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Abstract

Around one hundred years ago the concept of different locomotory types was developed. Graviportal animals show limb
bones adapted to bear great weight, while cursorial animals show limb bones adapted for fast running. In cursorial animals
distal limb bones are elongated and proximal bones are short, in graviportal animals proximal bones are long and distal bones
are short. Mediportal animals are intermediate between graviportal and cursorial animals. Different ratios of the limb bone
lengths can be used to distinguish the different groups. According to this concept rhinos are belonging to the mediportal
type. A dataset of around 200 (mostly) ungulates was analysed via principal component analysis and linear discriminant
analysis, and rhinos are clearly plotting within the mediportal group. With this dataset containing the lengths of front and
hind limb bones intervals for bone ratios are given to place individuals in the three groups. In recent literature rhinos are
sometimes put in the graviportal group. As an example, three rhino species from the Miocene Sandelzhausen (Germany)
locality were investigated to identify their locomotory type. Prosantorhinus germanicus shows short and more stout limb
bones, while Lartetotherium sansaniense has long and slender limbs. Plesiaceratherium fahlbuschi shows medium sized
limb bones. All three taxa are clearly plotting within the mediportal group while Prosantorhinus is closer to the graviportal
taxa and the other two closer to cursorial taxa.
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Introduction rhinos to be of the graviportal type. Other authors followed
the classification of rhinos and hippos as typical mediportal

Gregory (1912) investigated the limb proportions of many  taxa (e.g. Coombs 1978; Holtz 1995; Larramendi et al. 2021;

ungulates and calculated long bone ratios to differentiate
between the different locomotory types. Horses are the best
examples for the cursorial type with long and slender limbs,
shortened proximal elements and elongated distal elements,
adapted to run fast. On the other hand are elephants as gravi-
portal mammals with a large weight, short distal limb ele-
ments, and long proximal bones. Gregory (1912) and Osborn
(1929) mentioned the proportions of the extant tapir as a
good descriptive example for the mediportal type. Gregory
(1912) saw hippos and rhinos as further members of the
mediportal group. But for some of his ratios he concluded
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Schellhorn and Schlosser 2021). Osborn (1929) classified
rhinos and hippos as graviportal taxa according to the length
of ilium and ischium, the carpal condition, and some long
bone ratios. Some authors distinguish between graviportal
and mediportal rhinos (e.g. Klaits 1973; Heissig 2012),
some are noticing graviportal and mediportal limb charac-
ters in rhinos (e.g. Borsuk-Biatynicka 1973), and others dif-
ferentiate between graviportal and even cursorial rhinos (e.g.
Kahlke and Lacombat 2008).

The Miocene Sandelzhausen locality shows three rhino
species with different limb proportions (Heissig. 1972).
Prosantorhinus germanics is a small species with short
and stout limb bones. Plesiaceratherium fahlbuschi is
medium sized with slender limbs, while Lartetotherium
sansaniense is a large species with also long and slender
limbs (Heissig 1972). Prosantorhinus and Plesiacera-
therium are faunal elements of moist environments (Heissig
1972; see also discussion on ecology in Schellhorn 2021
and Schellhorn and Schldsser 2021). According to Heissig
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(2017) Prosantorhinus germanicus shows graviportal limb
proportions, while Lartetotherium sansaniense shows
mediportal proportions (Heissig 2012; Becker and Tis-
sier 2020), as well as Plesiaceratherium species (Lu et al.
2020).

In this study, a large sample of front and hind limb
bones from 196 mammals was investigated to differentiate
between graviportal, mediportal, and cursorial species. For
the first time, principal component analysis (PCA) and lin-
ear discriminant analysis (LDA) were used to distinguish
between the three groups. Furthermore, it was checked
if rhinoceroses show limb proportions of the mediportal
locomotory type in general, and particular in the example
of the three rhinoceros species from the Sandelzhausen
locality. Ratios of front and hind limb bones were calcu-
lated and ranges were given to easily classify the loco-
motory type of mammals. These ratio ranges allow the
assignment of a fossil species to the locomotory type if
either only front or hind limb bones are preserved.

=
=N
mcfl

5cm

Material and methods

The data matrix (Online Resource 1) consists of measure-
ments (Fig. 1) of 196 mammals (mostly ungulates and two
sloths), including 39 individuals of the Rhinocerotidae.
To obtain a high number of taxa, the data were compiled
from literature (Gregory 1912; Holland and Peterson
1913; Riggs 1935; Granger and Gregory 1936; Borsuk-
Biatynicka 1973; Hiinermann 1989; Cerdefio 1993; Mazza
1995; Gohlich 1998; Prothero 2005; Heissig 2012; Bai
et al. 2017; Short et al. 2019; Lu et al. 2020), and most
specimens were measured by the author directly (this
study and Schellhorn 2009). Only adult specimens were
measured which was indicated by epiphyseal fusion. The
author measured the functional lenghts of humerus, radius,
and metacarpal from the front limb, and femur, tibia, and
metatarsal from the hind limb of the same individual. For
the digital model of a hind limb (Fig. 2) an Indian rhino
(Rhinoceros unicornis Linnaeus, 1758) specimen (ZFMK

mtfl

tfl

Fig. 1 Measurements of front and hind limb bones used in this study. Functional lengths of Humerus (hfl), Radius (rfl), metacapal (mcfl), Femur

(ffl), Tibia (tfl), and metatarsal (mtfl)

@ Springer



Palaeobio Palaeoenv (2025) 105:977-987 979
cursorial mediportal graviportal
horse Rhinoceros unicornis mastodon

49%

34%

41% .
of total | 30% o “
length L+ of total ‘
5| b length of total £ ‘.
iy wE length '
' Q‘ 1
<= speed weight ==

Fig.2 Proportions of the hind limb bones of the three locomotory types (modified after Osborn 1929)

1988.16; Zoologisches Forschungsmuseum Alexander
Koenig, Bonn, Germany) was digitised by surface scanning
with a BREUCKMANN optoTOP-HE and micro-computed
tomography with a GE phoenix|x-ray vitomelx 240 s (see
Hoffmann et al. 2014 for methodology). Both devices are
housed at the Bonn Institute for Organismic Biology.

The sample contains three rhinoceros species from the
Sandelzhausen locality (Germany, 60 km north of Munich)
of Miocene age (MNS5, 16 Ma; Moser et al. 2009). The mate-
rial of the three taxa, Prosantorhinus germanicus (Wang,
1928), Plesiaceratherium fahlbuschi (Heissig, 1972),
and Lartetotherium sansaniense (Lartet, 1851) is isolated
and belongs to different individuals. For the data matrix
the median was calculated of the different specimens per
species (Table 1). The median of a sample is more stable
against outliers than the mean average (e.g. Zeuner 1934).
The Sandelzhausen material is housed at the Bayerische

Staatssammlung fiir Paldontologie und Geologie (SNSB-
BSPG) in Munich, Germany.

The functional length is the length from the proximal
articulation surface to the distal articulation surface (see
also Schellhorn and Pfretzschner 2015). Front and hind
limb lengths from the literature were mostly taken from the
same individual, if this was not possible it is noted in the
data matrix (Online Resource 1). In artiodactyls the fused
third and fourth metacarpals/-tarsals (cannon bones) were
measured, and the third metacarpals/-tarsals in all other taxa.
Collection numbers (where given) and collection abbrevia-
tions are noted in the data matrix file (Online Resource 1).

The dataset comprises 117 cursorial (e.g. Bovidae,
Cervidae, Equidae, Giraffidae, Tragulidae), 69 mediportal
(e.g. Amynodontidae, Brontotheriidae, Hippopotamidae,
Rhinocerotidae, Tapiridae), and 10 graviportal (e.g.
Elephantidae, Mammutidae, Megatheriidae, Mylodontidae,
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Table 1 Used material of the
Sandelzhausen rhinos with

Lartetotherium sansaniense  Plesiaceratherium fahlbuschi Prosantorhinus germanicus

measured functional length coll.-no. SNSB-BSPG value coll.-no. SNSB-BSPG value coll.-no. SNSB-BSPG value

values [mm] and calculated
median values [mm]. (Abbr.: Humerus 1959 II 18106
MC3 — metacarpale III, MT3 —

metatarsale I1T)

median

Radius 1959 11 18103
1959 11 18104
1959 11 18105

median

MC3 1959 11 17087
1959 11 17088
1959 11 17089
1959 11 17090
1959 11 17108

median

Femur 1959 11 18121
1959 11 18153
1959 11 18154

median

Tibia 1959 11 18117
1959 11 18118
1959 11 18119
1959 11 18120

median

MT3 19591118114
195911 18115
195911 18116

median

365 19591118128 395 19591118136 262
1959 11 18137 322
1959 11 18138 288
365 395 288
335 19591118132 331 1959 11 18142 214
337 19591118133 332 19591118143 208
328
335 332 211
174 19591117092 171 1959 11 17002 94
205 1959 11 17003 95
173 1959 1I 17005 95
173 1959 1I 17006 89
182 1959 11 17027 93
1959 11 17028 96
1959 11 17029 95
1959 11 17030 92
1959 11 17031 89
1959 11 17104 89
1959 11 17847 92
174 171 93
490 195911 16502 428 195911 18145 368
446 19591118130 465 19591118146 340
493 1959 11 18148 372
490 447 368
362 195911 16504 369 19591118149 226
368 19591118125 337 19591118151 227
374 19591118126 374 19591118152 218
383 19591118127 368
371 369 226
180 1959 II 12447 154 195911 18156 79
158 19591118123 164 195911 18157 82
163 1959 11 18158 80
1959 11 18159 80
1959 11 18160 78
1959 11 18161 75
163 159 80

Uintatheriidae) specimens (Online Resource 1). The
assignment to the different locomotory types is following
the classical works of Gregory (1912) and Osborn (1929;
summarised and extended by Coombs 1978), but the there
used subcursorial (e.g. Hyrachyidae, Hyracodontidae,
Phenacodontidae) type is here included in the mediportal
type (see discussion section and Online Resource 1).
Definition of locomotory types in mammals following
Gregory (1912) and Osborn (1929; see also Fig. 2):

- graviportal: heavy-bodied animals with long proxi-
mal and short distal limb segments (e.g. elephants and
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large ground sloths). The limb structure is adapted to
bear weight.

- cursorial: mammals with short proximal and elon-
gated distal limb segments, adapted for fast running
(e.g. horses).

- mediportal: animals of moderate weight and speed
with proportions like the extant tapir (e.g. rhinos and

hippos).

Statistical analyses were performed using PAST 4.17
(Hammer et al. 2001) with logarithmised (In —natural loga-
rithm) data to reduce size effects. Principal Component
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Analysis (PCA) was performed with standard settings and
'Correlation' as Matrix (instead of the standard setting 'Vari-
ance-covariance'). Linear Discriminant Analysis (LDA) was
performed with standard settings. The LDA is used to prove
the assignment of the specimens to the locomotory types.
For PCA and LDA results see Online Resources 1 and 2.
The measured variables show normal distribution (Shapiro-
Wilk-Test) and an one-way analysis of variance (ANOVA)
was performed for all variables. ANOVA shows statistically
highly significant differences (p<0.001) for all variables
except for metacarpal length (mcfl). These differences are
statistically very significant (p<0.01). For F statistics and p
values see Online Resource 1.

The illustrations were made with CoreIDRAW X3 and
Paint.NET 5.1.8.

Results

Members of the cursorial type show limb proportions with
short proximal elements and elongated distal elements, while
the distal elements are short in graviportals and proximal
elements are longer (Fig. 2). As members of the medipor-
tal locomotory type, rhinoceroses are showing intermediate
proportions between the cursorial and the graviportal type
(Fig. 2).

The PCA performed with the data of all six bones shows
a clear separation between the three groups (Fig. 3). PC1
explains 77.7%, and PC2 explains 20.8% of the total vari-
ance. The separation of the three locomotory types is mostly
driven by PC2, while the mammals of the graviportal type
show low scores, the cursorial mammals show high scores,
and the mediportal specimens show intermediate scores. The
three Sandelzhausen species are plotting within the medipor-
tal type, while Prosantorhinus germanicus plots closer to the
graviportal mammals, and Plesiaceratherium fahlbuschi and
Lartetotherium sansaniense plot closer to the cursorial ani-
mals (Fig. 3). The loadings of PC2 show high loadings for
the measured values of the metacarpals and metatarsals, and
low loadings for the measured humeri and femora (Online
Resource 2).

The plot of the performed LDA with all six bones shows
a separation of the three locomotory groups in the direction
of the discriminant function 1 (DF1; Fig. 4). Cursorial taxa
show positive scores for DF1, while mediportal taxa show
negative scores, and the graviportal group shows the most
negative scores of the sample for DF1. Like in the PCA plot
(Fig. 3), the Sandelzhausen rhinos are plotting within the
mediportal cluster, with Prosantorhinus germanicus plot-
ting closer to the graviportal taxa (Fig. 4). The metapodial
measurement sections are loading positive on DF1, while
the other measurements show negative loadings on DF1

PC2 (20.8%)

PC1 (77.7%)

Fig.3 PCA plot performed with the logarithmised functional lengths
of all six bones (see Fig. 1) with 95% confidence ellipses of the three
locomotory groups. Red squares graviportal mammals, blue dots
mediportal mammals, blue stars extant rhinoceroses, blue diamonds
Teleoceras specimens, blue circles Diaceratherium specimens, green
triangles cursorial mammals, pink dots Sandelzhausen rhinos with /
Lartetotherium sansansiense, 2 Plesiaceratherium fahlbuschi, and 3
Prosantorhinus germanicus, see supplementary material for PC val-
ues (Online Resource 1) and PC loadings etc. (Online Resource 2)

(Online Resource 2). The confusion matrix shows 100%
correctly classified cases for the given groups (Online
Resource 2).

The plots of the logarithmised data of the proximal
bones versus the distal bones of front (Fig. 5) and hind limb
(Fig. 6) show a clear separation of the three groups. As for
PCA and LDA, the Sandelzhausen rhinos plot in the medi-
portal cluster, Lartetotherium and Plesiaceratherium plot
closer to the cursorial taxa, while Prosantorhinus plots close
to the graviportal locomotory group (Figs. 5 and 6).

The ranges of the ratio calculated from metacarpal to
humeral length show a separation of the locomotory types
with contact between the cursorial and the mediportal group
(Table 2). The calculated ratio of metatarsal to femoral
length shows a clear separation between the ranges of the
three groups with no overlap or even contact (Table 2).

All rhinoceros genera clearly plot within the mediportal
range according to their ratios of the front and hind limb
bones (Table 3). Following the values of the limb ratios and
as seen in the graphs above (Figs. 3-6), Prosantorhinus is
close to the graviportal taxa of the dataset, like Teleoceras
and Diaceratherium. According to their limb ratio values,
Lartetotherium and Plesiaceratherium are showing greater
values within the rhinos and therefore are closer to the
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Fig.4 LDA plot performed with the logarithmised functional lengths
of all six bones (see Fig. 1) with 95% confidence ellipses of the three
locomotory groups. Red squares graviportal mammals, blue dots
mediportal mammals, blue stars extant rhinoceroses, blue diamonds
Teleoceras specimens, blue circles Diaceratherium specimens, green
triangles cursorial mammals, pink dots Sandelzhausen rhinos with /
— Lartetotherium sansansiense, 2 — Plesiaceratherium fahlbuschi, and
3 — Prosantorhinus germanicus, see supplementary material for PC
values (Online Resource 1) and PC loadings etc. (Online Resource 2)

cursorial taxa (Table 3), what was also seen in the graphs
above (Figs. 3-6). The specimens of these two genera and the
extant Rhinoceros species are showing the greatest values of
the rhinoceros sample, together with Paraceratherium, the
giant rhinocerotoid (Table 3).

Discussion

Taxonomic assignment as well as physiological and eco-
logical information are given by studying the mammalian
skull (e.g. Billet et al. 2015; Schellhorn 2018a, b; Pfaff
et al. 2019; Martin et al. 2022; Schultz et al. 2022) and the
postcranial skeleton (e.g. Martin 1987; Schellhorn 2009,
2021; Schellhorn and Pfretzschner 2014, 2015; Schellhorn
and Sanmugaraja 2015; Schellhorn and Schlosser 2021).
The here presented study of limb bones to investigate the
locomotory type is mainly following the work of Gregory
(1912). He categorised different mammals by their limb
proportions to the groups graviportal, cursorial, and medi-
portal. Graviportal elephants show columnar limbs, adapted
to bear their great weight, with long proximal bones and
short distal elements (Fig. 2; Osborn 1929). Cursorial
horses, adapted to run fast, have long and slender limbs with
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Fig.5 Plot of logarithmised functional length of Humerus (Inhfl) vs.
metacarpal (Inmcfl; see Fig. 1) with 95% confidence ellipses of the
three locomotory groups. Red squares graviportal mammals, blue
dots mediportal mammals, blue stars extant rhinoceroses, blue dia-
monds Teleoceras specimens, blue circles Diaceratherium speci-
mens, green triangles cursorial mammals, pink dots Sandelzhausen
rhinos with I Lartetotherium sansansiense, 2 Plesiaceratherium
fahlbuschi, and 3 Prosantorhinus germanicus, see supplementary
material for values (Online Resource 1)

short proximal elements and elongated distal bones (Fig. 2;
Osborn 1929). According to Gregory (1912), tapirs, hip-
pos, and rhinos are good examples for the mediportal type,
with limbs showing adaptations to bear a greater weight,
but also the ability to move at a certain speed. Medipor-
tal mammals show medium long proximal and distal limb
elements compared to cursorial and graviportal mammals
(Fig. 2). The zeugopodial bones are nearly showing the
same percental length in all three groups (Fig. 2). This fact
is proven by the performed PCA (Fig. 3) and LDA (Fig. 4),
which show clear separations between the three groups. The
loadings (Online Resource 2) show the importance of the
proximal (humerus and femur) and distal bones (metapodi-
als) to separate the groups. This is confirmed by the plots
of metacarpal length versus humeral length (Fig. 5), and
metatarsal length versus femoral length (Fig. 6), and the
ratios of these bones (Table 2). Gregory (1912) and others
(e.g. Coombs 1978; Holtz 1995) also calculated these (and
other) ratios, but they had different samples of front and
hind limbs, and also used the zeugopodial bones for ratios,
which are not very useful following this study. Mallet et al.
(2019, 2020) found an important role of the zeugopodial
bones, especially radius and ulna, in weight bearing. This
study has a large dataset with complete data of front and
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Fig.6 Plot of logarithmised functional length of Femur (Inffl) vs.
metatarsal (Inmtfl; see Fig. 1) with 95% confidence ellipses of the
three locomotory groups. Red squares graviportal mammals, blue
dots mediportal mammals, blue stars extant rhinoceroses, blue dia-
monds Teleoceras specimens, blue circles Diaceratherium speci-
mens, green triangles cursorial mammals, pink dots Sandelzhausen
rhinos with I Lartetotherium sansansiense, 2 Plesiaceratherium
fahlbuschi, and 3 Prosantorhinus germanicus, see supplementary
material for values (Online Resource 1)

Table 2 Ranges of the bone length ratios for front and hind limb for
the three locomotory groups (see Online Resource 1 for data)

mcfl/hfl mtfl/ffl
Cursorial 0.60-1.77 0.55-1.38
Mediportal 0.30-0.60 0.19-0.51
Graviportal 0.16-0.23 0.10-0.15

hind limb, enabling the usage of multivariate analyses (PCA
and LDA). The present study provides ranges for the limb
ratios of the three groups (Table 2) what Gregory (1912)
did not. This study also comes to the conclusion that all
(examined) rhinos are of the mediportal type (see Table 3
and Online Resource 1). Gregory (1912) said Rhinoceros to
be mediportal, but Teleoceras to be of the graviportal type,
but for other ratios to be mediportal. Different authors (e.g.
Gregory 1912; Osborn 1929; Coombs 1978; Holtz 1995)
categorised a fourth group, subcursorial, but following
the here presented results the members of this locomotory
group are showing proportions of the mediportal type (see
Online Resource 1). Coombs (1978) concluded that the
front limb proportions are not useful to distinguish medi-
portal from subcursorial forms.

Table 3 Values of the bone length ratios of front and hindlimb for
the different genera of the Rhinocerotidae and the giant rhinocerotoid
Paraceratherium (see Online Resource 1 for data; * indicates extant
genus)

mcfi/hfl mtfl/ffl
Aceratherium 0.37 0.31
Brachypotherium 0.38 0.26
Ceratotherium* 0.37-0.44 0.28-0.33
Coelodonta 0.38 0.38
Diaceratherium 0.30-0.32 0.25-0.27
Dicerorhinus* 0.39-0.45 0.30-0.35
Diceros* 0.43-0.49 0.29-0.34
Hoploaceratherium 0.46 0.31
Lartetotherium 0.48-0.50 0.31-0.33
Plesiaceratherium 0.43-0.49 0.36-0.38
Prosantorhinus 0.32 0.22
Rhinoceros* 0.45-0.51 0.34-0.39
Teleoceras 0.30-0.40 0.19-0.26
Trigonias 0.43-0.44 0.33-0.38
Paraceratherium 0.49-0.54 0.31-0.36

Different authors only use the two extreme categories
cursorial and graviportal to differentiate between mammals
(e.g. Alexander and Pond 1992; Lovegrove and Mowoe
2013; Hutchinson 2021; Mallet et al. 2022a) but they dis-
cuss their results critically that rhinos are not fitting in
one of both groups. From a myological view, rhinos are
not comparable to the graviportal elephants (Etienne et al.
2021). Alexander and Pond (1992) also note differences
in the limbs between the graviportal elephants, and rhinos
and hippos. Paraceratheres also show characteristics of
cursorial and graviportal animals at one time (e.g. Mallet
et al. 2022a, b). In this study, with the different analyses,
Paraceratherium clearly plots in the mediportal cluster.
Houssaye et al. (2016) listed extant rhinos and hippos with
a graviportal posture in their study. They analysed bone
compactness in their study and found same or greater val-
ues for rhinos and hippos. In the case of hippos the great
bone compactness can be linked to the semi-aquatic mode
of life (Houssaye et al. 2016). A semi-aquatic mode of life
is also proposed for different rhinos (e.g. Prothero 1998;
Heissig 1999; Benoit et al. 2020), or at least a dependency
from water while wallowing (e.g. Groves 1972; Groves and
Kurt 1972; Laurie et al. 1983; Owen-Smith 1988; Groves
and Leslie 2011). Other studies do not support hypoth-
eses of rhinos with aquatic habits (e.g. Mihlbachler 2005;
Clementz et al. 2008; Wang and Secord 2020). Schellhorn
and Schlosser (2021) investigated the bone compactness
of the Sandelzhausen rhinos, a woolly rhino, and an extant
pygmy hippo, and found comparable or greater values for
the rhinos than for the hippo. The cortex might not be unu-
sually thick in terrestrial rhinos, but rhinos are somewhat
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intermediate in their mode of life between terrestrial and
semi-aquatic (Schellhorn and Schlosser 2021), or the high
degree of bone compactness is just linked to the large
body weight (Houssaye et al. 2016). Mazza (2014) notes
increased limb bone density and graviportally built limb
bones for Hippopotamus antiquus, which is not a swim-
mer, but a bottom walker like the extant Hippopotamus
amphibius. These bottom walker habits are imaginable for
fossil and extant rhinos too, which also show an increased
bone density (de Buffrénil et al. 2010; Canoville et al.
2016).

As some authors see graviportal forms within the
Rhinocerotidae (e.g. Klaits 1973; Wermelinger 1998; Becker
2003; Heissig 2012), this study shows the mediportal limb
proportions for all examined rhinos and relatives. With
special view on the three Sandelzhausen rhinos, the short
limbed teleoceratine Prosantorhinus germanicus plots closer
to the graviportal cluster, but is clearly within the mediportal
ratio ranges. The investigated Teleoceras specimens also
show ratio values in the range of the Prosantorhinus values.
Lartetotherium sansaniense and Plesiaceratherium fahlbuschi
show slender and long limb bones, but are plotting clearly in
the mediportal cluster. Within the mediportal cluster, both
taxa are situated closer to the cursorial cluster compared
to Prosantorhinus. Some authors use the proportions
(diameter and length) of the third metapodials to judge about
the locomotory type of rhinos (e.g. Heissig 2017). These
proportions can be calculated as the gracility index after
Guérin (1980). Following this index the teleoceratine rhinos
Prosantorhinus and Teleoceras, as well as Diaceratherium
aurelianense, are of the graviportal type (Mallet 2022b). In
this study, which uses the lengths of the limb bones and no
widths or diameters, these rhinos show mediportal limb ratios
close to graviportal taxa. The systematics of Diaceratherium
is controversely discussed (Jame et al. 2019), and some
authors place Diaceratherium aurelianense for example in the
teleoceratine genus Brachydiceratherium (e.g. Hullot et al. 2024).

As the plots and ratios show, the three locomotory types
are clearly separated and rhinos are plotting within the
mediportal cluster. Although different authors see rhinos as
graviportal taxa along with elephants (see references cited
above), there are striking differences between both which put
rhinos in the mediportal group. Elephants have very straight
legs and the legs of rhinos are much less straight (Alexander
and Pond 1992). Compared to elephants, rhinos are more
athletic (Hutchinson 2021) and are good runners reaching
an elevated speed (Mallet et al. 2019). While elephants can-
not gallop (Alexander and Pond 1992), a galloping white
rhino (Ceratotherium simum) reaches 27 km/h (Alexander
and Pond 1992) to 40 km/h (Player and Feely 1960). The
black rhino (Diceros bicornis) can gallop with a speed of
45 km/h (Blanco et al. 2003).
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Conclusions

e Performed PCA and LDA of limb bone lengths show
a clear separation between the three locomotory types
cursorial, graviportal, and mediportal.

e The lengths of proximal and distal bones load high on
PCs and DFs, and therefore the here presented study
shows the importance of the metapodials to distinguish
the groups.

e The Sandelzhausen rhinos plot in the mediportal cluster
with Prosantorhinus germanicus plotting closer to the
graviportal taxa, while Lartetotherium sansaniense and
Plesiaceratherium fahlbuschi plot closer to the curso-
rial animals.

e The front limb ratio of metacarpal length to humeral
length (mcfl/hfl), and the hind limb ratio of metatar-
sal length to femoral length (mtfl/ffl) show separated
ranges for all three locomotory groups and provide an
easy way to classify the locomotory type.

e The qualitative definitions of the locomotory types can
be extended by a quantitative part:

o graviportal mammals show values for the front
limb ratio (mcfl/hfl) between 0.16 and 0.23 and the
hind limb ratio (mtfl/ffl) between 0.10 and 0.15;

o mediportal mammals show values for the front
limb ratio (mcfl/hfl) between 0.30 and 0.60 and the
hind limb ratio (mtfl/ffl) between 0.19 and 0.51;

o cursorial mammals show values for the front limb
ratio (mcfl/hfl) between 0.60 and 1.77 and the hind
limb ratio (mtfl/ffl) between 0.55 and 1.38.

¢ All examined rhino taxa plot in the mediportal cluster and
show ratio values indicative for the mediportal type. The
ratio ranges show lower values for teleoceratine rhinos
closer to the ratios of graviportal taxa.
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