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Rhinoceroses face severe threats from poaching, habitat fragmentation, and ongoing habitat 
degradation. Monitoring rhinoceros across the vast, often inaccessible landscapes they inhabit 
is challenging. In this study, we assess the feasibility of detecting white rhinoceroses using very 
high-resolution (33-36 cm) satellite imagery acquired over the world’s largest private rhinoceros 
reserve in South Africa using a YOLO-based object detection model (YOLOv12x). We test whether 
synthetic imagery enhances model performance, whether rhinoceroses can be reliably distinguished 
from elephants in satellite imagery, and whether synthetically generated rhinoceroses are visually 
distinguishable from real ones by human annotators. We achieve an average precision (AP) of 0.65 in 
detection accuracy with synthetic augmentation yielding a marginal improvement. This study provides 
a demonstration of monitoring rhinos using this approach and introduces an open-access dataset to 
support the development and testing of new models.  The aim is to facilitate effective monitoring of 
rhinos across the vast landscapes they inhabit. Developing new detection techniques can strengthen 
conservation and recovery initiatives, including translocations, assessment of breeding program 
success, and evaluation of anti-poaching efforts.
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Reliable methods to accurately count wildlife are critical to detect changes in population sizes and document 
demographic trends that can be used to guide the conservation and management of populations. For many 
species, obtaining reliable data on population numbers is challenging, as species often occupy remote or 
inaccessible habitats, are nocturnal, or display cryptic behaviors that hinder detection. Wildlife survey methods 
vary in their strengths, with the optimal choice dependent on the monitoring objective. For example, foot 
patrols are necessary for close-range assessments of body condition, while estimating survival rates necessitates 
individual identification. The use of UAVs for monitoring wildlife is promising1, but the scale of surveys is 
currently limited by UAV battery life, and data can be compromised by the acoustic disturbance UAVs cause 
to animals2. To date, Earth observation satellite imagery has been used primarily for species detection, but this 
approach also provides broader ecological insights into habitat selection and migration dynamics3.  Several 
comprehensive reviews have examined the use of satellite imagery for wildlife monitoring4–6, however, empirical 
studies remain limited relative to the number of species for which this monitoring approach is now technically 
viable. The high cost of sub-meter imagery remains a major challenge; costs depend on the provider, order 
volume, and image specifications. Freely available imagery from satellite programs such as NASA’s Landsat Series 
(30 m resolution, 16-day revisit) and ESA’s optical sensors under the Copernicus program (10–20 m resolution, 
5-day revisit) offers valuable broad-scale coverage for habitat assessment; however, their coarse spatial resolution 
prevents detection of individual animals. In contrast, several commercial providers offer sub-meter imagery 
suitable for detailed object detection. For example, Maxar Technologies’ WorldView-3 satellite—used in this 
study—and the WorldView Legion constellation provide panchromatic imagery at resolutions as fine as 0.29 
m, with up to 15 revisits per day, enabling the detection of individual animals from low Earth orbit7. As an 
unprecedented number of high spatial- and temporal-resolution commercial constellations are launched8, and 
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companies seek to remain competitive, costs are expected to fall. In addition to high costs, manual analysis of 
large satellite images remains labor-intensive, time-consuming, and tedious. Deep-learning approaches allow 
for automation of this process, provided sufficient labeled training data are available. Both point- and object-
based deep-learning approaches have proven effective for detecting individual animals in satellite imagery, as 
successfully demonstrated in the case of whales9, elephants10, and wildebeest3. For wildebeest, smaller body size 
is offset by their tendency to form large, dense aggregations, which in the case of migratory wildebeest number 
in the hundreds of thousands, which increases ease of detectability11. In contrast, white rhinoceroses typically 
occur in much smaller crashes or around five and rarely exceeding 10 individuals12, making them harder to 
detect despite having a larger individual body size.

Satellite-based monitoring is suited to species detection13 and population counting14 —tasks for which aerial 
surveys are the main alternative, with each method subject to distinct biases that influence survey accuracy. Both 
techniques are subject to availability or concealment bias, where animals present in the survey area may remain 
undetected when hidden—such as rhinos resting under trees during the hottest parts of the day15. This bias 
has spatial and temporal components: satellite imagery can reduce spatial bias by capturing much larger areas 
in a single acquisition, but temporal bias remains due to fixed orbital schedules. Aerial surveys provide greater 
flexibility in timing to avoid periods of low visibility, whereas the revisit limitations of satellites are expected 
to diminish with the launch of new constellations, which will offer higher revisit frequencies and improved 
temporal resolution.

Observer bias and detectability bias—where object visibility decreases with distance from the observer—are 
mitigated in satellite surveys; however, classification error, i.e., the incorrect assignment of the wrong species 
category (e.g., mistaking a rhino for an elephant or vice versa), affects both techniques and is particularly 
challenging for satellite surveys due to the lower resolution of imagery. This form of sampling error can skew 
population estimates, particularly in areas where multiple large-bodied species co-occur, such as rhinos, 
elephants, and hippos. Involving species experts familiar with diurnal movement patterns can reduce this 
detection bias by improving image interpretation and minimizing classification error.

Given the critical conservation status of rhino species, improving the accuracy and scalability of surveying 
methods is essential for tracking population trends and informing protection efforts. As umbrella species, rhinos 
provide protection for many co-occurring species; conserving them also safeguards the broader ecosystems 
and landscapes they inhabit. Rhinos remain critically threatened throughout much of their range. Globally, 
five rhinoceros species and eleven subspecies have been documented, of which four subspecies have recently 
gone extinct. The Northern White Rhino (Ceratotherium simum cottoni) is now functionally extinct, while the 
Southern White Rhino (Ceratotherium simum simum), the most numerous remaining species, is classified as 
Near Threatened by the IUCN and is most populous in South Africa16. Poaching, primarily driven by demand for 
rhino horn as a status symbol and in traditional medicine, remains a significant threat with over 1,000 individuals 
killed annually between 2013 and 201617. In recent years, there has been a reported decline in mortality18, while 
the reduction is in part due to a reduction in poaching effort, the disruption to rhino demography has been 
significant19.

Protection efforts for rhinos extend beyond biological management to include law enforcement initiatives 
to disrupt organized crime, strategies for trade and demand reduction, and the development of alternative 
livelihoods for local communities. Conservation strategies for rhino range from breeding programs and 
translocations20,21, to demand-reduction campaigns22, the creation of synthetic horn alternatives23, dehorning24, 
and proposals to legalize the horn trade25. Despite all these initiatives, the future of rhinos remains uncertain. 
Currently, around half of the global white rhino population is privately managed, while efforts continue to seek 
long-term solutions for protecting populations in the wild26.

In this study, we evaluate the feasibility of detecting rhinoceroses using high-resolution imagery (33–36 cm) 
acquired from the commercial WorldView-3 satellite (Maxar Technologies) over the world’s largest private rhino 
reserve in South Africa, home to approximately 2,000 individual white rhino (Ceratotherium simum simum). 
We use temporal image differencing as shown in Fig.  1 to identify rhinos. We then automate the detection 
process using the YOLOv12x object detection model27 - detections from this model are shown in (Fig. 2).

The site is selected to minimize potential confusion with other African megafauna and to provide consistent 
background conditions for the detection task. It is not fully representative of the broader range of habitats 
occupied by rhinos, and other locations may present either greater or lesser challenges for detection than those 
examined here. We assess whether augmenting the training dataset with synthetically generated rhino imagery 
improves model performance. We also investigate whether human evaluators can distinguish synthetic from 
real rhinos, and whether the model can reliably differentiate rhinos (Ceratotherium simum simum) from African 
elephants (Loxodonta africana) using satellite imagery from Addo Elephant Park, South Africa.

Results
The YOLOv12x object detection model, trained on 1,700 manually annotated sub-images and evaluated on a test 
set of 300 images, achieved an average precision (AP) of 0.6308, with a precision of 65.2%, recall of 61.4%, and 
an F1 score of 63.3%. This demonstrates the feasibility of detecting rhinoceroses in satellite imagery despite their 
cryptic appearance, small pixel footprint, and the complexity of heterogeneous landscapes.

A separate model trained solely on 1,000 synthetic images achieved a lower AP of 0.26 (precision: 40.5%, 
recall: 22.3%, F1 score: 28.6%) when evaluated on real-world imagery. However, augmenting the training set 
with synthetic data led to a modest improvement in detection performance, with the combined model reaching 
a peak AP of 0.65 (precision: 66.7%, recall: 63.1%, F1 score: 64.8%).

To assess the visual realism of synthetic images, human annotators were asked to distinguish between real and 
synthetic examples. For real images, annotators correctly identified 140 out of 270 as genuine (true positives), 
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yielding a recall of 53%. For synthetic images, 130 out of 171 were correctly identified as fake (true negatives), 
while 41 were misclassified as real (false positives), resulting in a specificity of 76%.

When trained on a combined dataset of 7,532 individually annotated instances of African elephants 
(Loxodonta africana) and white rhinoceroses (Ceratotherium simum simum), the model failed to reliably 
distinguish between the two species. We tested three two-class training configurations (rhino vs. elephant), 
although no image contained both species together. On the held-out test set of 324 images (1,158 annotated 
instances), the model achieved an overall AP of 0.247, with 32.8% precision, 28.7% recall, and an F1 score of 
30.6%. Performance was notably stronger for rhinos (AP 0.350, precision 42.1%, recall 39.0%, F1 40.5%) than for 
elephants (AP 0.143, precision 23.5%, recall 18.3%, F1 20.6%).

Discussion
The results of this study demonstrate that white rhinoceroses (Ceratotherium simum simum) can be identified 
and detected in satellite imagery Fig. 3 with manual screening and temporal image differencing. The 33–36 cm 
resolution imagery used in this study, combined with YOLOv12x, achieved only a moderate average precision 
(AP) of 0.63 without any synthetic data included in training. Future research could build on the freely available 
training dataset provided here to improve detection accuracy by testing alternative models, such as U-Net28 or 
HerdNet29. We encourage others to build on this dataset by incorporating imagery of additional rhino species 
from the diverse ecological contexts in which they occur across Asia and Africa. The challenge of distinguishing 
between species at this spatial resolution is evident from the poor performance in separating elephants from 
rhinos. We encourage future research to address this limitation, which will be surmountable as satellite imagery 
with higher spatial resolution becomes available. The capacity to detect animals directly, without relying on 
temporal image differencing, will be enabled by advances in satellite video acquisition30. The issue of double-
counting is minimized in satellite surveys because very large areas upwards of 4000km2 3 can be captured in 
a single image at less than 50 cm resolution. When multiple images from different timestamps are used and 
individuals are treated as independent observations, the same problem of double-counting that occurs in 
traditional aerial surveys can arise. In such cases, established principles for estimating detection probability and 
abundance can be applied to account for availability bias31.

In the long term, assembling a spectrally and contextually diverse library of wildlife examples in satellite 
imagery across multiple habitats will advance the field, enabling the refinement of robust automated detection 
methods and benchmarks and reducing reliance on manual annotation. Large-scale datasets have been compiled 

Fig. 1.  Temporal comparison of WorldView-3 satellite imagery illustrating rhino movement. A blue box 
highlights the presence of a rhino, while a green box shows its absence in the same location on a later 
acquisition, confirming the object as a moving animal rather than a static feature. The red box similarly 
indicates a rhino detection and its subsequent absence in the same location at a later time. Images acquired on 
3 September 2019 and 13 September 2022. Imagery from Maxar Technologies.
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for camera-trap studies32,33, but are lacking for satellite imagery due to the high cost and proprietary nature of 
imagery. The cost of acquiring sub-half-meter resolution satellite imagery is substantial; however, we are at an 
unprecedented point in history with a record number of Earth observation satellites being launched8. As the 
market for very high-resolution satellite imagery grows and competition increases, acquisition costs are likely 
to decrease over time, making this monitoring technique more accessible. In addition, several satellite providers 
offer imagery at no cost for projects with ecological34 or societal benefits35.

At present, satellite-based surveying is competitive in cost to manned aerial surveys in remote or logistically 
challenging regions, such as Arctic environments, while in areas with established aviation infrastructure, 
conventional aerial surveys may remain more cost-effective in the near term. Different survey methods serve 
different purposes, and the optimal approach depends on the wildlife monitoring objective. At present, the 

Fig. 3.  Zoomed-in visualization of two rhinoceroses within the reserve, illustrating that each individual 
occupies fewer than 30 pixels, including body shadow. WorldView-3 image acquired on 3 September 2019. 
Imagery from Maxar Technologies.

 

Fig. 2.  Top row: original unlabeled satellite imagery. Bottom row: rhinoceros detections generated by the 
YOLOv12 model. WorldView-3 image acquired on 13 September 2022. Imagery from Maxar Technologies.
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primary applications of satellite-based monitoring are species detection and counting; however, beyond counting, 
satellites can be used to examine how groups of animals move together across vast areas, providing a better 
understanding of collective behavior dynamics3. While the cost of census counts is an important consideration, 
accuracy and bias quantification are equally critical. Conducting aerial and satellite surveys simultaneously 
across representative sites would enable direct evaluation of detection accuracy and quantification of relative 
bias errors. Such cross-method comparisons are well established in ecology, for example in contrasts between 
mark–recapture and block-count estimation36. Embracing methodological pluralism is essential to validate 
monitoring approaches rather than relying on a single technique.

In our study, incorporating synthetic images led to only a modest improvement in model performance (peak 
AP of 0.65). However, this limited gain may be attributed more to the challenge of dissociating pixel clusters due 
to current spatial resolution constraints of satellite imagery than to the effectiveness of synthetic augmentation 
itself. As wildlife satellite monitoring advances, continued development of processing pipelines that leverage 
synthetic data, as piloted here, will be essential to overcome sparse training data and unlock the full potential of 
satellite-based biodiversity monitoring.

While not directly examined in this study, the integration of AI-generated imagery into wildlife detection 
pipelines raises a potential future concern: fabricated or manipulated imagery could distort population 
estimates. Although synthetic data can enhance model training and address class imbalance, a common 
limitation in wildlife datasets37, it also introduces the risk of misuse. This risk becomes particularly salient if 
species population estimates are incorporated into financial mechanisms, such as biodiversity credit markets—
satellite-based detection is already used to quantify the benefits of forest carbon offset projects38, and similar 
integration for species accounting is conceivable. Should this occur, ensuring rigorous data provenance 
capable of distinguishing genuine from synthetic imagery will be essential39, paralleling safeguards now being 
implemented in other fields vulnerable to deepfake manipulation40. This study demonstrates the feasibility of 
satellite-based monitoring for surveying rhino populations and provides a foundation for a scalable monitoring 
approach in support of their conservation.

Methods
Satellite image acquisition
We used six cloud-free, high-resolution WorldView-3 satellite images (Maxar Technologies) acquired between 
2015 and 2022 (Table 1). Each image had a ground sample distance of 33–36 cm and covered a substantial portion 
of the farm. Across all six dates, the total area surveyed was 188.6 km², with locations imaged more than once 
across the six images. The farm is located in the North West province of South Africa, the climate is characterized 
by a wet summer season (November–March) and a dry winter season (April–October); all satellite imagery in 
this study was acquired during the dry season, spanning early (May), mid (July), and late (September) phases, 
when reduced vegetation cover and clearer atmospheric conditions generally enhance detectability. This site was 
selected to minimize potential confusion with other African megafauna and to ensure consistent background 
conditions for the detection task. It is not representative of the broader range of habitats occupied by rhinos, 
and other locations may present either greater or lesser challenges for detection than those examined here. To 
produce high-quality labeled training data, annotations were carried out by a professional annotation service 
(https://labelyourdata.com/). Each image was independently annotated by two trained annotators, with all 
instances of disagreement adjudicated by a senior reviewer to verify the presence or absence of rhinoceros. Any 
annotations unique to a single annotator were subjected to an additional verification step to confirm accuracy 
before inclusion in the final dataset. In several instances, small trees and shrubs were initially misidentified as 
rhinoceroses; however, temporal image differencing revealed that these objects were stationary, and they were 
subsequently excluded from the training dataset.

This consensus-based procedure yielded 4,223 validated rhinoceros annotations. To further improve 
annotation reliability and reduce the likelihood of false positives arising from visually similar static features 
(e.g., rocks, shrubs, shadows), a temporal image differencing method was employed. This approach involved 
confirming the presence of a suspected rhinoceros by examining its location in images acquired at different 
times as shown in Fig. 2 below. Only those objects that exhibited positional displacement consistent with rhino 
movement were retained.

Satellite Image ID Date Training Labels Test Labels Validation Labels Total Labels

104001000B0A7D00 2015-05-08 91 12 6 109

104001001E10CF00 2016-07-12 227 44 22 293

104001001B4BBC00 2016-05-22 941 117 58 1116

1040010051205100 2019-09-03 434 51 26 511

104001005AC36B00 2020-05-07 709 156 74 939

104001007BC2F800 2022-09-13 73 1 0 74

104001007BC2F800 2022-09-13 754 284 143 1181

Table 1.  Summary of Worldview-3 Satellite Images Used in Training (3229 unique rhinos), Validation (513 
unique rhinos), and Test Datasets (481 unique rhinos), each label contains between 0–64 rhino.
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Preprocessing and model selection
Given the large spatial dimensions of the WorldView-3 satellite imagery and the irregular extents of the 
georeferenced TIFF files (imagery in which each pixel is assigned precise geographic coordinates), we adopted 
an image tiling strategy to facilitate efficient training. The area surveyed covers 188.6 km, which converts to 1.73 
billion pixels at 33 cm resolution. Each image was subdivided into uniformly sized tiles of 512 × 512 pixels. This 
patch size was selected to meet the input requirements of deep learning architectures while preserving the fine 
spatial resolution necessary to detect small, visually cryptic targets such as rhinoceros. Care was taken during the 
tiling process to preserve spatial accuracy and prevent the truncation of rhinos at tile edges, there was no overlap 
across the images. Subsequent preprocessing and quality control were conducted using QGIS (Quantum GIS)41, 
an open-source geographic information system. These steps included manual inspection to ensure annotation 
consistency, correction of any labeling discrepancies i.e., tightening labels around the rhino, and conversion of 
polygon shapefiles (.shp) into the bounding box format compatible with the YOLO training framework. The 
final dataset was partitioned into 1,700 training images, 150 validation images, and 300 test images. Table 2 
shows the training hyperparameters used during training.

These numbers refer to images that comprise different numbers of rhino per image, while Table 1 refers to 
the number of unique rhino “objects” in the imagery. For object detection, we employed YOLOv12x27, the largest 
variant of the recently released YOLOv12 model family. We selected YOLOv12x for its high-resolution feature 
extraction and strong multi-scale detection performance, which enables identification of small, visually cryptic 
targets such as rhino.

Synthetic data generation
To explore the potential of synthetic data in augmenting model training, we constructed a 3D scene in Blender, to 
emulate the satellite observation perspective. Blender is an open-source 3D computer graphics software used for 
creating 3D models, and simulations42. To generate synthetic imagery, a virtual camera was positioned directly 
overhead of a flat plane representing the ground. The plane was textured using patches cut from real satellite 
images to create realistic backgrounds. For each synthetic image, a random patch was selected, with all patches 
manually screened to remove those containing cloud cover, visible reserve infrastructure, or real rhinoceroses. 
Three-dimensional rhinoceros models were randomly distributed across the scene with variable scaling and 
rotation parameters, simulating natural variation in animal size and orientation As shown in Fig. 4. The models 
were placed sparsely to reflect realistic densities observed in the original dataset.

Synthetic images were rendered at a resolution of 512 × 512 pixels to match the dimensions used for training 
with real image tiles. While this approach enabled the rapid generation of labeled training data, initial training 
runs using YOLOv12x on the purely synthetic dataset yielded low performance, with a baseline average precision 
(AP) of 0.26 substantially below that of the real-image model. The model exhibited difficulty in generalizing 
from synthetic scenes, likely due to differences in texture fidelity and visual complexity, despite extensive 
hyperparameter tuning using grid search. In this process, key hyperparameters such as the learning rate (0.001), 
momentum (0.937), weight decay (0.0005), optimizer (SGD), image size (512), batch size (8), epochs (500), 
and training options (augmentation, multi-scale input, mixed-precision, checkpoint saving) were systematically 
varied across predefined values to identify the best-performing configuration.

The synthetic data went through several iterations, focusing on altering the size, distribution, and number of 
3D model placements to see what the model would respond best to.

Differentiating elephant and rhino
To assess whether African elephants (Loxodonta africana) and white rhinoceroses (Ceratotherium simum) can 
be distinguished in satellite imagery, we trained a YOLOv12 object detection model on a combined dataset. 
Elephant training data were sourced from Duporge et al. (2021)10,43 combined with newly annotated rhino 
imagery. All images were acquired from very high-resolution commercial satellites (30–50 cm per pixel), and 
annotations were manually generated by trained observers using bounding boxes to delineate individual animals. 
The final dataset comprised 7,532 annotations within the train set, 324 test images, and 125 validation images, 
containing 1,126 elephant and 4,223 rhino annotations with varying numbers of each species in each image. We 
used an 80–10–10 split for training, validation, and testing.

Human evaluation of synthetic data
To assess the visual realism of our synthetic data, we conducted a blinded classification task involving human 
annotators (Princeton University Freshman students). Eight participants—none of whom were involved in 
the project and with little to no prior exposure to satellite wildlife imagery—were asked to classify images as 
either real or synthetic. The dataset comprised an equal mix of real and AI-generated high-resolution satellite 
images of rhinoceroses. The 108 images (54 real, 54 synthetic) were divided into two labeling tasks. Annotators 
were instructed to categorize each image as “real” or “synthetic” without any prior training or guidance. Results 
revealed that participants frequently misclassified synthetic images as real, underscoring the high visual fidelity 
of the generated data (Fig. 4).

Learning rate Momentum Weight decay Optimizer Batch size Number of epochs

0.001 0.937 0.0005 SGD 8 500

Table 2.  Hyperparameter values for YOLOv12 training.
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Data availability
The Python and Blender-based framework used for generating the synthetic rhinoceros dataset is available at: 
Github Repository : https://github.com/sat-rhino/sat-rhino. All associated data supporting the results of this 
manuscript are publicly accessible at: https://doi.org/10.5281/zenodo.17360632.
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