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Abstract

Context Repeated surveys to investigate mamma-
lian assemblages at the landscape level are crucial to
understanding how natural ecosystems function and
regulate over time.

Objectives We assessed mammalian species rich-
ness and occupancy changes across selected pro-
tected areas (PAs) in northern KwaZulu-Natal in the
Maputaland Conservation Unit, South Africa.
Methods We collected data using 366 camera traps
during 2013-2014 and 2022-2023, consisting of 183
camera trap sites covering four PAs (iSimangaliso
Wetland Park, incorporating Eastern Shores, West-
ern Shores, and False Bay PAs, and Tembe Elephant
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Park) that varied in size, habitat diversity and distur-
bance levels. Our study assessed whether changes in
mammalian species richness and occupancy occur
across protected areas in northern KwaZulu-Natal,
relative to biotic drivers (habitat and path type) in
protected areas over two independent survey cycles
using a multi-species occupancy model. We applied
the Royle—Nichols multi-session multi-species hierar-
chical model to estimate species richness and occu-
pancy dynamics of 39 mammalian species for differ-
ent PAs while accounting for imperfect detection.
Results Species richness increased with PA size
across both camera trap cycles. Two PAs (False Bay
and Western Shores) experienced major declines in
estimated species richness compared with the previ-
ous study. Mammalian community richness remained
relatively stable. Notable shifts in mammal occupancy
for eight species and detection for ten species over
two survey periods were found, reflecting changes
in habitat composition and potential pressures from
poaching and human activities. Eight mammalian
species showed marked increases in detection, while
others, hippopotamus (Hippopotamus amphibius)
and serval (Leptailurus serval), experienced declines.
Occupancy pattern shifts were present, with some
species increasing in occupancy, particularly in habi-
tats such as grasslands and forests, while cane rats
(Thryonomys swinderianus) and white rhinoceroses
(Ceratotherium simum) showed significant declines.
Conclusions Our results suggest that habitat compo-
sition changes, particularly the expansion or reduction
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of specific habitats (e.g., grasslands, forests), influ-
enced species occupancy trends, with more gener-
alist species adapting to broader habitat types and
specialist species experiencing occupancy reductions
based on habitat specificity. Additionally, poaching
was widespread in sections near the Western Shores
fence line. Management should intensify antipoach-
ing resources in hotspot areas (security and ranger
patrols) to reduce illegal hunting within the reserve.
Our multi-species, multi-season models revealed
the resilience and stability of terrestrial mammals in
PAs within the Maputaland Conservation Unit, Kwa-
Zulu-Natal. Through a systematic survey approach,
we emphasise the value of long-term monitoring for
tracking large-scale population trends in this ecologi-
cally and economically significant region.

Keywords Bayesian hierarchical model - Camera
trap survey - Multi-species occupancy - Terrestrial
mammals - Reassessment

Introduction

Humans and their activities actively contribute to
global modifications and fragmentation of the natu-
ral environment (Ojima et al. 1994; Wackernagel and
Rees 1998; Newbold et al. 2015). Anthropogenic-
induced processes of global warming (Ripple et al.
2020), invasive species (Sala et al. 2000), habitat
fragmentation (Newbold et al. 2015), and pollution
(air and water) (Maxwell et al. 2016) are respon-
sible for the degradation of ecosystem functions
and the rapid decline in global biodiversity (Chapin
et al. 2000; Foley et al. 2005). These anthropogenic
impacts diminish species numbers, collapsing global
biodiversity (Vitousek et al. 1997; Jaureguiberry et al.
2022).

Protected areas (PAs) are important instruments
for preserving biodiversity and can effectively reduce
immediate human pressures and derived threats to
biodiversity (Schulze et al. 2018; Pulido-Chadid
et al. 2023). There has been increasing emphasis on
expanding the coverage and management effective-
ness of PAs to prevent further biodiversity loss (Con-
vention on Biological Diversity 2020). However, sim-
ply increasing PA size and coverage will not resolve
biodiversity loss. Increased understanding of spe-
cies community structures (population, distribution
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patterns and diversity) (Cumming et al. 2015), man-
agement regimes (biophysical and decision-making
processes) (Mathevet and Mauchamp 2005; Cum-
ming et al. 2015; Geldmann et al. 2019) and the
social-ecological dynamics (Ghoddousi et al. 2021)
that exist within and surrounding a PA are required.
South Africa has over 1500 protected areas, of
which~9.2% cover the terrestrial landscape; most fall
under formally protected Nature Reserves or National
Parks (Statistics South Africa 2021). To achieve the
goals of sustainable biodiversity use outlined by the
Convention on Biological Diversity (2020), South
African reserves require a targeted effort towards spe-
cies community structure management regimes and
the social-ecological dynamics associated with its
PAs.

The distribution patterns of species and commu-
nities fluctuate at differing spatial levels, and habi-
tat types are driven by vegetation and environmen-
tal patterns at sites (Kneitel and Chase 2004; Bellon
et al. 2022). Therefore, species distribution and rich-
ness are influenced by natural conditions, anthro-
pogenic development at a landscape level (Currie
1991; McGarigal et al. 2005; O’Hara and Tittensor
2010; Yates et al. 2012; Geldmann et al. 2019) and
landscape heterogeneity (Andrén 1994; Fahrig 2003;
Tews et al. 2004; Bellon et al. 2022). Habitat struc-
ture encompasses both horizontal and vertical com-
ponents, together with riverine corridors, defines
the supply of key resources (food and water) and the
conditions (shelter, protection and refugia) driving
mammalian community patterns (Naiman et al. 1993;
Tobler et al. 2015). Horizontal heterogeneity, such as
variation in patch size, edge density and landscape
connectivity, creates a mosaic of habitat types and
foraging opportunities and can result in higher spe-
cies richness inhabited by taxa with different habitat
preferences (MacKenzie et al. 2017). Vertical struc-
ture also enhances niche differentiation, with ground-
dwelling mammals using understory cover and forest
floor refugia, together boosting occupancy and diver-
sity (McCleery et al. 2018). When horizontal and ver-
tical structural features in the form of different habitat
types (coastal forest vs grassland vs woodland, etc.)
are incorporated into occupancy and community
models, they provide suitable predictors of mamma-
lian occupancy and diversity indices, underscoring
their role in shaping mammalian species richness,
diversity and occupancy patterns (Tobler et al. 2015).
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Patterns of species richness can be effectively stud-
ied in terrestrial ecosystems, allowing for compari-
sons of community structures along environmental
gradients. Recently, considerable attention has been
paid to understanding mammalian communities along
land-use gradients (Stevens et al. 2019; Rovero and
Kays 2021; Dennis et al. 2024). Ramesh et al. (2016a)
investigated factors responsible for variation in terres-
trial mammalian species richness and occupancy in
game parks in northern KwaZulu-Natal (iSimangaliso
Wetland Park, incorporating Eastern Shores, Western
Shores, and False Bay PAs; Tembe Elephant Park and
Ndumo Game Reserve), South Africa. Their study
showed that terrestrial mammals responded differ-
ently to landscape disturbance and structure. Further-
more, the study highlighted the importance of habitat
heterogeneity and connectivity in enabling species to
move freely between landscape types, promoting spe-
cies diversity (Ramesh et al. 2016a). As much as PAs
represent stable environments relative to the outside
of their boundary, they still undergo fluxes of change
(habitat and community structures, anthropogenic
impacts, and climate change) over time (Ramesh et al.
2016a, b). The PA’s biodiversity must be regularly
surveyed so that factors that drive cycles of change
are identifiable and manageable.

Globally, while protected areas are critical for con-
serving biodiversity, they are not immune to these
challenges associated with changes in management
practices or human pressures, such as poaching (ille-
gal hunting or catching of game) (Li et al. 2024). The
PAs in northern KwaZulu-Natal managed by Ezem-
velo KZN Wildlife experience a dynamic interplay
between adaptive management practices and habitat
dynamics, which are designed to meet site-specific
requirements (Tembe Elephant Park 2018; iSiman-
galiso Wetland Park Authority 2020). Management
plans cover a range of aspects, including alien inva-
sive plant control, fire, water and wildlife (general or
species-specific) management. Interventions related
to wildlife management are restricted to indigenous
wildlife and are aimed at protecting rare and endan-
gered populations or achieving specific conservation
targets (e.g., African elephant (Loxodonta africana)
and rhinoceros (hereafter rhino; white (Ceratotherium
simum) and black rhinoceros (Diceros bicornis)) pro-
jects), such as maintaining species carrying capacity
and implementing reintroduction projects to restore
historical ecological functionality (Tembe Elephant

Park 2018; iSimangaliso Wetland Park Authority
2020). Effectively managing wildlife within park
boundaries requires understanding the PA ecology,
particularly the habitat drivers, population, and spe-
cies dynamics within the closed (fenced) system. The
management authorities implement census measures
counting different mammalian species throughout
the year (Tembe Elephant Park 2018; iSimangaliso
Wetland Park Authority 2020). These measures give
them insight into the potential for decadal change
shifts resulting from management alterations, climatic
influences, and human pressures. Although these
PAs remain relatively stable within the boundaries
(species dynamics and habitat composition), increas-
ing anthropogenic pressures are evident within and
surrounding these areas (Jewitt et al. 2015; SANLC
2020).

Long-term systematic surveys have allowed for the
practical understanding of the status of mammalian
species distribution and abundance, aiding our under-
standing of how species richness and occupancy are
impacted by landscape structures over time (patch
size, shape, and habitat characteristics) (Fahrig 2003;
Wearn and Glover-Kapfer 2019). Landscape com-
plexities can drive species diversity either positively
or negatively. Occupancy estimation and modelling
techniques incorporating camera trap surveys provide
a valuable assessment tool for species distribution
models (Sollmann 2018). The models can account
for uncertainty, depicting species distribution more
accurately (Burton et al. 2015). Terrestrial mammal
distribution and local abundance provide an ideal
model of organisms for surveying. Furthermore, the
ability to standardise camera trap survey allows for:
(1) clear-cut implementation at different scales (local
and regional); (2) comparisons along land-use gradi-
ents/habitat characteristics; and (3) repeatability of
study (Ramesh et al. 2016a, b). By monitoring the
site occupancy of mammals, we can provide accurate
estimates of population status and changes in trends
through multi-species monitoring programs (Burton
et al. 2015; Di Marco et al. 2018; Ripple et al. 2017).

Long-term reassessment studies on natural sys-
tems are invaluable for tracking the effects of land-
scape modifications, and climate change, as well
as evaluating implemented management strategies
(Callahan 1984; Lindenmayer et al. 2012; Patel et al.
2023). Comparison studies allow conservationists to
assess changes over time in community structures and
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identify the effectiveness of management approaches
(Ramesh et al. 2016a, b; Chauvenet et al. 2017).
Studies with an adequate time interval can reveal
previously unrecognised features within a system.
Additionally, the systematic camera trap framework
can detect rare, cryptic and elusive terrestrial mam-
malian species that are difficult to study using tradi-
tional methods (Karanth and Nichols 1998; Wearn
and Glover-Kapfer 2019). Implementing a reassess-
ment study helps guide wildlife management plan-
ning, maintain biodiversity equilibrium, and avoid the
extinction risk of some mammalian species.
Long-term reinvestigation studies are crucial in
identifying the main drivers of ecosystem change
(management strategies, anthropogenic disturbance
and climate change) that affect trophic functioning.
They provide a clear picture of whether conservation
interventions have the intended impact or require an
alternative approach to conserve biodiversity more
effectively. Consequently, we reinvestigated the rela-
tive importance of environmental variables, land-
scape metrics, and habitat structure in explaining
the change in terrestrial mammalian species richness
and occupancy using systematic camera-trap surveys
in PAs in the Maputaland Conservation Unit in the
Zululand region of northern KwaZulu-Natal, South
Africa. With the active wildlife management plans
(Tembe Elephant Park 2018; iSimangaliso Wetland
Park Authority 2020) present in the study sites, we
predicted that species richness and occupancy met-
rics would remain stable relative to the previous study
(see Ramesh et al. 2016a). We predicted that occu-
pancy metrics for white and black rhinoceros would
decrease because of the implemented anti-poaching
management strategy of translocating individuals out
of hotspot poaching sites to different reserves. Our
results may enhance the understanding of the deter-
minants of mammalian richness patterns and commu-
nity structures with landscape structure along habitat
gradients in PAs that can be implemented into an
adaptive wildlife management strategy in the future.

Methods
Study area

For the reinvestigation study, we used data from five
camera trap surveys in the Maputaland Conservation
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Unit in the Zululand region of northern KwaZulu-
Natal, South Africa (Fig. 1). Our survey included 183
camera trap stations set up for 24-28 day cycles at
particular sites within the PAs at specific times of the
year (Table 1, Fig. 1). In 2022, we conducted surveys
in three historical PAs (Eastern Shores~300 km?,
Western Shores~380 km? and False Bay~20 km?)
situated on the northeastern coast of KwaZulu-Natal,
and incorporated into the World Heritage and Ramsar
site, iSimangaliso Wetland Park (ISWP). High levels
of human disturbance are present on Western Shores
because of the continued large-scale exotic tree plan-
tation activities of Eucalyptus and Pinus spp. (Fig. 1).
The fourth and fifth surveyed regions were the south-
ern (~ 100 km?) and northern (~200 km?) sections of
the PA, Tembe Elephant Park (~300 kmz). Tembe
Elephant Park is situated in the Maputaland coastal
plain between the east coast of KwaZulu-Natal and
the Lebombo Mountain Range in the west, sharing a
border with Mozambique. Despite being surveyed in
2013-2014, Ndumo Game Reserve was not surveyed
because of the present illegal human invasion of the
reserve and safety concerns for the equipment.

Land cover maps for ISWP and Tembe Elephant
Park were reclassified into seven broad habitat types:
coastal lowland forest, dry forest thicket, dune for-
est, grassland, exotic tree plantation, sand forest and
woodland for the surveyed sites (Jewitt 2018; SANLC
2020). We used the ArcGIS 10.7 (ESRI, Redlands,
CA, USA) to calculate the percentage of coverage
for each of the seven broad habitat types using land
cover maps available to Ramesh et al. (2016a) (Mat-
thews et al. 2001; iSimangaliso Wetland Park Author-
ity 2014) in each study site and compared the present
and previous studies data to demonstrate the level
of decadal change in habitat types between the two
assessment periods.

Data collection and analyses

We deployed passive infrared flash browning cam-
era traps (model BTC-7E and SHDPX) at precise
geographical locations using a global positioning
system (GPS) (Garmin eTrex® 10) and placed them
following Ramesh et al. (2016a). In occurrences
where trails were no longer present at a particu-
lar camera station location, we moved the camera
trap position to a suitable location where an active
game trail was present within a 50 m radius of the
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Fig. 1 Map of the five survey regions with camera trap stations in the Maputaland Conservation Unit of South Africa
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Table 1 Summary data for camera trap surveys in the Maputa-
land Conservation Unit of South Africa, including length of
survey, number of camera trap stations, number of trapping

and camera days and the geographical location. (Note: the
regions with asterisks are all incorporated in the iSimangaliso
Wetland Park, and the others in Tembe Elephant Park)

Region Start date End date Stations Trapping days Camera days Latitude Longitude
Eastern Shores* 9/1/2022 9/24/2022 49 24 1176 —28.1983 32.5097
Western Shores* 7/1/2022 7124/2022 62 24 1488 —28.1909 32.3906
8/1/2022 8/24/2022
False Bay* 8/1/2022 8/24/2022 7 24 168 —-27.9714 32.3559
Tembe south 10/17/2022 11/13/2022 21 28 588 —27.0640 32.5147
Tembe northeast 2/7/2023 3/6/2023 21 28 588 —-26.9721 32.5835
Tembe northwest 4/2/2023 4/29/2023 23 28 644 —26.9842 32.5298

original GPS location. Camera traps were secured
to a tree in a metal case and locked with a python
bicycle lock or chain to reduce theft and or removal
by wildlife. For detailed information on camera trap
setup, see Ramesh and Downs (2015), Ramesh et al.
(20164, 2016b). We checked camera trap locations
biweekly.

Camera traps were deployed to capture a range of
terrestrial mammals in the study sites, from rodents
to elephants. Arboreal mammals, namely chacma
baboon (Papio ursinus), vervet monkey (Chloroce-
bus pygerythrus), samango monkey (Cercopithecus
albogularis), Tonga red squirrel (Paraxerus palliatus
tongensis) and thick-tailed bushbaby (Galago crassi-
caudatus) were not included in our analyses because
of the camera trap placement and orientation were
suitable for terrestrial mammals. Habitat type vari-
ables (Table 2) for each camera station were extracted
at each site using a 15 m buffer around the camera
using Zonal Statistics tools in ArcGIS® 10.7. We
classified path types (Narrow: animal path or trail

vs Wide: dirt or park management roads) during
fieldwork.

Data analyses

We used Ramesh and colleagues’ data using the
R function “specaccum” from the vegan package
(Oksanen et al. 2013) to establish the number of
camera trap nights to survey each reserve for the
present study. We used the resulting accumulation
data (species richness vs. camera trap nights) to fit
a Michaelis—Menten asymptotic model with non-
linear least squares. This allowed us to determine
the number of camera trap nights required to detect
90% of the observed richness from the previous
study’s data. In line with these findings, we set the
number of camera trap nights for the present survey
(ISWP: Eastern Shores, Western Shores and False
Bay—24 days and Tembe Elephant Park: southern,
northwest and northeast—28 days) (Table 1). Fur-
thermore, we standardised the 2013/20214 survey

Table 2 Habitat structures
coverage between two
survey periods (Ramesh

et al. 2016a vs the present
study) for sampled
protected areas in northern
KwaZulu-Natal in the
Maputaland Conservation
Unit of South Africa

*Denotes a greater than
25% change in coverage
between survey periods

**Denotes a greater than
50% change in coverage
between survey periods

Study site Habitat type Coverage (%)
Previous study Present study

iSimangaliso Wetland Park Coastal lowlands forest 20.8 34 .8%**
Dry forest and thickets 11.6 10.4
Dune forests 7.9 5.8%
Grassland 389 32.9
Plantation 19.7 14.2%
Sand forest 1.1 2.0%%*

Tembe Elephant Park Grassland 1.7 1.4
Sand forest 38.2 25.4%
Woodland 60.1 73.1

@ Springer



Landsc Ecol (2025) 40:141

Page 70f20 141

data to the established camera trap period to allow
for comparisons between the two independent
survey cycles. Lastly, we removed the data from
Ndumo Game Reserve from the previous survey
dataset because it was impossible to survey this PA
in the present study.

Our reinvestigation study required that we incor-
porate the same statistical analyses and methods as
in the previous study. Therefore, we employed the
extended Royle—Nichols (RN) multi-species occu-
pancy model (Royle and Nichols 2003), incorporat-
ing additional hierarchical levels to account for dif-
ferent sampling sessions (Tobler et al. 2015). The
RN model addresses site-specific variation in abun-
dance using temporally replicated detection—non-
detection data. We used this approach to account
for spatial heterogeneity in detection probabilities
at the camera station level, which may be influ-
enced by factors such as proximity to the core of an
animal’s home range, placement of cameras along
well-used game trails and dirt roads, and variation
in local species abundance (Royle 2006; Kalle et al.
2014). For more details, see Tobler et al. (2015) and
Ramesh et al. (2016a).

Results

Our study demonstrated decadal changes in habitat
structure between the two assessment periods. The
ISWP experienced an increase in coastal lowlands
forest and sand forest habitat coverage, and a decrease
in exotic tree plantations as well as dune forest habitat
coverage (Table 2). The TEP experienced a decline in
sand forest habitat coverage (Table 2).

Our 2023-2024 study experienced a 10% (six
units) camera trap theft isolated to the Western
Shores PA in ISWP. In total, illicit activities, includ-
ing illegal poaching of an antelope and plants, hunt-
ing with a firearm and domestic dogs (Canis lupus
familiaris) (Fig. 2) and camera trap theft, were pre-
sent in 18% (11 units) of camera traps on the reserve,
an increase of 13% from the previous study. The ina-
bility to implement a camera trap survey in Ndumo
Game Reserve underscores ongoing challenges and
highlights the need to strengthen law enforcement
capacity through increased ranger deployment within
this PA and designated Ramsar site.

Our 177 camera trap locations accrued 4508
camera trap days (mean 24 days), capturing 16,726

Fig. 2 Illegal poaching events were captured on camera traps during a systematic survey in Western Shores PA, iSimangaliso Wet-

land Park
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images of terrestrial mammals (mean 94.5 images per
camera trap).

Terrestrial mammal detections and occupancy

Our study detected 39 terrestrial mammals during the
camera trap survey of 183 locations across the sur-
veying periods in 2023-2024 (Table 3). This survey
detected two new records of species that were not
detected in the previous study: large grey mongoose
(Herpestes ichneumon) and brown hyena (Hyaena
brunnea). Three species that were previously
detected in the last survey were not detected, namely
the African wild dog (Lycaon pictus), Cape claw-
less otter (Aonyx capensis) and four-toed elephant
shrew (Petrodromus tetradactylus). The number of
total detections varied considerably from species
to species. Large grey mongoose was detected on
three occasions, with nyala (Nyala angasii) detected
1179 times during the survey period (Figs. 3 and 4,
Table 3). In line with the previous study, nyala, red
duiker (Cephalophus natalensis), African elephant,
and large spotted genet (Genetta maculata) were the
most represented species in the study (>500), with
18 species detected less often (< 100) (Table 3). The
remaining 14 species were detected on <500 occa-
sions but greater than> 100 occasions (Table 3).
Species which had a 40% increase in detections,
excluding newly or not previously detected species,
included blue wildebeest (Connochaetes taurinus),
elephant, giraffe (Giraffa camelopardalis), impala
(Aepyceros melampus), side-striped jackal (Lupule-
lla adusta), spotted hyena (Crocuta crocuta), suni
(Nesotragus moschatus), and white-tailed mongoose
(Ichneumia albicauda), and species which had a 40%
decrease in detections included hippopotamus (here-
after hippo) (Hippopotamus amphibius) and serval
(Leptailurus serval). Excluding newly or not detected
species, species which demonstrated a 40% increase
in occupancy were aardvark (Orycteropus afer),
banded mongoose (Mungos mungo), bushpig (Pota-
mochoerus larvatus), scrub hare (Lepus saxatilis),
side-striped jackal and white-tailed mongoose. On
the opposite side of the spectrum, cane rats (Thryon-
omys swinderianus) and white rhinos demonstrated
a 40% decrease in occupancy. The decrease in white
rhino occupancy was driven by their translocation
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from Tembe Elephant Park and Western Shores
(EKZNW pers. comm.).

The mean detection probabilities for species
were <0.10 across the sampling period, using nar-
row and wide paths were 85% and 82%, respectively
(Fig. 3). Six species had high mean detection proba-
bilities along both narrow and wide paths (Table 3).
Zebra (Equus quagga) had higher mean detection
probabilities along narrow paths, and elephant and
common duiker (Sylvicapra grimmia) had higher
mean detection probabilities along wide paths.
Naive occupancy estimates ranged from 0.01 for the
large grey mongoose to 0.67 for the red duiker. The
estimated probability of occurrence across all spe-
cies and surveys ranged from 0.02 to 0.99. Gener-
ally, rarely detected species had low detection and
occupancy probabilities, namely the large grey
mongoose, Meller’s mongoose (Rhynchogale mel-
leri), serval, common reedbuck (Redunca arundi-
num) and cane rat. Fourteen terrestrial mamma-
lian species had higher occupancies in grasslands,
coastal lowland forests and dune forests (>0.40),
followed by exotic tree plantations (13 species),
woodlands (11 species), sand forests (10 species)
and dry forests (8 species) (Table 3).

Detection probability differed considerably for
several species during the reassessment period in
the different surveyed sites compared with the pre-
vious study (Supplementary information Fig. S1).
Notably, Tembe Elephant Park had no detections
of charismatic white rhino and African wild dog
species. However, it experienced an increase in
detections of a range of species, including ele-
phant, white-tailed mongoose, giraffe, nyala, red
duiker and scrub hare (Supplementary information
Fig. S1a, b). Eastern Shores experienced a decrease
in the detection of key species, including leopards
(Panthera pardus) and serval, and an increase in
elephant and spotted hyena detections (Supplemen-
tary information Fig. Slc). Western Shores had a
decrease in detection for the majority of species at
the study site, with only spotted hyenas experienc-
ing a notable increase in detections (Supplementary
information Fig. S1d). Lastly, False Bay experi-
enced a decrease in the detection of several antelope
species, including bushbuck, common duiker,
greater kudu (Tragelaphus strepsiceros) and red
duiker, and an increase in spotted hyena and Cape
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porcupine (Hystrix africaeaustralis) detections
(Supplementary information Fig. Sle).

Habitat preference

Strong single-habitat preference (where preference is
positive habitat association) was present for 18 mam-
malian species across different habitat types, and dual
habitat preference for 14 species (Table 4). Multi-hab-
itat type preference was prevalent amongst the more
habitat generalist or behaviourally adaptive species,
including aardvark, bushpig, Cape porcupine, greater
kudu, large spotted genet and leopard (Table 4). Habi-
tat types affected the occupancy of mammalian species
in the study; more generalist species had higher occu-
pancy values throughout different habitat types (ele-
phant and nyala), whereas more specialist species (suni
and serval) restricted occupancy in one or two habitat
types (Table 3).

Royle—Nichols species richness estimates

The goodness-of-fit test showed an acceptable fit of
the Royle—Nichols model to our data (p=1.00, lack of
fit=1.23). The model estimated 30.4 +2.92 species for
the whole region covering all the sessions (95% poste-
rior interval, PI: 27.42-33.27). Tembe Elephant Park
was estimated to have the highest overall species rich-
ness (33 species) followed by Eastern Shores, Western
Shores, and False Bay PAs (Supplementary informa-
tion Fig. S2, Fig. 4). Conversely, the observed mean
number of species had minor variation from the esti-
mated species richness for all surveys excluding False
Bay. A similar finding of overestimating the estimated
species richness in small reserves by the Royle—Nichols
model was present in the previous study. False Bay had
a considerably higher estimated richness produced by
the Royle-Nichols model than the actual observed spe-
cies richness. Decreases in estimated species richness
were present for False Bay and Western Shores, with an
increase in estimated species richness for Tembe Ele-
phant Park compared with the 2013-2014 survey cycle
(Fig. 4). The Wilcoxon rank-sum test indicated a sig-
nificant difference between the 2013-2014 sites com-
pared with the present study’s estimated species rich-
ness Royle—Nichols model (Supplementary information
Table S1).

Discussion

Our study demonstrated the effectiveness of a reas-
sessment of systematic camera-trap surveys in PAs,
given the changing landscape habitat composition
because of species population dynamics and adaptive
wildlife management strategies. We investigated and
compared changes in community structures (species
richness, occupancy and detection estimates) within
specific habitat types over time. Incorporating camera
trapping as a reserve management tool can effectively
identify changes in population status and species
composition from common to rare at a community
level. The reassessment enabled us to demonstrate the
influence of landscape habitat composition on mam-
mal assemblage, which is essential for wildlife habitat
management. Our study suggests that direct wildlife
management interventions, such as translocations,
and illegal poaching, appear to have a more direct
impact on mammalian assemblage within these PAs
than landscape habitat composition over this time-
frame. However, the increase in the keystone species,
namely elephant detections for Tembe Elephant Park,
Western Shores, Eastern Shores, and spotted hyenas
in the ISWP reserves, could shape mammalian and
landscape compositions in the future.

The Royle—Nichols model allowed us to account
for imperfect detection in estimating species richness,
occupancy, and detection estimates of multiple spe-
cies in multiple seasons, including difficult-to-detect
and rare species, which traditional approaches may
yield incorrect inferences because of heterogeneity
in detectability among species (Zipkin et al. 2012;
Tobler et al. 2015; Ramesh et al. 2016a, b). Overall,
the Royle-Nichols model demonstrated a tendency
to overestimate species richness in small reserves
(False Bay), with increased accuracy achieved with
increased reserve size (Tembe Elephant Park, West-
ern Shores and Eastern Shores). This positive bias
in the small reserve implies that, for False Bay, the
Royle-Nichols estimates overstated the actual spe-
cies richness and potentially led to overly optimistic
assessments of the biodiversity value of the site.

Changes in habitat composition in the Maputaland
Conservation Unit

Our long-term follow-up study demonstrated dec-
adal changes in habitat composition related to fenced
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Table 4 Habitat occupancy preferences measured as positive, abilities and occupancy were estimated under a Royle—-Nichols
neutral or negative habitat associations for terrestrial mammals multi-session multi-species occupancy model, and the values
in seven habitats from camera trap sessions in the Maputaland shown are the means across all surveys

Conservation Unit surveyed in 2023-2024. Detection prob-

Species Coastal lowland  Dry forest and Dune forest Grassland Exotic tree plan- Sand forest Wood-
forest (V) thickets (¥) (¥) ¥) tation (W) (¥) land
¥
Aardvark
African buffalo
Banded mongoose
Black rhino
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Brown hyena
Bushbuck
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Rodent

Scrub hare

Serval
Side-striped jackal
Slender mongoose
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Warthog
Waterbuck

‘Water mongoose
‘White rhino

White tailed mongoose
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“+” indicates a positive habitat association, a minus sign “—"" indicates an avoidance habitat association, and the sign “0” indicates a
neutral habitat association relative to the calculated occupancy value for the species
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protected areas in the Maputaland Conservation Unit.
These changes are possibly driven by a combination
of factors, including management strategy, climate
change and the impact of elephants in the respective
reserves. Notably, wood coverage (coastal lowlands
forest and woodlands) has increased in the Maputa-
land Conservation Unit, potentially driven by increas-
ing global levels of atmospheric CO, (Venter et al.
2018) Additionally, in ISWP, the management strat-
egy of rehabilitating previous exotic tree plantation
stands has allowed the expansion of native indigenous
habitat types within the reserve, a conservation suc-
cess (iSimangaliso Wetland Park Authority 2020).
On the other hand, elephants have been demonstrated
to modify vegetation structure (Guldemond and Van
Aarde 2008). Tembe Elephant Park is experiencing
widespread habitat modification driven by elephants
(Patel et al. 2023; Pooley 2025). Closed canopies of
mature sand forests and closed and open woodlands
are being transformed, with browsing availability
decreasing extensively since 2004 (Potgieter 2012).
The present overpopulation of elephants is driving
the habitat transformation in the park (Patel et al.
2023), which threatens sand forest specialists (Belton
et al. 2008; Ramesh et al. 2016a), although the pre-
sent study experienced an increase in suni detections.
Changes in suni detection may indicate a change in
carnivore population and or competition dynamics.
The park represents a haven for large mammals in
an anthropogenically transforming landscape outside
the boundary lines. It is situated along the historical
migration routes for elephants, which freely roamed
southern Africa (Purdon et al. 2018). The erection of
the northern boundary fence of the Tembe Elephant
Park in 1989 is suggested to have split a population
of elephants between the park and Maputo Special
Elephant Reserve (Grant et al. 2008). Annually, the
park receives influxes of elephants from neighbour-
ing Mozambique in search of water during the dry
season (Young and Van Aarde 2010). Electrified
boundary fences can be a relatively ineffective bar-
rier against an adult male bull elephant (Grant et al.
2008), particularly during electricity load shedding.
The reserve’s additional financial constraints (Ezem-
velo KZN Wildlife 2022) and social aspects associ-
ated with effective elephant management add to the
complexity (van de Water et al. 2022). A dynamic
relationship between management strategy, mega-
herbivory and climatic factors is present within the

Maputaland Conservation Unit, which is responsible
for driving decadal vegetation structural change in the
reserves.

Species composition of the Maputaland Conservation
Unit

For the long-term study, 95% of mammalian species
were present between the two survey periods, indicat-
ing the stability of PAs in northern KwaZulu-Natal in
preserving mammalian species diversity within their
boundaries in South Africa. PAs represent important
havens for large to small mammals, buffering them
against anthropogenic threats such as habitat destruc-
tion, land-use change, and human-wildlife conflicts,
among other impacts outside the fence line (Margules
and Pressey 2000). Our study noted more generalist
species being regularly detected with a decrease in
detection probability with increased levels of speciali-
sation, similar to the previous research. Fence lines
are not impermeable structures. Mammals can over-
come the structure by fence breakages by elephants,
passing through them (smaller mammals) or burrow-
ing under them.

Three terrestrial mammalian species were not
detected in our reinvestigation study, African wild
dog, four-toed elephant shrew and Cape clawless
otter. African wild dogs have routinely burrowed
under the northern fence line at Tembe Elephant Park
and into neighbouring Mozambique; subsequently,
African wild dogs were outside of the park boundary
during the 2022/2023 survey (various pers. comm.).
The present study’s camera trap images made it dif-
ficult to confidently identify rodents to species level
(except cane rats) for the likes four-toed elephant
shrew and were therefore classified as rodents. Lastly,
the Cape clawless otter was not present in this survey;
however, the species was only detected once in the
previous study. Our recent survey detected two new
species: large grey mongoose and brown hyena. Both
species were detected in Tembe Elephant Park. The
small size of the large grey mongoose enables them
to pass through the Bonnox® boundary fence unhin-
dered from the surrounding landscape. Brown hyenas
are noted for their ability to dig dens and could have
used entrance holes burrowed by other species (Afri-
can wild dogs and lions) or entered through the north-
ern sections of the fence, which elephants routinely
knock down in search of water (pers. comm.).
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We had significantly higher detection probabili-
ties increase (>40%) for eight species (Fig. 3). In
2015-2016, Southern Africa experienced an El
Nifio cycle and faced its worst drought in 35 years
the effects stretched into 2017 (Benkenstein 2017),
resulting in mass die-off of game in protected areas
of Limpopo, Northern Cape, Mpumalanga and Kwa-
Zulu-Natal, South Africa (Swemmer et al. 2018). The
drought period provided an opportunity for preda-
tors and scavengers to feed and breed during this sto-
chastic event. The increase in hyena and side-striped
jackal detections is potentially a result of population
increases following the El Nifio cycle (Ferreira and
Viljoen 2022). Ferreira and Viljoen’s (2022) study
demonstrated similar findings of the spotted hyena
population increase during and after the El Nifio
cycle in the Kruger National Park. The resilience of
drought-resistant species (giraffe and elephant) dur-
ing the period could explain why detections have
increased. Additionally, Ramesh et al. (2016a) study
did not detect elephants on Eastern Shores. Elephants
were only detected on Western Shores during their
survey of ISWP. Drought, coupled with the low
water levels in Lake St. Lucia, enabled elephants to
cross the lake into Eastern Shores in search of food
resources (Slotow 2011; various pers. obs.). We had
increased detection probabilities for impala and wil-
debeest. Populations of both species are recorded to
drop substantially after drought and recover when
rainfall returns (Augustine 2010; Kilungu et al.
2017). We had increased detection probability for
suni, which was unexpected because of the increased
pressures they face with the reduction of the sand for-
est in Tembe Elephant Park. Decreases in probabil-
ity detection were present for serval and hippos. On
several occasions, local serval populations have been
supplemented with introduced individuals in ISWP
(Western Shores and Eastern Shores) but appear una-
ble to establish a viable population in these habitats.
The increase in apex predator hyena numbers may
result in mesopredator suppression of serval, particu-
larly in ISWP (Prugh et al. 2009). Hippos were par-
ticularly impacted by the 2015/2016 drought and died
off in large numbers in much of South Africa (Smit
et al. 2020); the population appeared stable in our
reinvestigation, highlighting the importance of Lake
St Lucia and surrounding wetlands in ISWP as a ref-
uge and supplementary water supply in Tembe Ele-
phant Park. The reduction in the detection of hippos

@ Springer

was likely driven by the high water and food resource
availability post-high seasonal rainfall in our study
areas. The actual short-term impacts of the drought
are unknown for mammalian communities within the
reserves of the Maputaland Conservation Unit. Nev-
ertheless, in reserves without active poaching threats,
terrestrial mammals were minimally impacted by sto-
chastic climatic events between the two survey cycles,
underscoring the region’s resilience to environmental
fluctuations.

We had increases in occupancy estimates (>40%)
for six species (aardvark, banded mongoose, scrub
hare, side-striped jackal, white-tailed mongoose, and
bushpig). Significant decreases in occupancy esti-
mates were present for cane rats and white rhinos.
Several natural driving processes can contribute to
changes in the occupancy of terrestrial mammals,
including climatic and habitat change, population
dynamics, resource availability, stochastic events
(natural disasters and disease outbreaks) and intra-
and inter- (competition and predation) species inter-
actions (MacKenzie et al. 2017). These drivers do
not occur in isolation and often interact and influence
each other, presenting a challenge when attempting to
make ecological conclusions based on a single driver.
White rhino occupancy reduction was driven by the
removal of the species from three of the four reserves
during the height of the rhino poaching crisis in South
Africa (EKZNW pers. comm.).

Contrary to the findings of Ramesh et al. (2016a),
PAs with more diverse vegetation did not result in
greater species richness. Instead, reserve size was
an important factor in determining overall species
richness, except for Western Shores. Species dis-
played heterogeneity in the total number of detec-
tions (3—1179), demonstrating the importance of
detection probability when investigating the commu-
nity ecology of terrestrial mammals (rare vs. com-
mon species). The difference in detection probability
indicated the difference in behavioural type (elusive
or common) and the absolute population density of
mammals, emphasising the importance of imperfect
detection correction analysis for multi-species, multi-
season ecological modelling (MacKenzie et al. 2017).
Similar to the previous study, occupancy was higher
for common mammalian species with high population
densities but decreased for several rare and elusive
species, indicating the importance of the community
model in the heterogeneous environment.
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Habitat type drives the occupancy of different
species, with species exhibiting differing habitat
preferences. Coastal lowland forests, dune forests
and grassland habitats supported the highest spe-
cies richness, followed by other native habitat types.
Grassland is a highly productive habitat type that can
support a range of herbivores (mega to small) and
carnivore communities (Du Toit and Cumming 1999;
Ramesh et al. 2016a, b), whereas forests provide suit-
able cover and resources to browse specialists. Once
again, exotic tree plantation habitat type was host to
a high overall species richness, highlighting the role
of edge effects (change in community structure that
occurs at the boundary between two or more distinct
habitat types) and the potential of the spill-effect
(movement of mammals from a preferred habitat type
into an adjacent less preferred habitat) between exotic
tree plantations and the surrounding natural habitats.
However, there was an overall decline in species with
high occupancy values (>0.40) from 17 to 11 spe-
cies between the two surveys. The exotic tree planta-
tions within Western Shores stretch from the reserve’s
interior to the edge of the reserve’s western boundary
(Fig. 1). Poachers may use the edge effect associated
with the modified habitat to effectively poach wildlife
as they move between exotic tree plantations to adjust
native habitat types. The increase in anthropogenic
threats could potentially be driving avoidance of
exotic tree plantation habitats by mammals to evade
human interactions.

Impacts of poaching

Fenced PAs are by no means the perfect solution to
resolving the global biodiversity crisis. The grow-
ing demand for bushmeat and financial insecurities
with a declining economy are driving communities
to illegally poach wildlife and occupy regions within
the boundaries of PAs in South Africa (Lindsey et al.
2013; Martins and Shackleton 2019). In the time-
frame between the two independent surveys, white
rhinos were removed from three of the four reserves
that had white rhino populations (Ndumo Game
Reserve, Tembe Elephant Park and Western Shores).
White rhinos are only present on the Eastern Shores
now. Our study noted an increase in poaching activity,
isolated to the Western Shores, ISWP, compared with
the previous study. We experienced increased camera
trap theft and detection of poaching events within the

reserve, particularly in regions close to the boundary
fence. Poachers with spears, dogs and rifles regularly
frequent the reserve (Fig. 2). A small ranger staff,
coupled with the increasing demand for bushmeat
post the COVID-19 pandemic (Ehlers Smith et al.
2023; various pers. comm.), have resulted in lawless
activities by communities surrounding the Western
Shores fence line. As a direct result, white rhinos
were translocated from the reserve because of the
high poaching risk (pers. comm.). Notably, declines
in detection were noted for several species in Western
Shores, with dramatic declines for common reedbuck,
honey badger, warthog, Cape porcupine, leopard and
red duiker. Honey badger and red duiker detection
dropped by 70% and 57%, respectively, in Western
Shores. Continued poaching is threatening the terres-
trial mammalian communities in this reserve.

Conclusions

Our multi-species, multi-season models highlighted
the resilience and stability of the terrestrial mam-
malian communities in PAs in the Maputaland Con-
servation Unit, KwaZulu-Natal, South Africa. Using
a systematic survey approach, we demonstrated the
importance of long-term reinvestigations to assess
and monitor large-scale species population trends.
The unique region hosts diverse biota whose con-
servation and tourism values are of national signifi-
cance. The two surveys’ species richness and occu-
pancy remained relatively stable, except for Western
Shores. The range of vegetation types within the
PAs provides suitable habitats for diverse mam-
malian communities, highlighting the importance
of conserving diverse habitats (particularly threat-
ened and vulnerable habitats) for specialist species.
Western Shores and Ndumo Game Reserve face
increasing anthropogenic threats that could threaten
the status of the terrestrial mammalian community.
Desperate conservation intervention is required in
these two PAs. Improved community engagement
and education are necessary to enhance relations
with surrounding communities to achieve a holistic
management of reserves in the Maputaland Con-
servation Unit. Additionally, improved security and
increased ranger staff are required, mainly for West-
ern Shores and Ndumo Game Reserve, to reduce
poaching whilst local communities are engaged.
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Our findings have implications for the long-term
conservation and management of mammals and
provide a continued biodiversity assessment in the
Maputaland Conservation Unit.
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