): In the anterior portion, the 
symphysis mandibulae was slightly consumed. On the posterior portion, 
the coronoid and condylar areas are also slightly chewed 
(Supplementary Fig. 11). Furrowing and scores were observed on both 
sides of the corpus and ramus mandibulae.

3.3. Patterns of cranial and mandibular consumption

Based on the bone surface modifications recorded in the analysed 
sample, several categories of cranial and mandibular consumption can 
be distinguished. These categories reflect increasing degrees of 
destruction and differ slightly between elephants and rhinoceroses.

Low-intensity consumption: Specimens show only minimal hyaena 

modification, limited to light tooth scores on the most prominent sur
faces. Overall bone loss does not exceed ~5 % in either taxon. Examples 
include specimens E.C.02, E.M.04, and R.M.07.

Moderate consumption of protruding elements: Remains exhibit 
more advanced damage affecting prominent structures such as the 
zygomatic arch, mandibular symphysis, and mandibular condyles. 
Estimated bone loss ranges between 5 and 15 %. Examples include 
Specimens E.C.01, R.C.05, R.M.02, and R.M.03.

Intermediate consumption: Specimens display substantial destruc
tion, with 15–30 % of the bone missing accompanied by abundant tooth 
marks and crenulated edges, like rhinoceros specimens R.C.04, R.M.04, 
R.M.05, and R.M.06. Elephant specimen E.M.05 shows comparable 
levels of modification, though slightly lower than that observed in 
rhinoceroses (15–20 %). The left hemimandible of E.M.02 also fits 
within this range.

Advanced consumption: Specimens present advanced destruction of 
the posterior portions and other prominent areas. Rhinoceros remains 
show 30–50 % bone loss, whereas elephants typically present 20–30 %, 
particularly in mandibular elements. The right hemimandible of E.M.02 
and specimens E.M.01, E.M.03, R.C.01, R.C.02, and R.M.01 are exam
ples of this category.

Atypical cases: Elephant cranium E.C.03 exhibits the most advanced 
consumption observed for this taxon, with destruction affecting the 

Fig. 6. Spotted hyena modifications of rhinocerotid cranial specimens. A–C: Specimen R.M.02, D–E: Specimen R.M.05.
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posterior cranium, zygomatic arches, and incisive bones. Even so, 
overall bone loss does not exceed ~30–35 %. Also, specimen R.C.03 
represents an intermediate pattern that does not fully align with the 
categories above: while the entire posterior portion of the cranium is 
missing, other raised structures, such as the zygomatic arches or the 
nasal/cornis boss, remain largely unmodified.

4. Discussion

4.1. Evaluating hyena-modified cranial remains of elephant and 
rhinoceros

The results reveal a consistent pattern of selective bone modification 
by spotted hyenas, with clear distinctions between cranial and 
mandibular elements, as well as between the two megafaunal taxa 
analysed. Overall, mandibles exhibit more frequent and severe alter
ations than crania in both elephants (Loxodonta africana) and rhinoc
eroses (Ceratotherium simum), suggesting that hyenas prioritize these 
elements, likely due to their easier accessibility and greater association 
with soft tissue.

In elephant crania (n = 3), the occipital region, including the con
dylus occipitalis, displayed furrowing in the 33 % of the cases, while 
scores were present in all specimens. These patterns suggest focused 
feeding on the posterior cranium, potentially reflecting attempts to ac
cess musculature near the neck and foramen magnum. The zygomatic 
bones and processus zygomaticus were modified in all specimens to 
varying degrees, with furrowing likely due to their fragility and prox
imity to meat-rich areas. Additional modifications were noted on the 
nasal and frontal processes, reinforcing the idea of progressive exploi
tation of the facial region tissue.

In comparison, rhinoceros’ crania (n = 5) showed more intense 
damage to structurally robust areas. In the facial area, consumption of 
the maxillae and premaxillae reached the premolars in most specimens 
(80 %), accompanied by scores. Complete or near-complete bone loss of 
the zygomatic bones and advanced furrowing on the cornis were also 
recorded. Posteriorly, the nuchal and parietal crests showed advanced 
chewing and, in one case, complete consumption of this area. These 
modifications would likely be associated with attempts to access the 
brain, a nutrient-rich target despite the resistance of cranial bone.

Mandibular elements, particularly the symphysis, condyles, and 
coronoid processes, were systematically targeted in both taxa. In ele
phants (n = 5), the symphysis mandibulae was damaged in 60 % of the 
sample. The processus condylaris and caput mandibulae were either 
heavily altered or chewed, reflecting continued access to the temporo- 
mandibular joint. Notably, all specimens exhibited furrowing on the 
coronoid process, and 100 % presented scores along the ramus and 
corpus, reflecting repeated tooth contact during skull manipulation and/ 
or muscle removal during carcass processing.

Similarly, rhinoceros mandibles (n = 7) showed extensive alteration. 
The symphysis was completely or extensively consumed in all cases, 
sometimes reaching the premolars. Scores and pits were frequently 
observed on the ramus, corpus, and angulus mandibulae, with the latter 
showing bone loss in some cases, suggesting muscle detachment as a 
feeding strategy. The coronoid process and postglenoid groove were 
heavily modified, often displaying deep furrowing in the coronoid 
depression, pointing to systematic targeting of posterior and prominent 
mandibular regions.

Despite their robustness, structurally dense areas such as the nuchal 
crest, condyles, and coronoid processes were also damaged. On the 
contrary, they often showed the most intensive damage, underscoring a 
feeding strategy aimed at maximizing nutritional return, even at the cost 
of increased processing effort. The presence of crenulated edges, along 
with furrowing and scores, suggests repeated chewing rather than biting 
and nibbling, reflecting both the resistance of these skeletal elements 
and potential constraints in hyena feeding behaviour when processing 
megafaunal carcasses.

Species-specific differences were also observed. In elephants, dam
age was more concentrated in the condyles and symphysis, while in 
rhinoceroses, greater damage occurred on the posterior skull, with 
emphasis on the coronoid and condylar processes, nuchal crest, and 
occipital area. These contrasts likely reflect variations in bone density, 
anatomy projection, and tissue distribution, influencing carcass acces
sibility and processing.

Collectively, these findings enhance our understanding of hyena- 
mediated bone modification in large-bodied taxa and offer compara
tive data for interpreting similar patterns in the fossil record. They 
highlight the importance of considering anatomical structure, bone 
density, and feeding behaviour when reconstructing taphonomic his
tories in archaeological and paleontological contexts. Further research 
should explore how these variables influence selective consumption 
across different carnivore species and ecological settings.

4.2. Megafaunal accumulation and skull exploitation across Eurasia in 
cultural and non-cultural assemblages

Rhinoceroses and proboscideans can represent between 20 and 77 % 
of hyena’s prey choice in non-cultural accumulations (Table 1), as 
documented in Koneprusy Cave (Diedrich, 2011), Nad Kacakem Cave 
(Diedrich, 2017), Vallonnet Cave (Echassoux, 2004), Bad 
Widlungen-Biedensteg (Diedrich, 2006a, 2013), Bottrop (Diedrich, 
2011, 2012b), Hohle Stein Cave (Diedrich, 2011), Hyaena Den (Currant 
and Jacobi, 2004) and Perick Caves (Diedrich, 2008), among others 
(Table 1). In contrast, in anthropogenic accumulations (Table 1), as
semblages containing only rhinoceros remains, or both rhinoceros and 
proboscidean remains, exhibit lower values in the percentage of mega
faunal specimens relative to the total NISP (%NISP), ranging from 0.2 % 
at Covalejos (Yravedra et al., 2016, 2019) to 25 % at Terra Amata 
(Valensi, 2001). However, assemblages exclusively composed by pro
boscidean remains may show substantially higher %NISP values, such as 
the 77.7 % recorded at EDAR Culebro 1 (Yravedra et al., 2014) or the 99 
% recorded at Pit site in La Boella (Mosquera et al., 2015).

A different pattern emerges in mixed accumulations, with mega
faunal %NISP tending to be higher in assemblages where humans acted 
as the primary accumulating agent and carnivores played a secondary 
role. This is observed at sites such as Castel di Guido, where megafauna 
represent 42.6 % of the NISP (Saccà, 2012), Ambrona with 61.9 % (Villa 
et al., 2005), Molodova I with 84.2 % (Demay et al., 2012) and Áridos 2, 
where megafauna account for 100 % of the assemblage (Yravedra et al., 
2010), among others (Table 1). Conversely, in assemblages where car
nivores had primary access to rhinoceros and proboscidean carcasses (or 
where their role remains unclear), megafaunal representation is 
considerably lower, with values not exceeding 7.18 % at Balver Höhle 
(Kindler, 2012), 11.2 % in the upper levels (UAL) of Fuente Nueva 3 
(Espigares et al., 2013; Yravedra et al., 2021; Palmqvist et al., 2024), and 
3.1 % and 0.2 % at El Forn and La Mina respectively at Barranc de la 
Boella (Pineda et al., 2017).

Meat, viscera, and fat represent the most immediately attractive re
sources provided by megafaunal carcasses for both hominins and car
nivores. Consumption of these tissues by carnivores, particularly hyenas, 
has been documented in most macrofaunal assemblages (Table 1). 
Rhinoceros remains bearing cut marks are relatively abundant in the 
archaeological record, as observed at sites such as Caours (Antoine et al., 
2006), Abric Romaní (Rosell et al., 2012), Boxgrove (Parfitt and Roberts, 
1998), and La Biache Sant Vast (Auguste, 1995), among others (see also 
references on Tong, 2000, 2001; Daujeard et al., 2018; Chen and 
Moigne, 2018, Table 1). In contrast, proboscidean remains with cut 
marks are comparatively rare (Table 1), largely due to the substantial 
thickness of cartilage and periosteal tissues that complicate defleshing 
activities (Haynes and Klimowicz, 2015). Nevertheless, such modifica
tions have been recorded at several sites, including Fuente Nueva 3 
(Espigares et al., 2013; Yravedra et al., 2021; Palmqvist et al., 2024), 
Barranc de la Boella (Mosquera et al., 2015; Pineda et al., 2017), Gesher 
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Table 1 
Summary of archaeological and paleontological sites with megafaunal remains.

Country Site Level Chronology NISP MF %NISP 
MF

TM CM Others Origin References

Austria Krems-Wachtberg (!) ~27 ka 350 MA 53 yes yes AS, LI, FI H Fladerer (2003)
Belgium Scladina Cave 5 1871 MA, C.a 3.3 no yes Abrams et al., 2013
Belgium Spy 10000 MA, C.a 11.8 no no AS H** Germonpré et al., 2014
China Dadong Cave MIS 6-7 7045 RH (R.s) 24 yes no AS, LI, PP H/C Miller-Antonio, et al., 1999; Schepartz and Miller-Antonio 

(2010)
China Guanyindong Cave RH no no AS H** Li and Wen, 1986; Tong (2000)
China Nanjing Man Cave 500 ka RH yes no AS H/C Tong (2001)
China Shanshenmiaozui 1.2 Ma RH (C.n) yes LI Tong et al., 2011; Liu et al., 2016
China Zhoukoudian RH no no FI Chow, 1978; Tong (2000)
Czech 

Republic
Prošek Dome Early Pleistocene C.a yes no C Diedrich (2006b)

Czech 
Republic

Koneprusy Cave Middle Pleistocene 126 C.a 25 yes no C Diedrich (2011), 2017

Czech 
Republic

Nad Kacakem Cave 40 C.a 30 yes no C Diedrich (2017)

Czech 
Republic

Sloup Cave 63 MA, C.a 17 yes no C Diedrich, 2012c

Czech 
Republic

Srbsko Chlum–Komın 
Cave

Upper Pleistocene 3569 C.a 4 yes no C Diedrich (2006b), 2017

Czech 
Republic

Axamitova Brána Cave 
(!)

Middle-Upper 
Paleolithic

C.a yes yes H/C Diedrich (2006b)

Djibuti Borogali EL LI Berthelet and Chavaillon, 2001
France Biache St Vaast IIa & IIb MIS 7 20000 PAL, RH 7.5 yes yes H Louguet-Lefebvre, 2005; Auguste (1995); Bahain et al., 

2015
France Camiac (!) MIS 3 2526 RH 20 yes yes LI C/H Guadelli (1989); Discamps (2011)
France Caours 4a & 6b MIS 5e 892 PAL, RH 1 no yes Antoine et al. (2006)
France Caune de l’Arago F MIS 12 7404 RH (S.h.) 5.71 yes yes H Moigne et al. (2006); Chen and Moigne (2018)
France Caune de l’Arago C MIS 11 RH (S.h.), EL 6.13 Moigne et al. (2006)
France Caune de l’Arago J MIS 13 RH (S.h.) 7.63 Moigne et al. (2006)
France Caune de l’Arago Q MIS 14 RH (S.h.) 2.12 Moigne et al. (2006)
France Clèon (!) 1, 2, 3, 5, 6 MIS 10-7 PAL, D.h. Patrick et al., 2003;
France Mont Dol 6 & 8 MIS 5b 4159 MA, C.a 37.9 yes yes Louguet-Lefebvre, 2005
France Payre G MIS 8-7 815 RH (S.k., 

S.h.)
17.3 yes yes C Daujeard et al. (2018)

France Payre F MIS 8-7 3027 RH (S.k., 
S.h.)

8.77 yes yes C Daujeard et al. (2018)

France Payre D MIS 6-5 963 RH 8.93 yes yes C Daujeard et al. (2018)
France Plumettes Upper (II) MIS 3 2537 MA, C.a 1.64 yes no LI C Beauval and Morin, 2010
France Plumettes Lower (IV, VI, VIII) MIS 3 3328 C.a 0.61 yes no LI C Beauval and Morin, 2010
France Ranville 698 PAL, RH 17.9 yes Auguste, 2008
France Rochers de Villeneuve J MIS 3 5282 C.a 0.58 yes no LI C Beauval and Morin, 2010
France Rochers de Villeneuve N MIS 3 1242 MA, C.a 2.64 yes no LI C Beauval and Morin, 2010
France Saint Cesaire 10, 11, 12 MIS 3 1682 MA, C.a 2 yes yes Morin, 2012
France Terra Amata C1 ~380 ka ~2400 EL, RH (S.h) 25 no AS, BPR, 

PP
H Valensi (2001)

France Vallonnet Cave 1.2–1.1 Ma 7204 MA, RH (S.hu., 
C.s)

20.07 yes yes C Echassoux (2004)

Georgia Dmanisi 1.8 Ma MA, RH (S.e) 159 H Gabunia et al., 2000; Ros-Montoya et al., 2025
Germany Ariendorf 2 Bed I & II MIS 8 336 MA, C.a 60.1 yes Turner, 1998; Turner et al., 1997
Germany Bad Widlungen- 

Biedensteg
MIS 5 260 MA, C.a 34 yes no C Diedrich (2006a), 2013

Germany Balver Höhle MIS 5 5796 MA, C.a 7.18 yes yes LI C/H Kindler (2012)
Germany Bollschweil 22093 MA, C.a 57.4 no no Conard and Niven, 2001

(continued on next page)
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Table 1 (continued )

Country Site Level Chronology NISP MF %NISP 
MF 

TM CM Others Origin References

Germany Bottrop 63.3–101.5 ka 3820 MA, C.a 61 yes no C Diedrich (2011), 2012b
Germany Gröben MIS 6 PAL, RH yes yes LI H Gaudzinski (2004); Gaudzinski-Windheuser et al. (2023)
Germany Hohle Stein Cave 151 MA, C.a 52 yes no C Diedrich (2011)
Germany Koneprusy Cave Main Dome area Upper Pleistocene 711 C.a yes no C Diedrich and Žák (2006); Diedrich (2011)
Germany Krölpa (!) Late Pleistocene 43 C.a 77 yes no C Diedrich (2015)
Germany Lehringen Middle Pleistocene PAL, RH yes no C Thieme and Veil, 1985; Gaudzinski (2004)
Germany Neumark-Nord Lake 1 MIS 5e PAL, RH yes no C Mania et al., 1990; Mania, 2010; Gaudzinski (2004); 

Diedrich (2013)
Germany Perick Caves 2275 MA, C.a 20 yes no C Diedrich (2008)
Germany Salzgitter-Lebenstedt 2860 MA, C.a 14.3 yes yes H/C-C/ 

H
Gaudzinski and Roebroeks, 2000

Germany Selm-Ternsche C.a yes no C Diedrich (2012b), 2013
Germany Selm-Ternsche Late Pleistocene C.a yes no C Diedrich (2012b)
Germany Srbsko-Chlum-Komín 260 C.a 4 yes no C Diedrich (2012a)
Germany Taubach (!) bone sand MIS 5e 4864 PAL, RH 36.2 yes yes LI H Bratlund (2000); Gaudzinski (2004); 

Gaudzinski-Windheuser et al. (2023)
Germany Teufelskammer Cave (!) Lower Weichselian 199 MA, C.a 29 yes no C Diedrich (2011)
Germany Tönchesberg 2B 921 RH 1 yes yes H/C-C/ 

H
Conard, 1992

Germany Untermassfeld Early Pleistocene S.hu *n =
1065

yes no C Kotowski et al. (2020)

Germany Vogelherd Cave Layers IV-V 29-36 ka 17000 C.a 4.7 yes no AS H** Niven (2006)
Germany Vogelherd Cave Layer VII Middle Paleolithic 518 C.a 13.3 yes no C Niven (2006)
Germany Weinberg Caves MA yes no C Diedrich (2011)
Hungary Erd EnsL MIS 5b MA, C.a *n = 7 LI H Daschek (2021)
Hungary Erd EnsU MIS 3 MA, C.a *n = 251 yes yes LI, AS, 

BPR
H/C-C/ 

H
Daschek (2021)

Israel Gesher Benot Ya’aqov 1 EL 100 yes LI H/C Goren-Inbar et al., 1994; Rabinovich and Biton (2011)
Italy Asolo all MIS 4 50 MA 100 no no Mussi and Villa, 2008
Italy Castel di Guido MIS 9 3245 PAL 42.6 yes yes LI, PP, H/C Saccà, 2012
Italy Notarchirico A 675-610 ka 85 PAL 44.7 no no LI Natural? Pineda et al., 2024
Russia Kostënki 21 (!) layer III, complexes 

3-6
21-23 ka 758 MA 66.7 yes LI H Reynolds et al., 2019; Demay et al. (2021)

Russia Kostënki 21 (!) layer III, complexes 
1-3

21-23 ka 655 MA, C.a 71.87 no yes LI H Reynolds et al., 2019; Demay et al. (2021)

Russia Yudinovo complexes 3-4 ~14.5 ka MA *n = 517 yes yes AS, ST, LI H/C Germonpré et al. (2008)
Spain Abric Romaní J MIS 3 1265 RH (S.h.) 4.74 no yes LI, FI H Rosell et al. (2012)
Spain Ambrona AS1, AS2, AS3 400-350 ka 611 EL 61.9 yes yes LI H/C Villa et al. (2005)
Spain Arenero Pedro Jaro Middle Pleistocene RH yes LI H Yravedra et al. (2019)
Spain Áridos 1 MIS 9 EL no LI Villa, 1990; Soto et al., 2001
Spain Áridos 2 MIS 11 EL 100 yes yes LI H/C Yravedra et al. (2010)
Spain Bolomor Cave ~350 ka-100 ka EL yes LI, FI H Blasco and Fernandez Peris (2012); Blasco et al. (2013)
Spain Covalejos J MIS 3-5 3990 RH 0.2 yes LI H Yravedra et al. (2016), 2019
Spain Cueva Des-Cubierta 3 MIS 5/4 333 RH (S.h) 25.8 yes yes LI, FI H/C Baquedano et al., 2023
Spain EDAR Culebro 1 2 & 3 45 MA 77.7 no yes H Yravedra et al. (2014)
Spain ETB-H02 MIS 6/7 947 EL, RH (S.sp.) 2.1 no no LI Yravedra et al. (2019)
Spain Fuente Nueva 3 lower (LAL) Early Pleistocene 1400 EL 5.8 yes yes LI H/C Espigares et al. (2013); Yravedra et al. (2021); Palmqvist 

et al. (2024)
Spain Fuente Nueva 3 5 1.2 Ma MA, RH (S.e) yes yes LI C/H Yravedra et al., 2024
Spain Fuente Nueva 3 upper (UAL) Early Pleistocene 7692 EL 11.2 yes yes LI C/H Espigares et al. (2013); Yravedra et al. (2021); Palmqvist 

et al. (2024)
Spain La Boella (El Forn) 1–4 0.96–0.781 Ma 736 MA, RH (S.hu) 3.1 yes no LI, PP C/H Pineda et al. (2017)
Spain La Boella (La Mina) Unit II level 2 0.96–0.781 Ma 578 MA 0.2 yes no LI, PP C/H Pineda et al. (2017)
Spain La Boella (Pit) 2 1.07–0.87 Ma 164 MA 99 no yes LI H Mosquera et al. (2015)

(continued on next page)
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Benot Ya’Akov (Goren Inbar et al., 1994), Ambrona (Shipman and Rose, 
1983; Villa et al., 2005), Áridos 2 (Yravedra et al., 2010), La Cotte de St. 
Brelade (Scott, 1980, 1986; Smith, 2015), Castel di Guido (Mussi, 2005), 
Taubach and Gröbern (Gaudzinski-Windheuser et al., 2023).

Hyenas are capable of gnawing and consuming the fat stored within 
megafaunal long bones after the death of the animal. In the case of el
ephants across African environments, from semi-arid savannas to trop
ical woodlands, this process may occur one to three years post-mortem, 
or even longer when sheltered by vegetation or shade (Haynes and 
Klimowicz, 2015). Although the feasibility of hominins accessing 
marrow in proboscidean bones remains a subject of debate (Haynes 
et al., 2021), bones could be used as fuel (Perlès, 1977; Théry-Parisot 
et al., 2005; Glazewski, 2006), as documented in Krems-Wachtberg 
(Fladerer et al., 2014); as material for the construction of shelters and 
dwelling structures, as seen at Yudinovo (Germonpré et al., 2008) or 
Ketrosy and Molodova I/4 (David, 1980; Demay et al., 2012, 2021); and 
as tools, at several Olduvai localities, includying BK (Leakey, 1971), 
Beds I-IV at Olduvai (Pante et al., 2020), and The T69 Complex (De la 
Torre et al., 2025); or other sites such as La Polledrara (Villa et al., 
1999).

Although the attention has been given mainly to the exploitation of 
meat, viscera, fat, and marrow from postcranial elements, skull provided 
access to nutrient-rich tissues during carcass exploitation by both 
hominins and carnivores. Thus, cranial remains of rhinoceroses and 
proboscideans have been identified at least at 43 archaeological and 
paleontological sites (Supplementary Table 1), both in cave contexts and 
open-air deposits, excluding assemblages where only isolated teeth are 
present.

When megafaunal skulls are considered in cultural contexts, their 
presence is typically interpreted as evidence of processing for the 
extraction and consumption of brain tissue and tongue. For instance, at 
Bolomor Cave, a Palaeoloxodon antiquus mandible bearing cut marks was 
recovered (Blasco and Fernandez Peris, 2012; Blasco et al., 2013). At 
Yudinovo, 37 megafaunal skulls have been found, and their fracturing 
patterns suggest that humans exploited them for the extraction of fresh 
fatty brain tissue (Germonpré et al., 2008). Similar interpretations have 
been proposed for other sites such as Gesher Benot Ya’Aqov 
(Goren-Inbar et al., 1994), Erd (Daschek, 2021), and Arago F (Chen and 
Moigne, 2018).

However, as noted by Haynes et al. (2020), fracturing of modern 
megafaunal cranial elements may also result from other 
non-anthropogenic factors, such as being kicked or trampled by large 
mammals. In addition, Diedrich (2006a, b, 2012a, b, 2013, 2015) has 
documented hyena consumption of megafaunal remains in non-cultural 
fossil accumulations, including several crania and mandibles of 
rhinoceros.

Given that many Pleistocene assemblages in Eurasia were accumu
lated by cave hyenas (C. crocuta spelaea), it is important to consider the 
morphological and behavioural distinctions between these extinct 
populations and modern spotted hyenas. Over the years, cave hyenas 
have been considered distinct from the extant spotted hyenas. 
Morphologically, C. spelaea shows shorter distal limb elements (Sauqué 
et al., 2017) and a less trenchant cheek tooth morphology, possibly 
linked to a greater reliance on scavenging rather than active hunting 
(Ehrenberg et al., 1938). However, as illustrated in Sauqué et al. (2017), 
these traits often overlap or are reversed. Nevertheless, genetic studies 
based on mtDNA have demonstrated that both cave and modern spotted 
hyenas belong to the same species (Crocuta crocuta), with differences 
reflecting regional adaptations rather than taxonomic separation 
(Rohland et al., 2005; Westbury et al., 2020).

In terms of behavioural ecology, direct inferences are necessarily 
limited. Still, Vinuesa et al. (2016) documented reduced anterior brain 
volumes in C. spelaea and C. ultima compared to C. crocuta, which may 
indicate less complex social structures that should be considered when 
assessing the bone accumulations they produced.

Having these considerations in mind, and by documenting the full Ta
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range of taphonomic modifications produced by modern Crocuta cro
cuta, the neotaphonomic data obtained in this study provides a useful 
comparative framework to assess the modifications observed on mega
faunal cranial remains in Pleistocene Eurasian assemblages. The pat
terns documented in the experimental sample are consistent with many 
of the damage types described in fossil contexts (e.g., Diedrich, 2006a,b, 
2012a,b, 2013, 2015; Schepartz and Miller-Antonio, 2010; Kotowski 
et al., 2020), supporting the interpretive value of the current neo
taphonomic observations for evaluating carnivore involvement in the 
formation of archaeological and paleontological megafaunal bone 
accumulations.

The experimental sample reveals clear parallels with fossil assem
blages in the anatomical regions most frequently targeted by hyenas 
during cranial exploitation. In Pleistocene assemblages where rhinoc
eros crania display extensive damage in the occipital and parietal re
gions (Fig. 7A–E, F, G), the modifications are comparable to the damage 

observed on Specimen R.C.01 and Specimen R.C.02. The zygomatic area 
is commonly consumed (Fig. 7B, C, D, E, G) and the premaxilla 
frequently show bone loss (Fig. 7A–G F), similarly to the five cases 
presented in this study.

Mandibular elements display consistent damage patterns across both 
modern and fossil samples (Figs. 6 and 8), with severe bone loss and 
edge rounding at the symphyseal region, especially in Fig. 8A1, B, and D, 
which are similar to specimens R.M.01, R.M.02, R.M.04, R.M.05, R. 
M.06 and R.M.07, reaching up the premolars. The condyles and rami 
appear to be more extensively consumed in the fossil record, with 
modification sometimes extending into the mandibular corpus 
(Fig. 8A1, A2, B, C) as observed in specimens such as R.M.01 or R.M.05.

The fossil record also exhibits evidence of more advanced stages of 
cranial destruction, often resulting in the near-complete consumption or 
disintegration of cranial bones. This may be related to morphological 
differences between modern and fossil hyena species, or to extended or 

Fig. 7. Hyena-induced modifications on rhinoceros cranial remains from non-cultural assemblages extracted from Diedrich (2006a),b, 2011, 2012a,b, 2013, 2015
and 2017.
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repeated access to megafaunal carcasses, producing in some cases, 
almost total fragmentation of crania and mandibular elements 
(Fig. 7D–G, and Fig. 8B). In contrast, the neotaphonomic sample ana
lysed here, while showing substantial modification of specific cranial 
regions, does not reach the extreme levels of bone destruction docu
mented in some fossil contexts, likely due to shorter exposure periods 
and more limited access by hyenas to the remains.

The present neotaphonomic study provides new reference data for 
understanding the modification of megafaunal cranial remains by hy
enas. The observed damage modifications closely mirror many of the 
modifications documented in Pleistocene assemblages. Importantly, 
these neotaphonomic observations allow for a more precise character
ization of hyena-induced modification patterns, offering a comparative 
framework to distinguish carnivore-generated damage from hominin 
processing in fossil contexts. This distinction is particularly relevant 
given the equifinality that often arises when both hominins and carni
vores exploit similar cranial resources, such as brain tissue, sinusal fat, 
and mandibular marrow (Smith, 2015; Agam and Barkai, 2016; Gaud
zinski-Windheuser et al., 2023). By incorporating neotaphonomic data 
into archaeological and paleontological analyses, this study contributes 
to a more accurate identification of bone-modifying agents and offers 

new perspectives for reconstructing hominin and carnivore subsistence 
behaviours, as well as the broader ecological dynamics that character
ized Pleistocene ecosystems.

4.3. Feeding sequence and stages of hyena-induced cranial modification 
in megafaunal carcasses

The degree of modification observed on very large mammal bones 
often reflects the extent and duration of carnivore feeding, which can 
vary spatially and temporally depending on prey availability and 
interspecific competition (Haynes, 1980, 1982, 1991; White and Die
drich, 2012; Haynes and Klimowicz, 2015). Spotted hyenas follow a 
consistent feeding sequence, as described Haynes and Hutson (2020: 
Table 2) for selected elephant bones (i.e., scapula, humerus, radius, 
ulna, femur, tibia, and pelvis). In Stage 1, initial gnawing produces tooth 
marks and ragged edges. Stage 2 involves moderate gnawing, with 
epiphyses exhibiting increasing crenulation. During Stage 3, feeding 
intensifies, resulting in deep furrowing, diaphyseal breakage, and 
near-destruction of major joints. Finally, Stage 4 represents the 
advanced consumption and fragmentation phase, leaving only scattered, 
heavily tooth-marked fragments of bone.

Fig. 8. Hyena-induced modifications on rhinoceros mandibles remains from non-cultural assemblages extracted from Diedrich (2006a),b, 2011, 2013, 2015
and 2017.
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Similar occurred for rhinoceroses’ same skeletal elements, with a 
simpler three-stage framework proposed by Diedrich (2012b: fig. 20B): 
Stage 1 shows limited gnawing at proximal or distal epiphyses, in Stage 
2 one epiphysis is lost through heavy chewing, and in Stage 3 only the 
diaphysis with jagged and irregularly broken ends remains.

The cranial and mandibular modifications documented in this study, 
together with the taphonomic analyses available for those archaeolog
ical and paleontological sites with studied cranial remains included in 
this work, reveal a structured sequence of skull exploitation by spotted 
hyenas, progressing through five stages of increasing intensity (Table 2; 
Fig. 9). Building upon previous models that defined consumption stages 

for long bones, scapula, and pelvis, this study extends the framework to 
skull remains by integrating neotaphonomic observations from free- 
ranging hyenas with published fossil evidence, filling a gap in current 
taphonomic research. Elements assigned to advanced modification 
stages often retain traces of the alterations characteristic of preceding 
stages.

In Stage 1, comparable to the low-intensity consumption category, 
alterations affect accessible and fragile regions such as the pars incisiva 
and symphysis mandibulae, typically displaying superficial scores and 
isolated pits, indicating superficial interaction. Specimens E.C.02, E. 
M.04, and R.M.07 from the neotaphonomic study would fall within 

Table 2 
Proboscidean and rhinoceros bone damage types which can be divided in five stages for cranial bones.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Rhinoceros Cranium Superficial scores and pits in 
premaxillae and maxillae

Maxillae and cornis 
furrowed, protruded 
surfaces tooth marked

Furrowing and partial 
bone loss of zygomatic 
bones, nuchal, and parietal 
crests. Crenulated edges

Crests and posterior 
cranium chewed, 
zygomatic bones and 
maxilla consumed. 
Crenulated edges

Near-total breakdown of 
facial/posterior cranium

Mandible Initial modification of 
symphysis mandibulae. 
Condyle/process and 
angulus mandibulae with 
tooth marks

Chewing of the symphysis 
and initial furrowing of the 
projected structures

Intense furrowing in 
postglenoid grooves and 
coronoid processes and 
corpus tooth marked

Symphysis and condylar 
area absent. Ramus 
completely chewed. 
Crenulated edges

Near-total breakdown of 
ramus and corpus

Proboscidea Cranium Light scoring in maxilla and 
processus nasalis

Tooth marks and initial 
furrowing in zygomatic 
bones and processus 
zygomaticus and occipital 
areas.

Furrowing and bone loss in 
occipital condyles, fossa 
pterygoidea, maxilla and 
incisive bone

Advanced furrowing in 
condilus occipitalis, 
maxilla, and incisive bone

Structural breakdown of 
the posterior cranium, 
furrowing in structurally 
prominent regions

Mandible Pars incisiva and joint areas 
tooth marked

Increased numbers of 
scores and pits in ramus 
and corpus mandibulae. 
Initial furrowing

Chewing of caput 
mandibulae and condylar 
processes. Crenulated 
edges

Symphysis and ramus 
mandibulae near-total 
chewed. Crenulated edges

Advanced furrowing, 
only the horizontal 
ramus remains

Fig. 9. Proboscidean and rhinoceros bone damage types which can be divided in five stages for cranial bones. Red lines represent the most probable location of tooth 
marks, reconstructed from the observations in this study and from the comparative literature reviewed herein. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)
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stage 1. Stage 2, comparable to the moderate consumption category, is 
characterized by tooth marking and initial furrowing focused on muscle- 
rich or structurally weaker zones, such as the zygomatic bones, sym
physis, and condyles (Fig. 9). Examples of stage 2 include specimens E. 
C.01, R.C.05, R.M.02, and R.M.03 from this study.

Stage 3, comparable to the intermediate consumption category, re
flects intensified processing, with cranial modifications extending to 
more robust zones and, in mandibles, involving destruction of joints and 
fracturing of protruding portions to access marrow, grease, or soft tis
sues (Table 2). Specimens E.M.05, R.C.04, and R.M.06 from the Neo
taphonomic sample would be representative examples of stage 3, as well 
as the cranium from Selm-Ternsche and Srbsko-Chlum-Komín 
(Fig. 7A–E). The cranium from PöBneck shows characteristics from stage 
2 and 3 (Fig. 7F).

Stage 4, comparable to the advanced consumption category, involves 
loss of cranial robustness due to near-complete structural breakdown of 
the facial and posterior cranium in rhinoceroses (Fig. 9). In mandibles, 
severe chewing with loss of mandibular projected structures is observed. 
From this study, specimens E.M.02, R.C.03, R.M.04, and R.M.05 illus
trate how a single sample may display features corresponding to more 
than one stage, showing characteristics of both stage 3 and stage 4. This 
also occurred in the craniums from Bochum and Koněprusy Caves- 
Prošek Dome (Fig. 7B and C). In contrast, E.M.01, E.M.03, R.C.01, R. 
C.02, and R.M.01 and all the mandibles shown in Fig. 8 are best clas
sified as stage 4.

Finally, Stage 5 encompasses advanced consumption stages, marked 
by pronounced nibbling and furrowing on elephant crania, and near or 
complete destruction of rhinoceros cranial bones (Table 2, Fig. 9), 
together with almost total consumption of the ramus and corpus man
dibulae. The only specimen from the neotaphonomic sample exhibiting 
characteristics of both stage 4 and stage 5 is E.C.03. Stage 5 stage was 
not directly observed in the present study but is inferred from compar
ative analyses of damage modifications described in non-cultural as
semblages, particularly in relation to rhinoceros cranial remains as 
previously documented (e.g., Tong, 2001; Moigne et al., 2006; Gor
en-Inbar et al., 1994; Diedrich, 2006a,b, 2012b, 2013, 2014; Schepartz 
and Miller-Antonio, 2010; Agam and Barkai, 2016). The crania from 
Turská Maštal Cave and Bad Wildungen-Biedensteg are two such ex
amples documented in the literature (Fig. 7D–G).

The anatomical location and severity of modifications vary between 
taxa, particularly in Stages 3–5. Elephant remains exhibit more frequent 
damage in the temporomandibular and pterygoid regions, whereas 
rhinoceros crania show greater alteration of the nuchal and facial crests. 
These differences may reflect contrasts in cranial robustness and soft 
tissue distribution, influencing hyena feeding behaviour and carcass 
processing strategies. Altogether, the progressive modification patterns 
observed emphasize both the dietary specialization of hyenas and their 
ability to exploit highly resistant skeletal elements.

5. Conclusion

This study provides new neotaphonomic data on cranial modifica
tion patterns produced by free-ranging spotted hyenas (Crocuta crocuta) 
on modern elephant (Loxodonta africana) and rhinoceros (Ceratotherium 
simum) remains from Timbavati Private Nature Reserve, South Africa. 
The observed sequences of damage, which complements and builds on 
previous similar studies, reveal a pattern of carcass exploitation, with 
preferential targeting of anatomical regions based on their exposure and 
structural properties. Progressive chewing, furrowing, cortical removal, 
and advanced fracturing were documented across both cranial and 
mandibular elements, demonstrating the capacity of hyenas to modify 
even highly resistant skeletal tissues when carcasses remain accessible 
over prolonged periods.

Prey species-specific differences in modification intensity may result 
from hyena feeding behaviour, as well as from contrasts in cranial bone 
density, tissue distribution, and body size, with rhinoceros exhibiting 

greater destruction than those of elephants possibly due to lower 
structural resistance. Expanding neotaphonomic research to include 
megafauna and cranial elements, particularly under natural conditions 
with free-ranging animals, provides a valuable comparative framework 
for distinguishing carnivore and hominin modifications in fossil as
semblages, ultimately improving our ability to reconstruct the tapho
nomic histories of Pleistocene megafaunal bone accumulations.
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du Biache Saint Vaast (Pasde-Calais). Bull. Soc. Prehist. Fr. 92, 155–167.

Binford, L.R., 1981. Bones: Ancient Men, Modern Myths. Academic Press.

C. Mielgo et al.                                                                                                                                                                                                                                  Journal of Archaeological Science 186 (2026) 106458 

15 

https://doi.org/10.1016/j.jas.2025.106458
https://doi.org/10.1016/j.jas.2025.106458
https://doi.org/10.1016/j.geobios.2022.07.001
https://doi.org/10.1016/j.geobios.2022.07.001
https://doi.org/10.1016/j.quaint.2015.02.008
https://doi.org/10.1016/j.quaint.2015.02.008
https://doi.org/10.3390/quat1010003
http://refhub.elsevier.com/S0305-4403(25)00307-3/sref4
http://refhub.elsevier.com/S0305-4403(25)00307-3/sref4
http://refhub.elsevier.com/S0305-4403(25)00307-3/sref4
http://refhub.elsevier.com/S0305-4403(25)00307-3/sref4
https://doi.org/10.1016/j.palaeo.2017.01.036
https://doi.org/10.1016/j.palaeo.2017.01.036
http://refhub.elsevier.com/S0305-4403(25)00307-3/sref6
http://refhub.elsevier.com/S0305-4403(25)00307-3/sref6
http://refhub.elsevier.com/S0305-4403(25)00307-3/sref7


Blasco, R., Fernandez-Peris, J.A., 2012. Uniquely broad spectrum diet during the middle 
Pleistocene at bolomor cave (Valencia, Spain). Quat. Int. 252, 16–31. https://doi. 
org/10.1016/j.quaint.2011.03.019.

Blasco, R., Rosell, J., Peris, J.F., Arsuaga, J.L., de Castro, J.M.B., Carbonell, E., 2013. 
Environmental availability, behavioural diversity and diet: a zooarchaeological 
approach from the TD10-1 sublevel of Gran Dolina (Sierra de Atapuerca, Burgos, 
Spain) and Bolomor Cave (Valencia, Spain). Quaternary Science Review 70, 124. 
https://doi.org/10.1016/j.quascirev.2013.03.008, 14. 

Blumenbach, 1799a. Coelodonta antiquitatis in GBIF Secretariat (2023). GBIF Backbone 
Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei.

Blumenbach, 1799b. Mammuthus primigenius in GBIF Secretariat (2023). GBIF Backbone 
Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei.

Blumenschine, R.J., 1986. Carcass consumption sequences and the archaeological 
distinction of scavenging and hunting. J. Hum. Evol. 15, 639–659.

Brain, C.K., 1969. The contribution of namib desert hottentot to understanding of 
Australopithecus bone accumulations. Sci Pap Namib Des Res St 32, 1–11.

Bratlund, B., 2000. Taubach revisited. Jahrbuch des Röminisch-Germanisches 
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15–41.

Burchell, W.J., 1817. Note sur une nouvelle espèce de Rhinocéros. Bulletin des Sciencies 
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Jäger, G.F., 1939. Über Die Fossilen Säugetiere Welche in Württemberg in Verschiedenen 
Formationen Aufgefunden Worden Sind, Nebst Geognostischen Bemerkungen Über 
Diese Formationen. C. Erhard Verlag, Stuttgart, p. 70.

Kindler, L., 2012. Die Rolle von Raubteren bei der Einnischung und Subsistenz 
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Santonja, M., Pérez-González, A. (Eds.), Los Yacimientos Paleolíticos De Ambrona Y 

Torralba. Un Siglo De Investigaciones Arqueológicas. Zona Arqueológica, 5. Museo 
Arqueológico Regional de la Comunidad de Madrid, pp. 396–417, 2005. 

Nesti, 1825. Mammuthus meridionalis in GBIF Secretariat (2023). GBIF Backbone 
Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei.

Niven, L.B., 2006. The role of wolly rhinoceros and wolly mammoth in Palaeolithic 
economies at Vogelherd Cave, Germany. In: Haws, J.A., Hockett, B.S., Brugal, J.-P. 
(Eds.), Paleolithic Zooarchaeology in Practice. BAR International Series, pp. 73–85.

Palmqvist, P., Campaña, I., Granados, A., Martínez-Navarro, B., Pérez-Ramos, A., 
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