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Abstract

The open grasslands of Bardia National Park in Nepal are critical habitats for several
endangered species, yet they are increasingly threatened by the encroachment of woody
vegetation. This process reduces forage availability for large herbivores and compromises
the prey base for species such as the Greater One-horned Rhinoceros, Asian Elephant, and
Royal Bengal Tiger. These grasslands rely on disturbance to remain open, and fire has long
served this role, but the effects of repeated burning on grassland structure and biodiversity
remain understudied in the region.

This thesis investigates how fire regimes shape vegetation structure and species
composition in Bardia’s subtropical grasslands. A Sentinel-2 burn-detection model was
developed for the years 2016 to 2025, achieving 92 percent accuracy and a Cohen’s k of
0.84 for early-season fires. Fifty 10 x 10 metre plots were sampled for vegetation data.

Fire mapping revealed clear spatial patterns. Fires were most frequent in accessible
southern floodplain grasslands, where prescribed burns are regularly applied, and in drier
northeastern Sal forest terraces, where fires tend to occur naturally later in the season. Moist
riverine zones burned rarely. Vegetation structure showed consistent responses across the
fire gradient: although canopy height and bulk density tended to decline with fire frequency,
only NDVI increased significantly. Dried biomass remained stable, indicating that productivity
recovers quickly after burning. Early-successional traits, particularly those of pioneer tall
grasses, appeared to drive the increase in greenness. Species composition responded less
strongly: Saccharum spontaneum was more common in frequently burned plots, while
Narenga porphyrocoma dominated long-unburned areas. Shannon diversity increased
linearly with fire frequency and recent burns, offering partial support for the Intermediate
Disturbance Hypothesis.

The findings suggest that a fire regime with frequent and well-timed burns helps maintain the
open structure of Bardia’s disturbance-climax grasslands. An adaptive approach where
small-scale burning, cutting, and managed grazing is combined is likely the best
management option for reversing the encroachment of trees and supporting
grassland-dependent wildlife. However, these results are impacted by several limitations
such as severe under-detection of late-season fires, a single-season sampling window, and
limited samples. Nevertheless, the results highlight the importance of research to inform
sustainable fire management under increasingly variable climatic conditions.
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1. Introduction

Grasslands are an important terrestrial ecosystem, covering around 40% of the Earth’s land
area (Stevens, 2018). This ecosystem is found on every continent, except Antarctica, across
a wide range of climates and soil types. These systems are often dominated by grasses
(Poaceae) and other grass-like plants, with less than 10% of the vegetation cover being
trees (Stevens, 2018). The grasslands support a rich diversity of plant and animal and
contribute approximately one-third to global terrestrial net primary production (Vitousek,
2015). This ecosystem also provides essential ecosystem services such as carbon storage,
soil stabilisation, and support for livestock-based livelihoods (Lamicchane et al., 2024;
Stevens, 2018; Bhusal et al., 2024).

In Nepal, grasslands cover roughly 11.5% of the country's total land area, which equals 1.7
million hectares (Bhusal et al., 2024). This ecosystem is mainly found within four protected
areas in the lower Terai Region, which is part of the larger Terai Arc Landscape (Peet et al.,
1999). The Terai Arc Landscape (TAL) is a unique and biodiverse ecosystem located along
the Nepalese-Indian border (figure 1). In Nepal alone, the TAL covers an area of 24710
square kilometres and contains a mix of wetland, agriculture, forest and grasslands
(Ahrestani & Sankaran, 2016). This diversity of the different ecosystems provides important
habitat for a wide variety of flora and fauna (Peet et al., 1999; Thapa et al., 2021). This
includes some of the world's most endangered species such as the Royal Bengal Tiger
(Panthera tigris tigris), Bengal Florican (Houbaropsis bengalensis), Greater One-horned
Rhinoceros (Rhinoceros unicornis) and the Asian Elephant (Elephas maximus).
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Figure 1: Overview of the Terai Arc Landscape (TAL), showing protected areas and national parks,
including Bardia National Park in western Nepal (Bhandari, 2023)

One of the protected areas in the TAL is Bardia National Park (BNP), located in the western
part of Nepal. It is the largest national park in Nepal with an area of 968 square kilometres,
established in 1988. These subtropical grasslands are unique in their ability to sustain a
wide array of herbivores. Compared to the African grasslands, Asian grasslands sustain a



variety of feeding strategies, accommodating grazers, browsers, and mixed feeders in a
relatively smaller area (Ahrestani and Sankaran, 2016). Thapa (2023) points out the range of
species in the grasslands from small species like the Hispid Hare (Caprolagus hispidus) to
large megafauna such as the Asian Elephant. The grasslands in BNP serve as key habitats
for many of the rare and endangered species by supporting complex food webs and
ecological processes (Peet et al., 1999; Thapa et al., 2021). For instance the grasslands are
essential for the Royal Bengal tiger, as the habitat supports its prey species which rely on
open grasslands. Bardia now holds the highest tiger density in the world, with its population
nearly tripping over the past 15 years thanks to targeted conservation efforts (DNPWC,
2023). This success is closely linked to the availability and health of grassland habitats
(Bhattarai & Kindlmann, 2011).

However, these grasslands are under increasing pressure. In recent decades, they have
been steadily declining due to the encroachment of forest and woody vegetation (Peet et al.,
1999a; Odden et al., 2005). If this shift continues, it risks destabilising the entire ecosystem,
disrupting ecological processes and threatening the survival of species that depend on open
habitats (Bhattarai & Kindlmann, 2011). To understand why this decline is happening, it is
important to understand the ecological dynamics and disturbance processes that shape the
grasslands. Peet et al. (1999) documented several distinct vegetation communities across
the park, each characterised by differences in soil development, hydrology, and successional
state. These communities reflect different stages of succession and highlight the ecological
complexity of the system.

The structure and composition of these vegetation communities play a central role in
shaping habitat availability for different species. The early-successional Saccharum
spontaneum community offers habitat for the Wild Buffalo (Bubalus bubalis). The
mid-successional, short grass Imperata cylindrica grasslands provide crucial habitat for
endangered species like the Hispid Hare and Bengal Florican, while the later-successional
Narenga porphyrocoma grasslands serve as grazing grounds for ungulates like the Swamp
Deer (Rucervus duvaucelii). These plant communities reflect the ecological complexity of the
landscape and contribute to its high biodiversity.

The grasslands of BNP are highly dynamic, constantly shaped by natural and anthropogenic
pressures. Abiotic factors such as hydrology, soil type, fire regimes and grazing impact the
composition and structure of grasslands (Peet et al., 1999; Lehmkuhl, 1989; Das et al.,
2021). Those factors contribute to habitat fragmentation, biodiversity loss and shifts in
vegetation composition (Peet et al., 1999; Lehmkuhl, 1989; Das et al., 2021). Fire especially
has an extensive impact on the grasslands (Das et al.,, 2021). Both natural and
anthropogenic fires play a crucial role in preventing forest encroachment, maintaining open
grasslands and stimulating young grass shoots which are preferred by grazers. The fire
regimes are especially critical during the dry winter season, when fires counterbalance the
woody vegetation which is driven by the monsoon rains (Das et al., 2021). Fire also helps
reset succession and maintain early-stage vegetation communities. Historically, such
disturbance was shaped by local land-use practices. Rotational grazing and seasonal
burning by communities helped maintain the grassland landscape and prevent succession
toward forest. Thapa (2023) describes present-day grasslands as a legacy of these historic
practices. Today, modern conservation management continues to apply controlled burns to



replicate these traditional disturbance regimes and preserve the ecological function of the
grasslands (CNP, 2016)

Hydrology is another important driver of grasslands dynamics in Bardia NP. The western part
of the park lies within the Karnali floodplain, where the landscape is shaped by seasonal
river systems, wetlands, and groundwater reserves. Seasonal flooding during the monsoon
deposits nutrient-rich sediments and helps maintain open grasslands, especially in low-lying
areas (Dinerstein, 1979; Peet et al., 1999). In contrast, the dry winter season introduces
hydrological stress as water levels drop, leaving grasslands dependent on remaining soil
moisture for regeneration (Dinerstein, 1979; Peet et al. 1999). Changes in river flow,
sedimentation, or water retention can shift species composition and alter the long-term
stability of grassland ecosystems (Bijlmakers et al., 2023).

Given the importance of recurring disturbance, the grassland ecosystems within the Terai
Arc Landscape can be characterised as a disturbance climax (Peet et al., 1999; Lehmkuhl,
1989). A disturbance climax refers to a relatively stable ecological state that is maintained
with periodic disruptions, such as fire, grazing, or anthropogenic activity (Turner & Seidl,
2023; Peet et al., 1999). In the absence of such disturbances, these grasslands will most
likely transition toward Sal (Shorea robusta) forest, which is the climax vegetation of the
region (Gautam & Devoe, 2005). Another useful theory here is the Intermediate Disturbance
Hypothesis (Connell, 1978), which suggests that biodiversity tends to peak under
intermediate levels of disturbance. When disturbance is too infrequent, dominant species
may outcompete others, while excessive disturbance can limit the establishment of
slower-growing or less resilient species (Moi et al., 2020; Connell, 1978). Both theories can
help make sense of how Bardia grasslands function. One points to the role of disturbance in
keeping the system structurally stable, the other showing how diversity patterns might be
shaped in the process. Together, they front the basis for this research into how disturbance
regimes influence vegetation structure and species composition.

1.1 Relevance and Objectives

Although fire is widely used in grassland management, there is still limited understanding of
how it shapes vegetation structure and species composition in Bardia. Earlier studies have
raised questions about the long-term effects of fire suppression (Lehmkuhl, 1989;
Bijlmakers, 2023). While fire is thought to help maintain open grasslands, there is little clarity
on what frequencies or timings are most effective for supporting biodiversity and ecosystem
function (Dinerstein, 1979; Lehmkuhl, 1989). More recently, Lamichhane et al. (2024)
pointed to the lack of research on how fire affects plant communities and their structural
traits in Nepal’s subtropical grasslands. While some comparisons have been made between
burning and cutting, fewer studies look specifically at how fire regimes across time influence
vegetation within and between different grassland communities. This research builds on
these gaps by examining how fire frequency over the past decade has shaped biomass,
vegetation structure, and species dominance in Bardia’s grasslands.

Research Questions

The research is structured around the following main and sub-questions:



How do fire regimes shape grassland structure and biodiversity in Bardia national
park in Nepal?

1. How accurately does the fire detection model capture the spatial and temporal
occurrence of fire?

2. What are the spatial and temporal patterns of fire regimes in Bardia’s subtropical
grasslands over the past decade, and how do they vary across hydrological gradients
and grassland types?

3. How does fire affect the vegetation structure and biomass of Bardia’s subtropical
grasslands?

4. How does fire influence the species composition and the associated functional traits
in Bardia’s subtropical grasslands?

Hypothesis

Frequent fire is expected to reduce vegetation height and biomass, as repeated burning
limits the growth of taller grasses and woody species. In areas that haven’t burned for a
while, vegetation is likely to be taller and denser. These differences in fire history are also
expected to affect which grass species dominate. Sites with high fire frequency may be
dominated by early-successional species, while less frequently burned areas are more likely
to support later-successional species. Following the Intermediate Disturbance Hypothesis,
species diversity is expected to peak at moderate fire frequencies, where disturbance is
enough to create variation but not too frequent to exclude slower-growing species.



2. Conceptual Framework

2.1 Fire and Vegetation

In Bardia’s grasslands, vegetation communities are defined mainly as the dominant grass
species present. These species do not reflect just successional stages but also disturbance
patterns and site conditions. A vegetation community refers to a group of plant species that
occur under similar environmental conditions and disturbance regimes, with a few species
often dominating the vegetative cover (Peet et al., 1999). Following the classification of Peet
et al. (1999), the main vegetation communities for this research are Saccharum
spontaneum, Imperata cylindrica, Narenga porphyrocoma and Themeda arundinacea.

The successional development of vegetation communities in Bardias grasslands is shaped
by a complex interaction between disturbance regimes, site conditions and species-specific
traits (Dinerstein 1979a; Peet et alk, 1999; Lehmnkuhl, 1989). Saccharum spontaneum (SS)
often establishes itself on newly deposited riverine alluvium as a pioneer species (Lehmkuhl,
1989; Peet et al.,, 1999). It forms a thick and compact growth and due to an extensive
rhizomatous root network can regrow within a short period after a disturbance such as fire.
The early-stage grasslands are typically found along rivers, where bare sediment provides
ideal conditions for colonisation. It is also known to shift in tandem with the changing course
of the rivers (Lehmkuhl, 1989; Bijimakers et al., 2023). As the substrate begins to stabilise
and becomes more compact, the Saccharum Bengalense (SB) can appear alongside or take
over in the slightly older and drier riverbank areas (Peet et al., 1999; Lehmkuhl, 1989).
Although this species is commonly found through the grasslands, it is classified as part of
the Saccharum spontaneum vegetation community due to its co-dominance alongside SS
and a clear, direct successional relationship (Peet et al., 1999).

Further along the successive gradient, Imperate cylindrica (IC) tends to dominate grasslands
on abandoned agricultural sites or older terraces, where soil development is more developed
and established (Dinerstein, 1979a; Lehmkuhl 1989; Peet et al., 1999). This short grass has
an extensive root system with more than 60% of its total biomass found under the ground
(Flory et al., 2018). These traits make IC a rapid coloniser that is highly competitive under
disturbance regimes like frequent fires and heavy grazing. (Lehmkuhl, 1989). It is often the
only grass to flower shortly after a fire event due to quick resprouting (Lehmkuhl, 1989). This
allows the IC to recover quickly and maintain its dominance in an ecosystem shaped by
frequent fire. Fire also improved the nutritional quality of fresh shoots, which is preferred by
herbivores (Lehmkuhl, 1989). However, in the absence of disturbance, it is gradually
replaced by later successional species such as Narenga porphyrocoma (NP) and Themeda
arundinacea (TA). Tall grasses such as NP are typically found on more stable, well-drained
alluvial soils (Lehmankuhl, 1994). Themeda arundinacea can be found on even more
established sites and often marks the transition into late-stage grasslands which, without
disturbance, both are eventually replaced by Sal (Shorea robusta) forest as the climax
community (Peet et al., 1999).

Fire plays a central role in shaping grassland succession in Bardia, not only influencing
which species dominate but also affecting the physical structure and function of these
ecosystems. Frequent burning tends to favour earlier-successional, fire-tolerant species



such as Saccharum spontaneum and Imperata cylindrica, while long-unburned areas
accumulate more biomass and gradually shift toward later-successional species like
Narenga porphyrocoma (Dinerstein, 1979; Lehmkuhl, 1989; Peet et al., 1999). These
successional patterns and fire responses suggest that different fire regimes support different
stages of grassland development. In this context, the Intermediate Disturbance Hypothesis
(Connell, 1978) offers a useful framework to understand species diversity patterns. It
proposes that species richness is highest when disturbance occurs at intermediate levels, as
this allows both colonising and later-successional species to coexist. In systems where
disturbance is too frequent, only a few disturbance-tolerant species are able to survive, while
in the absence of disturbance, dominant competitors can exclude others. The relationship
between disturbance and diversity is visualised in figure 2.1. Applied to Bardia, this
framework suggests that moderate fire frequencies could help maintain a shifting patchwork
of successional stages and support higher plant diversity. It could help connect fire regimes
to vegetation composition and support an analysis of how species respond under different
disturbance conditions.
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Figure 2.1 Simplified illustration of the Intermediate Disturbance Hypothesis, illustrating how species
diversity is expected to be lowest at both low and high disturbance levels, and highest at intermediate
levels. Adapted from Connell (1978)

While fire is a natural part of the grassland ecosystem, it is also increasingly driven by
human activity. Figure 2.2 shows that the TAL has a very high fire vulnerability compared to
the rest of Nepal. About 58% of the occurring forest fires in Nepal are caused by the
deliberate burning of the forest by hunters, grazers, foragers and poachers (Pandey et al.,
2022). Fire is widely used as a land management tool to manage grassland structure,
reduce biomass, and stimulate the growth of fresh, palatable shoots for livestock and wild
herbivores (Lamichhane, 2024). Early season burns can also help reduce the accumulation
of fuel load and reduce the risk of uncontrolled wildfires later in the season. However, not all
fires are intentional. Accidental fire spreading is a significant issue, with winds or human
negligence causing fires to escape control and spread to surrounding areas. This can result
in the unintentional destruction of forests and wildlife habitats. Pandey et al. (2022) point out
that the lack of forest management practices in Nepal have a direct link to the increase of



forest fire risk. Currently, 29.5% of Nepalese forest is likely to catch fire every single year
(Reddy et al., 2019).
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Figure 2.2: Forest fire risk map of Nepal highlighting the very high vulnerability of the Terrai Arc
Landscape region (Matin et al., 2017)

2.2 Other factors shaping the grassland dynamics

While fire plays a key role in shaping the composition and structure of Bardia’s grasslands, it
is not the only factor influencing grassland dynamics. Climatic variability, hydrological
processes, local land management practices, and broader conservation policies all
contribute to the changing vegetation patterns across the landscape.

Climatic conditions play a big role in how these grasslands are shaped. BNP has a
monsoon-influenced humid subtropical Cwa climate and experiences distinct climatic
seasons. The monsoon season, from June to September, accounts for 90% of the annual
discharge of the Karnali River system and recharges the groundwater (Bijimakers et al.,
2023). This is counterbalanced by a dry season lasting from October to May, during which
the fire risk increases. At the end of the dry season in April and May, approximately 80% of
Nepal's annual fires take place (Mathema, 2013). These seasonal extremes do not only
affect vegetation growth and water availability, but also determine the timing and intensity of
disturbance events, which are essential for maintaining open grasslands (Das et al., 2022).

Hydrological dynamics also play a crucial role in vegetation structure and succession. Peak
discharges of the Karnali river have caused major fluvial disturbance which have led to
successional resets of grasslands where flooding causes erosion and sediment deposition
(Bijlmakers et al. 2023). These processes promote the growth of pioneer grass species in
the newly reset areas. However changes in Karnali river course have reduced flooding in
certain areas which has led to the disturbance-dependent grasslands slowly transitioning
into taller grass communities or even forest (Bijlmakers et al., 2023). It shows the impact
river dynamics can have with its cascading effects on vegetation patterns and, as a result,
the fauna that depend on them. While maybe not as significant as fluvial disturbances,
extreme precipitation events can trigger localised flooding and erosion, particularly along
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ephemeral streams outside the floodplain. These events contribute to the maintenance of
grasslands in those areas (Bijlmakers et al., 2023).

Beyond climatic and hydrological influences, land management practices such as mowing
and grazing are important in shaping grasslands composition. The mowing is carried out
approximately two or three times a year and has helped maintain the grasslands (CNP,
2016). The local community also manually cut grass for construction of traditional local
houses and as feed for livestock (CNP, 2016). While the cutting was initially banned after the
establishment of the national park, permits were introduced to regulate the cutting and
reduce illegal harvesting. However, the community demand often exceeds what the grass
cutting programs allow, leading to continued illegal grass cutting which can disrupt ecological
balance (CNP, 2016). Historically, domestic livestock grazed alongside wild herbivores within
the areas which currently are the national parks (Dinerstein, 1979). In 1975, the biomass of
livestock in these parks was estimated to be roughly 15 times higher than that of wild
ungulates. Thapa (2021) suggests that this combined grazing pressure, along with grass
cutting by local communities, may have contributed to the creation of the mosaic of tall and
short grassland patches in the subtropical grasslands of Bardia National Park.

Finally, conservation policy and the socio-political landscape also shape grassland
dynamics. Since the mid-20th century, Nepal has made significant conservation efforts to
protect and conserve its unique biodiversity. Currently in 2025, there are 12 national parks in
Nepal (DNPWC, 2023). While these efforts are often celebrated as conservation success
stories, they also have profound socio-economic consequences for local communities. The
creation of the national parks imposed strict restrictions on traditional activities such as
grazing, farming and forest use, displacing many local communities to buffer zones without
compensation (Thapa, 2023). The loss of access to vital resources for food, shelter, land and
medicine disproportionately affected already marginalised groups (Amnesty International
Nepal, 2021). Today, rising wildlife populations increasingly cause crop damage, livestock
loss and even human injury, intensifying tensions between conservation goals and local
livelihoods (Amnesty International Nepal, 2021).

2.3 Indicators

To systematically analyse how Bardia’s grasslands respond to disturbances, this study uses
a set of ecological indicators and functional classifications that reflect vegetation structure,
species composition, and underlying environmental conditions. The grouping of the
dominant grass species was sorted into functional groups, based on their growth form and
position along the successional gradient. A functional group refers to a set of species that
share similar ecological roles or responses to environmental drivers, regardless of their
taxonomic relatedness (Blondel, 2003). In this case, the grouping follows the dominant
vegetation communities identified by Peet et al. (1999) and reflects how these grasses
interact with disturbance and landscape position. In table 2.3 below the functional groups
are shown. The pioneer tall grasses are typically found in recently disturbed or dynamic
environments such as floodplains and are quick to establish after fire or sediment deposition.
Short grasses form dense mid-successional stands and are especially important for
herbivore forage, while late-successional tall grasses tend to occur in more stable areas with
lower disturbance pressure. This functional classification helps to link species composition to
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disturbance regimes and provides a framework for understanding how different grassland
types respond to changing fire frequencies and moisture conditions.

Table 2.3 Functional groups, Vegetation Community (Peet et al., 1999) and the included grass
species in Bardia National Park

Functional Group Vegetation Community Included Species

Saccharum bengalense,
Saccharum spontaneum

Pioneers Tall Grasses Saccharum spontaneum

Short Grasses Imperata cylindrica Imperata cylindrica

Late-Successional Tall Grasses

Narenga porphorycoma Narenga porphorycoma

In addition to the functional groups, several indicators were selected to capture specific
aspects of vegetation structure, composition, and response to disturbance. These indicators
reflect different ecological processes relevant to fire and water dynamics in Bardia’s
grasslands and help to link field patterns to broader ecosystem functioning. Table 2.4 below
gives an overview of the indicators used and their interpretation.

Table 2.4 Overview of ecological indicators used to assess vegetation responses to fire and
hydrological conditions in Bardia National Park.

Indicator Description Interpretation of values
Normalised Reflects vegetation greenness based Higher values indicate dense, photosynthetically
Difference on red and near-infrared reflectance. active vegetation; lower values suggest sparse,

Vegetation Index

stressed, or dry cover.

Differenced
Normalised Burn
Ratio

Measures fire occurrence and severity
by comparing pre- and post-fire
reflectance.

Positive values indicate fire-induced vegetation
loss; values near zero suggest little change;
negative values may signal post-fire regrowth.

Soil Bulk Density

Indicates soil compaction and
structure, influencing root growth and
water infiltration.

High values reflect compacted soils that may limit
root development and reduce water availability;
lower values suggest looser, more porous soils.

Plant Water Measures plant hydration by High values reflect well-hydrated plants, often with

Content comparing fresh and dry biomass higher fire resistance; low values suggest drought
weights. stress or dry conditions.

Leaf Size Represents species morphology and Smaller leaves often indicate adaptation to

adaptation to environmental stress.

repeated fire or drought; larger leaves are
common in wetter, less disturbed areas.

Shannon Diversity
Index

Captures both species richness and
evenness within a plant community.

Higher values indicate a more diverse and
balanced community; lower values reflect species
dominance or reduced richness.

Specific Leaf Area

Refers to the ratio of leaf area to dry

mass, indicating resource-use strategy.

High values are typical of fast-growing species in
moist or disturbed environments; low values
suggest conservative strategies in dry or
fire-prone conditions.
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3. Methodology
3.1 Study Area

The research was conducted in January and February 2025 in Bardia National Park
(28°15'-28°35.5'N, 80°10'-81°45'E). The park is located in the southwestern part of Nepal
as seen in figure 3.1 and covers an area of 968 km? with a surrounding buffer zone of 507
km? (DNWPC, 2023). The research focused on south-western corner of Bardia National
Park, where the Karnali floodplain lies, because it contains a wide range of habitat types
within a relatively small area. This part of the park includes floodplain grasslands, riverine
forests, and patches of sal-dominated woodland, making it one of the most floristically
diverse sections of the park (Dinerstein, 1979). This ecological variation made it a suitable
area for studying how different grassland types respond to fire and other environmental
conditions

In this study, field data collection was combined with remote sensing and satellite imagery.
By collecting field observations, ground truth sampling was used to attempt to validate the
satellite datasets. A total of twelve grasslands were selected for fieldwork across BNP.
Figure 3.1 displays a map of the sampling location. These grasslands differ in disturbance
history and hydrological conditions, offering a gradient from riverine to more established
habitats. Important as the stratification is based on vegetation, the goal was to sample at
least 10 plots of each grassland type. In practice however, the numbers were determined by
field accessibility, feasibility and ecological variation. In the end, the final plot numbers are
visible in the table 3.2 below.

Sampling Points in Research Area
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' ' ' ' ' ] [ '
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Figure 3.1 Study area in Bardia National Park, Nepal. The bottom left shows the park’s national location
and the top left marks the location of the Karnali floodplain where the study was conducted (adapted from
Gautam, 2013). The right panel shows the vegetation sampling points within the study area.

Table 3.2 Number of vegetation plots sampled per dominant grass species during fieldwork in Bardia
National Park

Dominant Species Amount of plots
Sb: Saccharum bengalense 11
Ic: Imperata cylindrica 16
Np: Narenga porphorycoma 10
Ss: Saccharum spontaneum 11
Ta: Themeda arundinacea 2
In total | 50

3.2 Field Collection

In the field, each vegetation plot was located in a grassland and was demarcated as a 10x10
metre square. Within each plot, data was collected to assess vegetation structure, soil
properties, species composition and disturbance indicators.

1. Soil Sampling
Soil Bulk Density (BD)

A 100 ml soil core was extracted using a soil ring ( 5 cm height, 5 cm diameter; volume of
98.17cm3). Samples were stored in labelled bags and weighed fresh upon return from the
field.Samples were then oven-dried for 24 hours at ~100°C to determine the dry weight. Bulk
density was calculated using formula (1) from Zhang (2011).

Bulk density (g/cm3) = Dry soil weight (g) / Soil volume (cmg) (1)

Soil Nutrients

Composite soil samples were collected using a hand auger. Two subsamples were mixed,
and half the material was discarded. These samples were stored in cool conditions before
being sent off for lab analysis by a partner lab. However, this data was excluded from the
analysis as the laboratory was unable to provide the results within the required timeframe

2. Vegetation Sampling

Biomass Collection:
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Within each 10x10 m plot, a 40x40 cm quadrat was used for biomass collection. All
vegetation within the quadrat was clipped to ~5 cm above ground level. The samples were
sorted into green and brown leaves and stems and weighed fresh and dried. The drying was
done by placing the vegetation in the sun for a minimum of 5 days.

Structural measurements:

From each quadrat, five stems were randomly selected to measure structural parameters,
including stem diameter, length (total and stem), width, and amount of leaves. For three of
the five stems, five leaves were randomly selected to have their length and width also noted.

Plant Functional traits
With the vegetation data collected, the following plant functional traits were calculated:

Leaf size (LS) is calculated as the product of leaf length, width and a leaf shape-specific
correction factor (Schrader et al., 2021) as seen in formula (2).

Leaf Size (sz) = leaf length (cm) * leaf width (cm) * 0.75 (2)

The Specific Leaf Area (SLA) was calculated by multiplying the average leaf size with the
average leaf amount (Garnier et al., 2001). This was then divided by the amount of dried leaf
weight by summing the dry weight of all the leaves (here noted as green and brown leafs) as
seen in (3).

Average leaf size (cmz) * Average leaf amount (3)
Dry weight green leafs (g) + Dry weight brown leafs (g)

Specific Leaf Area (cm?/g) =

3. Vegetation Survey

A structured survey form was completed in ‘Fieldmaps’. Variables recorded included date,
time, GPS location, management type, vegetation community, dominant species, canopy
cover, tree/clump counts, and understory condition (green/brown biomass, herbivore
damage). In addition, a full Braun-Blanquet survey was conducted per plot, recording all
species, their cover and abundance estimates.

3.3 Data Analysis

Moisture Calculations

Gravimetric Moisture content (GMC) gives the percentage of water in the soil relative to
the dry weight. It was calculated using formula (4).
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Fresh weight of soil (g)— Dry weight of soil (g) 100%
Dry weight of soil (g) ’ (4)

Gravic Moisture Content (%) =

Volumetric moisture content (VMC) indicates how much of a given soil volume is actually
water. VMC refers to the amount of water held within the soil while focussing on volume,
while GMC focusses on mass. VMC was calculated using formula (5).

Volumetric Moisture Content (%) = Gravic Moisture Content (%) * Bulk density (g/cm3) (5)

Water Content (WC) expresses the amount of water in plant tissue relative to its dry weight,
indicating how many grams of water are present per gram of dry plant tissue. WC was
calculated using formula (6).

Fresh Weight (g) — Dry Weight(g) (6)

Water Content (g/g) = Dry Weight(s)

Species Diversity

Species diversity was calculated using the Shannon Diversity Index (H’). The Shannon
Diversity Index was calculated in R-studio using the ‘diversity’ function from the vegan
package. The cover and abundance values of each species were originally recorded in
Braun-Blanquet classes which are categorical and not usable in quantitative analysis. This
led to the Braun-Blanquest cover class being converted into a more usable numeric format.
A midpoint value was selected for each class for further analysis, the conversion can be
found in the appendix table A1.

3.3 Remote Sensing Analysis

Burn frequency mapping

In Google Earth Engine (GEE), burn frequency maps were generated using Sentinel-2
imagery. Burn detection was based on changes in vegetation indices (AONBR and NDVI)
before and after three seasonal fire periods: early (Jan-Feb), middle (Mar-Apr) and late
(May) fires for the years (2016-2025). For 2025 the late fire was not able to be generated
due to satellite imagery not being available. Same goes for the years before 2016 as
Sentinel-2 data is only available from June 2015 onwards.

Burn frequency was defined as how many times a specific area or pixel was burned between
2016 and may 2025. The pixels were stacked on top of each other in R (Version
2024.12.1+563) and are assigned values based on the amount of burns. If there was no fire,
the value of 0 was assigned. By summing the pixels in all the layers, the total burn frequency
per pixel was created.

Fire Map Validation

16



The early 2025 burn frequency map was validated using the collected field data. The burned
areas detected via satellite were compared to the actual ground-truth fire presence in the
field. A confusion matrix showed how many pixels were correctly or incorrectly classified into
the fire and no fire categories. The number of true positives, true negatives, false positives
and false negatives were computed. Additionally, accuracy metrics such as overall accuracy,
the kappa coefficient and class-specific accuracy, precision, recall and f1 scores were
calculated to identify how the burn frequency map was performing. Finally, the false positives
and false negatives were visualised to show where and why errors occurred to help improve
the fire visualisation model. An overview of the key accuracy metrics can be found in table
3.3.

Table 3.3 Accuracy metrics used in the analysis of the fire model validation with definition & formula.

Term Definition Formula

True Positives (TP) Ground Truth said fire, prediction said fire -

True Negatives (TN) Ground truth say no fire, prediction say no fire -

False Positives (FP) Ground truth said no fire, prediction say fire -

False Negatives (FN) Ground truth said fire, prediction said no fire -

Cohen’s Kappa (k) It compares the observed accuracy (Po) with the K= (Po-Pe)/(1-Pe)

expected accuracy (Pe)

Precision Of the pixels which were predicted as fire, how many TP/ (TP+FP)
were actually fire

Recall Of the actual fire pixels, how many were correctly TP/(TP+FN)
detected

Digital Elevation Model (DEM) Mapping

For the Digital Elevation Model (DEM) map, the SRTM30-tiles were acquired via the ‘elevatr’
R package. These tiles combine data from the Shuttle Radar Topography Mission and the
U.S. Geological Survey's GTOPO30 data set, provides a 30 metre resolution raster. The
DEM raster was projected to match the Sentinel-2 data and combined with the burn
frequency data. This data was plotted against the total number of burns in a scatter plot and
statically checked with spearman correlation. A stratification of the election values into bands
of 50 metres helps to interpret the data.

Time Since Last Fire Mapping

The ‘“Time Since Last Fire’ (TSLF) map was calculated by stacking the burn frequency maps
on top of each other in R. The most recent burn year for each pixel was identified and
subtracted from 2025 (most recent reference year). This gave the time since the last fire. If a
pixel never burned in the selected time period then a value of 0 was assigned. This resulted
in a map which showed for each location how many years have passed since it last burned.

Statistical Analysis
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Vegetation structure, biomass, and species composition were assessed using statistical
tests in R. Non-parametric tests such as the Wilcoxon rank-sum and Kruskal-Wallis tests
were applied where assumptions of normality were violated, while ANOVA and Welch’s
t-tests were used for normally distributed data. Homogeneity of variance was checked using
Levene’s test, and normality assessed using the Shapiro-Wilk test. Shannon diversity was
calculated using the diversity() function from the vegan package, based on Braun-Blanquet
abundance values converted into numeric midpoint values.

4. Results

4.1 Fire model validation and Accuracy Assessment

In order to answer the first subquestion about the validation and accuracy of the fire model,
an accuracy assessment was done with the help of a ground truth dataset which had 50
points collected in January and February of 2025. The results of the key accuracy metrics
were calculated in Google Earth Engine. The confusion matrix (Table 4.4.1) showed that out
of 50 ground-truth points, there were only 4 pixels that were classified incorrectly. One pixel
was a false negative which is where the model said there was no fire, but in reality there was
fire. And three pixels were false positives where the model stated fire, but in real life there
was no fire. This confusion matrix shows 92% of the pixels checked with ground truth were
correct which is the overall accuracy of the model. When split up per class, the accuracy for
class No Fire is 0.8696% and Class Fire was 0.9630%. The Kappa coefficient was
calculated at 0.8379%. Additionally for the fire class (as its a fire detection mode) the
Precision was 0.897, Recall was 0.963 and F2 score was 0.929. Additionally, a map of all
the positives and negatives (True & False) was created to visualise the misclassifications on
a spatial level (Figure 4.1.2).

Table 4.1.1 Confusion matrix results of the fire detection model.

Confusion Metrix
True positives 26
False positives 3
False negatives 1
True negatives 20

The spatial distribution of the classification results is shown in Appendix Figure B1, where
all the ground-truth points are compared with the model predictions. The yellow and orange
points are especially important as they represent the areas where the model made incorrect
predictions. The false negatives (area where a fire occurred but was not detected by the
model) are located near the edge of phantas. This suggests that the model may struggle
with accurately delineating fire boundaries , especially in transitional zones. Interestingly
there is a correctly predicted fire point just below this area, indicating that the model
recognised the fire nearby, but failed to capture its full extent. The false positives (where the
model predicted a fire but no fire was observed) are generally located close to actual fire
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events. When comparing these points with high-resolution satellite imagery from Planet, it
becomes clear that they are situated very close to burned areas, suggesting that the model
may have picked up residual burn signals or misclassified pixels influenced by nearby fires.
This highlights some of the spatial limitations of the model when detecting mall or edge fires.

4.2 Spatio-Temporal patterns of fire regimes

Burn Frequency Mapping

The fire frequency map (Image 4.2.1) shows the total number of years in which each pixel
was classified as burned across the study area of Bardia National Park between 2016 and
2025. Spatial patterns are visible on this map. Most pixels fall within unburned class
(visualised in grey) and 1-6 burns (shades as green). The highest fire frequencies with more
than 15 burns (coloured orange/red) are located in the northeastern part of the map. This
area overlaps with forested zones, a combination of mostly Sal but some riverine forest
aswell. On the western side of the study area, the Karanli river runs and is indicated by the
grey, unburned areas on the map. Adjacent to the river, grasslands are evident represented
by the isolated pockets of 7-10 burns. A full land cover map can be referred to in the
appendix B2. The grasslands are bordered by unburned areas which most likely correspond
to the riverine forest. Variation in fire frequency within the grassland is most likely explained
by the difference in species present.
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Burn Frequency Map (2016-2025)
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Figure 4.2.1 Burn frequency map (2016—2025) in Bardia National Park, Nepal. Colours indicate the
number of years each pixel was classified as burned, based on dNBR thresholding of Sentinel-2
imagery. Coordinate system: UTM Zone 44N (EPSG:32644). Data: Copernicus Sentinel-2
(harmonised)

When focusing solely on the grasslands (figure 4.2.3) it becomes evident that the majority of
the grassland pixels have experienced fire at least six times. Areas with the highest fire
frequency, ranging between eight and twelve burns, are concentrated within certain sections
of the grassland belt. These higher frequency zones are spatially clustered and generally
occur within the larger grasslands which are also more easily accessible from the
surrounding villages.

The map was clipped based on a land cover classification by Bijimakers et al. (2023), using
the following categories to define grasslands: bare soil, dry tall grasslands, wet tall
grasslands, and short grasslands. The grey patches on the map likely correspond to the
bare soil category although changes in the ecosystem since 2019 may have altered some
classification. In particular, the river system is highly dynamic and subject to temporal shifts,
which can create discrepancies between the current satellite imagery one on which the fire
frequency was based and the static 2019 land use map. Consequently, areas currently
appearing as riverbed may have been categorised differently in the original classification,
potentially affecting the spatial delineation of grassland areas.
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Total Fire Frequency in Grasslands (2016-2025)

28.60°N

# No. of Fires
i 18

28.55°N

28.50°N

28.45°N

3km I NN
81.20°E 81.22°E 81.24°E 81.26°E 81.28°E 81.30°E 81.32°E 81.34°E

Figure 4.2.2 Burn frequency map clipped to only the grasslands (Bijlmakers et al., 2023) in Bardia
National Park, Nepal (2016—2025). Colours indicate the number of years each pixel was classified as
burned, based on dNBR thresholding of Sentinel-2 imagery. Coordinate system: UTM Zone 44N
(EPSG:32644). Data: Copernicus Sentinel-2 (harmonised)

Hydrological Gradient

The burn frequency data was compared to a Digital Elevation Model (SRTM 30m; see
appendix B3) which serves as a proxy for hydrological conditions. In floodplain systems like
Bardia, lower elevations tend to be closer to rivers or flooding areas, where soils usually
have higher soil moisture and better access to groundwater. Higher elevations on the other
hand, are typically further away from water and drain more quickly, creating drier conditions.
These patterns mean elevation could be a useful indicator of landscape-level water
availability.

A spearman’s rank correlation shows a moderate, positive relationship between elevation
and burn frequency (p= 0.537; figure 4.2.3) in figure 4.2.3. This suggests that fire occurs
more often in the higher, drier areas and less in the lower wetter zones. In general, there
appears to be a west-to-east gradient across the research area. A transition from the more
moist soil conditions in the west next to the river where there are less fires to the more drier
conditions found on a higher elevation in the east where more frequent burns can be found.
When comparing this to the burn frequency (Figure 4.2.1) a similar gradient is visible with
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the most frequent burns happening on the higher altitudes. In Appendix B4, a scatterplot
can be found of the relationship between burn frequency and elevation.
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Figure 4.2.3 Relationship between burn frequency and elevation bands (n = 406352). A Spearman
correlation (p = 0.537) shows a moderate positive association between elevation and fire frequency.

Temporal mapping

The frequency burn map has been split up into different time periods. The early fire period
refers to the months of January and February.The middle part of the fire period are the
months April and May. By then, the park is getting drier and the natural wildfires tend to
increase. The last ‘late’ period is May which is the driest month with the most wildfire. When
breaking the burn frequency map up into the different time periods different patterns emerge.

Early Fire Map

The early fire frequency map covers a period of January and February across nine years,
beginning in 2016. This map as shown in figure 4.2.4, was validated using ground truth data
collected during the 2025 early fire period. Early-season fires are concentrated alongside the
Karnali river, located on the western edge of the study area. Here a distinct band of yellow,
orange and red pixels of high fire frequency (6-9 fires) indicate near-annual burning. In
contrast, the central region which is dominated by Sal forest, remains largely unburned
(grey: O fires). The highest burn frequency indicating annual burning is mainly reserved for
the specific grassland patches, such as grasslands in the southern tip with the two biggest
being Laumkali and Baghaura. This maximum frequency however accounts for less than 2%
of the park. About 80% of the high-frequency burns (>6 fires) lie within 2 km of the main
flood plain. However in the northern part of the study area, some non-grassland also have
fire activity, in particular the areas which are classified as riverine forest, with Sal forest
surrounding this. This region is also among the highest elevation of the study area, indicating
that possible a drier environment can increase fire frequency during these earlier fire
months.
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Early Fire Frequency Map (2016-2024)
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Figure 4.2.4 Early fire season (January and February) Burn frequency map (2016—2025) in Bardia
National Park, Nepal. Colours indicate the number of years each pixel was classified as burned,
based on dNBR thresholding of Sentinel-2 imagery. Coordinate system: UTM Zone 44N
(EPSG:32644). Data: Copernicus Sentinel-2 (harmonised)

When clipped to just the grasslands as can be seen in figure 4.2.5, the hotspots become
more clear. The majority of the unburned land is part of the bare soil class. The maximum
burn class (annual burns; 9) seems to be concentrated more downsouth, with the bigger
grasslands such as Lamkauli and Baghaura being highlighted in the middle of the map. The
grasslands along the river in the southern tip is also part of this high frequency zone. About
68% of the grassland pixels burned less than 2 times and 9% of the pixels burned more than
9%.
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Early Fire Frequency in Grasslands (2016-2025)
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Figure 4.2.5 Early fire season (January and February), burn frequency of grasslands (Bijlmakers et
al., 2023) map in Bardia National Park, Nepal (2016—2025) . Colours indicate the number of years
each pixel was classified as burned, based on dNBR thresholding of Sentinel-2 imagery. Coordinate
system: UTM Zone 44N (EPSG:32644). Data: Copernicus Sentinel-2 (harmonised)

Middle Fire maps

The middle fire period covers the months March and April. In figure 4.2.6 a fire frequency
map can be found of that middle fire period. The map shows that the majority of the fire
detected by the model is in the north-eastern part of the park which overlaps with the Sal
forest zone. There seems to be a very straight line from north to south with on the western
(left) side of the area no to very little fire is found and on the eastern side (right) the fire is
more common (3-9). This is very different from the ‘early’-fire period where the almost exact
opposite was seen. A figure where just the grasslands are shown can be found in appendix
C1.
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Middle Fire Frequency Map (2016-2024)
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Figure 4.2.6 Middle seasonal (March and April) burn frequency map (2016-2025) in Bardia National
Park, Nepal. Colours indicate the number of years each pixel was classified as burned, based on
dNBR thresholding of Sentinel-2 imagery. Coordinate system: UTM Zone 44N (EPSG:32644). Data:
Copernicus Sentinel-2 (harmonised)

In order to understand what actually burned during this period, the burn frequency was split
up by land cover type. In Appendix C3, it can be seen that mainly Sal forest and riverine
forest catch fire during March and April, with very little of the grasslands burning (between
1-3 times, but very low percentage of total grass land that burns). The shape of the largest
grassland Lamkauli is clearly visible on the map due to the absence of fire across this area
during the entire study period.

Late fire Maps

The late fire period, as seen in figure 4.2.7, corresponds to the month of May, which marks
the end of the dry season and is characterised by extremely dry conditions. Typically,
monsoon-induced rainfall begins in June which suppresses any remaining fire activity. The
late fire frequency map shows very low fires occurrence during this period, with a maximum
of five fires recorded in any location. The majority of the study area remained unburned,
although some patches of Sal forest had fire activity up to two fires. Similarly the grasslands
showed very limited fire activity in this period, as shown in Appendix C2.
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Late Fire Frequency Map (2016-2024)
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Figure 4.2.7 Late season (May) burn frequency map (2016-2025) in Bardia National Park, Nepal.
Colours indicate the number of years each pixel was classified as burned, based on dNBR
thresholding of Sentinel-2 imagery. Coordinate system: UTM Zone 44N (EPSG:32644). Data:
Copernicus Sentinel-2 (harmonised),

Time Since Last Fire Mapping

Using the fire frequency data, the time-since-last-fire map was generated. Figure 4.2.8
shows per pixel the last time it was caught on fire. The results show that the grasslands
along the river have burned recently with fire occurring within the past 0-1 years. In contrast,
the riverine forest position between the grasslands barely burns. As expected, the river itself
is also clearly distinguishable and does not burn. Notably, recent fire activity is also observed
in the sal forest. Notably, recent fire activity is also observed in the sal forest, particularly in
areas situated at higher elevation (north eastern part of study region), which is also further
away from the river.

26



Time Since Last Burn (as of 2025)

28.60°N
Years Since Fire
0
™
28.55°N 2
3
4
5
6
7
28.50°N
8
9+
28.45°N

3km HEN .
81.20°E 81.22°E 81.24°E 81.26°E 81.28°E 81.30°E 81.32°E 81.34°E

Figure 4.2.8 A map showing the ‘time since last fire’ across the Bardia national park. Recently burned
areas occur mainly in grasslands near rivers and sal forests at higher elevations.
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4.3 Effect of Fire on Vegetation Structure

This section presents the results related to Research Question 3 which focuses on
vegetation structure and is supported by statistical analysis. Full output of the statistical test
associated with each figure is provided in the appendix. Plots that were not critical for
addressing the research question but provide additional context are presented in the
appendix

Biomass

Biomass in Burned vs Unburned sites

To research the effect of recent fire on the grassland biomass, dried biomass was compared
between sites which were burned within the last year and sites which remained unburned in
that same period. The data is made up out of two independent groups burned and unburned.
The plot is shown below in Figure 4.3.1. The Shapiro-Wilk test indicated that dried biomass
values were not normally distributed in both groups with Burned (W = 0.66608, p =
9.784e-07, n = 28) and unburned (W = 0.73622, p-value = 5.867e-05, n = 22). Levene's test
showed that there was no significant difference in variance between the groups (F(1,48) =
0.458, p = 0.502). The Wilcoxon rank-sum test showed that the difference between burned
and unburned were not statistically significant (W = 343, p-value = 0.5001). This means
there is no strong evidence for a difference in biomass based on fire occurrence.

Biomass by Fire Occurrence
Fire occurrence between January 2024 and April 2025
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Figure 4.3.1 Dried biomass in recently burned (n = 28) vs unburned sites (n = 22). Wilcoxon rank-sum
test found no significant difference (W = 343, p = 0.5001). Full statistical analysis in Appendix D1

To explore whether functional group identity affected the relationship between fire and
biomass, biomass differences were further analysed within three dominant grass functional
groups. No significant differences were found in any of the groups. Pioneering tall grasses
showed unequal variance, but Welch’s t-test indicated no significant difference (1(10.38) =
—1.43, p = 0.182). For short grasses and late-successional tall grasses, Wilcoxon tests also
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found no significant differences (both p = 0.2345). The figure and associated analysis can be
found in Appendix D2.

Biomass across Fire Frequencies

The Figure 4.3.3 displays the dried biomass in relation to the burn frequencies which have
been measured since 2016. The data used violated normality assumption as tested with the
Shapiro-Wilk Test (W = 0.8343, p-value = 5.968e-06) and homoscedasticity was met with the
Levene’s test (F(11,38) = 1.224, p = 0.305). As a result, the Kruskal-Wallis test was used to
assess differences in biomass across the fire frequency levels. The test revealed no
statistically significant difference (x*(11) = 7.77, p = 0.734).
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Figure 4.3.3 Dried biomass across fire frequency classes (0—12 burns; total n = 50). Kruskal-Wallis
test showed no significant effect (x?=7.77, p = 0.734). Full statistical analysis in Appendix D3

Fresh Green Biomass across Fire Frequency

In Figure 4.3.4 the fresh weight of green leaves is plotted against the fire frequency of the
sampled plot with a loess regression applied to the data. A Kruskal-Wallis rank sum test was
used to assess whether fire frequency significantly influenced the fresh weight of green
leaves. This non-parametric test was selected due to the violation of the normality
assumption (Shapiro—Wilk W = 0.950, p = 0.033) despite homoscedasticity being confirmed
(Levene’s test: F = 1.071, p = 0.409, n = 50). The test revealed no statistically significant
differences in fresh green biomass across fire frequency levels (x*(11) = 7.87, p = 0.725, n =
50), with no clear pattern observed between biomass and fire frequency.
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Fresh Green Biomass across Fire Frequency
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Figure 4.3.4 Fresh green biomass (living biomass) vs fire frequency with LOESS curve.
Kruskal-Wallis test found no significant differences (x? = 7.87, p = 0.725, n = 50). Full statistical
analysis in Appendix D4

NDVI

NDVI across Fire Frequencies

To compare with the field data (previously shown in figure 4.3.4), NDVI was generated with
satellite data and plotted against fire frequency over the last 10 years in figure 4.3.5. A
linear model was applied. The assumptions of the model were met with a normal distribution
of the residuals (Shapiro-Wilk W = 0.978, p = 0.453, n = 50) and no significant
heteroskedasticity was detected (Breusch—Pagan test: BP = 10.36, df = 11, p = 0.499, n =
50). The model was statistically significant in general (F(11, 38) = 7.204, p < 0.001) with
roughly 68% of the variation in NDVI was explained (R? = 0.676, adjusted R? = 0.582). These
results suggest a positive relationship between fire frequency and NDVI, indicating that
areas with more frequent fires exposure tend to show higher vegetation greenness.
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Figure 4.3.5 NDVI across fire frequencies. Linear regression model was significant (F(11, 38) = 7.204,
p <0.001, R2=0.676, n = 50), indicating a positive relationship between fire frequency and vegetation
greenness. Full statistical analysis in Appendix D5.

To explore the data further on a finer scale, NDVI was analysed per functional group using
linear regressions as shown in figure 4.3.6. A significant positive relationship was found for
Pioneers Tall Grasses (adjusted R? = 0.546, p < 0.001, n = 22), although the residuals
slightly violated the assumption of normality (Shapiro—Wilk W = 0.906, p = 0.040). For Short
Grasses, the model was also significant (adjusted R? = 0.286, p = 0.019, n = 16), with
assumptions of normality met but variance homogeneity violated (Levene’s test p = 0.004).
However, Late-Successional Tall Grasses showed no significant trend (adjusted R? = 0.030,
p = 0.275, n = 12), despite meeting all assumptions.

Normalized Difference Vegetation Index across Fire Frequency by Functional Group
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Figure 4.3.6 NDVI vs fire frequency per functional group. Significant positive relationships were found
for Pioneers Tall Grasses (R? = 0.546, p < 0.001, n = 22) and Short Grasses (R*= 0.286, p = 0.019, n
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= 16); no effect for Late-Successional Tall Grasses (R? = 0.030, p = 0.275, n = 12). Full statistical
analysis in Appendix D6

NDVI and Time since Last Fire

A Kruskal-Wallis rank sum test was performed to evaluate differences in NDVI across three
fire recency categories: recent burn (0 years), moderate time since burn (1—4 years), and
long unburned (9+ years). This non-parametric test was selected due to a violation of the
normality assumption (Shapiro-Wilk W = 0.919, p = 0.0021, n = 50), while homogeneity of
variances was met (Levene’s test: F = 0.832, p = 0.442, n = 50). The test indicated a
statistically significant difference in NDVI across the fire recency categories (x*(2) = 14.78, p
= 0.0006, n = 50), as visualised in Figure 4.3.7.

Following the significant Kruskal-Wallis test, a Dunn’s post hoc test with Bonferroni
correction was applied. It showed that plots in the long unburned category had significantly
lower NDVI compared to both the moderate (Z = -3.40, p = 0.0020, n = 50) and recent burn
groups (Z = =3.72, p < 0.001, n = 50). No significant difference was found between the
recent and moderate burn groups (Z = —0.05, p = 1.00).

NDVI across Time Since Last Fire Groups
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Figure 4.3.7 NDVI across time since last fire. Kruskal-Wallis test indicated a significant effect (x? =
14.78, p = 0.0006, n = 50). Dunn’s post hoc test showed significantly lower NDVI in long-unburned
plots compared to moderate plots(Z = —3.40, p = 0.0020, n = 50). Full statistical analysis in Appendix
D7.

Plant Structure and Physiological Traits

As none of the assessed structure or physiological variables showed statistically significant
or consistent relationship with recent fire, they have been moved to the appendix.
- Plant water content, which was measured as the ratio of dried to fresh biomass, did
not vary significantly with fire frequency (x3(11) = 10.83, p = 0.457, n = 50). Similarly,
no significant variation was found across vegetation communities (x* = 3.04, df = 3, p
= 0.385). See Appendices D8 & D9 for figures and full analysis
- For stem diameter, no significant differences were found between burned and
unburned plots across species: S.spontaneum (1(9) = —0.86, p = 0.412, n = 11), 1.
cylindrica (t(14) = —1.06, p = 0.307, n = 16), N. porphyrocoma (t(8) = —-0.35, p =
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0.737, n = 10), and S. bengalense (Wilcoxon W = 2, p = 0.429, n = 11). See
appendix D10 for the graph with full statistical analysis.

- Similarly, average leaf size showed no significant differences: S. spontaneum
(Wilcoxon W =19, p = 0.185, n = 11), S. bengalense (Wilcoxon W =8, p =0.429, n =
11), I. cylindrica (Wilcoxon W = 39, p = 0.495, n = 16), and N. porphyrocoma (1(8) =
-1.13, p = 0.292, n = 10). See appendix D11 for the graph with full statistical
analysis.

- Grass height also showed no significant difference between burned and unburned
plots (Wilcoxon W = 353, p = 0.152, n = 48), and species-level regression models
revealed no consistent effects: S. spontaneum (adjusted R? = 0.38, p = 0.149), S.
bengalense (adjusted R? = 0.48, p = 0.194), I. cylindrica (adjusted R? = -0.15, p =
0.663), and N. porphyrocoma (adjusted R? = 0.66, p = 0.087). See appendix D12 &
D13 for the graphs with full statistical analysis.

Soil and Moisture

As no statistically significant relationships were found between fire frequency and soll
variables, the corresponding graphs and analyses have been moved to the appendix.
- Bulk density did not vary significantly across fire frequency classes (ANOVA:
F(11,38) = 1.42, p = 0.206, n = 50), with assumptions of normality and homogeneity
of variance confirmed (Shapiro—Wilk W = 0.975, p = 0.354; Levene’s test p = 0.368).
See appendix D14 for the graph with full statistical analysis.
- Similarly, volumetric moisture content showed no significant differences across fire
frequencies (ANOVA: F(11,38) = 0.31, p = 0.979, n = 50), and assumptions were
again met (Shapiro-Wilk W = 0.972, p = 0.226; Levene’s test F = 1.20, p = 0.323).
While visual trends such as a mid-range dip in volumetric moisture were noted, these
patterns were not statistically supported, suggesting that fire frequency does not
significantly influence soil moisture in the sampled grasslands. See Appendix D15
for the graph with full statistical analysis.

4.4 Effect of Fire on species composition

This section presents the results for Research Question 4, which focuses on the effect of fire
on species composition. The results are supported by statistical testing. Full outputs of the
statistical tests for each figure are included in the appendix. Additional plots that were not
essential for answering the main research question are also provided there for reference.

Fire Frequencies across Plot=Dominant Species

To investigate how the fire influenced the plot-dominant species, the fire frequency across
different species was researched and visualised in figure 4.4.1. For the burn frequency
across the different plant species the following testing was done. Assumptions were met with
normally disturbed residuals (Shapiro-Wilk W = 0.954, p = 0.058), and homogenous
variance (Levene’s test F(3,44) = 0.54, p = 0.657). The one-way ANOVA test showed that
there was a significant difference in burn frequency between species (F(3,44) = 4.73, p =
0.006). A Tukey HSD post hoc test followed and shows that the difference is mainly due to
the Narenga p.(n = 10) which is linked to the higher burn frequency compared to the
Saccharum s. (p = 0.0028, n = 11;). No other pair has some statistical significance.
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Fire Frequency across Plot-Dominant Species
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Figure 4.4.1 Fire frequency across Plot-Dominant Species(n = 48). One-way ANOVA showed
significant species differences (F(3,44) = 4.73, p = 0.006); post hoc test revealed higher fire
frequencies for N. porphyrocoma compared to S. spontaneum. Full statistical analysis in Appendix E1

Relative dominance vegetation across fire frequencies

To research how the vegetation communities are represented across the different fire
frequencies, the relative dominance of each vegetation community in each fire frequency is
shown in figure 4.4.2. This figure shows the relative dominance of vegetation communities
across the fire frequency classes over the past 10 years. While formal statistical testing was
not done due to small sample sizes in several burn frequency categories (classes 1, 9, 10,
and 12), the dominant vegetation communities visibly changed along the fire frequency
gradient. S. spontaneum is dominating the plots with no or few burns whereas N.
porphyrocoma becomes increasingly more dominant in high-fire fire frequencies.
Intermediate fires were more mixed, with S. bengalense and I. cylindrica co-dominating that
part of the fire frequency.

34



Relative Dominance of Plot-Dominant Species Across Fire Frequencies
Proportional contribution of Vegetation across fire frequency (2016-2025)
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Figure 4.4.2 Relative dominance of vegetation communities per fire frequency class. Visual trends
suggest species turnover, with Saccharum s. dominating low-fire plots and Narenga p. in high-fire
plots.

Average Leaf Size

As no statistically significant relationships were found between fire frequency and average

leaf size, the results have been moved to the appendix E2. Regression models showed no

meaningful trends for S. bengalense (adjusted R? = —0.047, p = 0.476, n = 11), I. cylindrica

(adjusted R? = 0.007, p = 0.312, n = 16), N. porphyrocoma (adjusted R? = -0.115, p = 0.793,
= 10), and S. spontaneum (adjusted R? = —0.098, p = 0.755, n = 11), with assumption

checks confirming no consistent violations.

Amount of Leaves

In the figure 4.4.3, the relationship between the average amount of leaves and fire
frequency is explored. The additional statistical testing was done. The assumptions for
normality (Shapiro-Wilk test: W = 0.846, p < 0.001) and homogeneity of variance (Levene’s
test: F(11,38) = 2.21, p = 0.035) were both not met. These violations lead to the
Kruskal-Wallis rank sum test being applied. The Krukal-Wallis test indicated a statistically
significant difference in the average number of leaves across different fire frequency
categories (x3(11) = 22.14, p = 0.023). However, the Dunn post hoc test with Bonferroni
correction did not identify any pairwise comparisons as statistically significant after correction
(all adjusted p-values > 0.05).
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Figure 4.4.3 Average number of leaves per fire frequency class. Kruskal-Wallis test indicated
significant differences (x* = 22.14, p = 0.023), but Dunn post hoc test showed no pairwise
significance. Full statistical analysis in Appendix E3

Specific Leaf Area

As no statistically significant differences in specific leaf area (SLA) were found between
burned and unburned plots, the results have been moved to the appendix E4. Wilcoxon
rank-sum tests showed no significant effect of recent fire for S. spontaneum (p = 1.000, n =
11), S. bengalense (p = 0.635, n = 11), I. cylindrica (p = 0.431, n = 16), and N. porphyrocoma
(p = 0.110, n = 10). While N. porphyrocoma showed a visual trend toward higher SLA in
unburned sites, this difference was not statistically supported.

Shannon Diversity Index

Shannon across Fire Frequency

A simple linear regression was done to evaluate the relationship between fire frequency and
Shannon Diversity Index. The results in figure 4.4.4 showed a significant positive
relationship (p = 0.0025), indicating that higher fire frequency is associated with increased
diversity. The regression model explained approximately 17.5% of the variance in Shannon
Index (R? = 0.1755).
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Shannon Diversity Index per Fire Frequency
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Figure 4.4.4 Shannon Diversity Index vs fire frequency. Linear regression showed a significant
positive relationship (R? = 0.1755, p = 0.0025, n = 50), suggesting increased diversity with higher fire
exposure. Full statistical analysis in Appendix E5

Shannon across Time Since Last Fire

The relationship between fire recency and Shannon diversity index was assessed using
one-way ANOVA. Assumptions of normality (W = 0.970, p = 0.233, n = 50) and homogeneity
of variances (F(2,47) = 1.05, p = 0.357) were met. ANOVA indicated a statistically significant
effect of fire recency on Shannon diversity (F(2,47) = 5.43, p = 0.008). Post hoc comparisons
using Tukey’s HSD test showed that recently burned sites had significantly higher Shannon
diversity than long unburned sites (mean difference = 0.405, p = 0.008). No significant
differences were found between moderately burned and long unburned sites (mean
difference = 0.234, p = 0.222), nor between recently and moderately burned plots (mean
difference = 0.171, p = 0.195).

Shannon Diversity Index Across Time since Last Fire
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Figure 4.4.5 Shannon Diversity Index across time since last fire. ANOVA showed significant
differences (F(2,47) = 5.43, p = 0.008); Tukey’s HSD found higher diversity in recently burned plots.
Full statistical analysis in Appendix E 6
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Shannon Diversity Index per Plot-Dominant Species

The relationship between Shannon Diversity Index across plant species was investigated
and visualised in figure 4.4.6. The assumptions of normality (p between 0.194 and 0.726)
and homogeneity of variance (p = 0.2512) were met. But further testing with the one-way
ANOVA showed that Shannon Diversity Index did not significantly differ across the four
different grass species (ANOVA: F(3, 44) = 1.267, p = 0.297). But due to assumptions being
met, minor differences in Shannon Index are visually present. However these are not
statistically meaningful.

Shannon Diversity Index per Plot-dominated Species
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Figure 4.4.6 Shannon Diversity Index across Plot-Dominant Species. ANOVA found no significant
differences (F(3,44) = 1.267, p = 0.297), though minor visual differences are present. Full statistical
analysis in Appendix E7

Fire Frequency and Shannon per Plot-Dominant Species

A linear regression analysis was done to assess the relationship between fire frequency and
species-level Shannon Diversity Index which can be seen in figure 4.4.7. The results
revealed that S. spontaneum showed a statistically significant positive relationship between
burn frequency and Shannon Index (R? = 0.38, p = 0.042). The residuals were normally
distributed (p = 0.212), and the model met the assumption of homoscedasticity (p = 0.600).
In contrast, no statistically significant relationships were found for S. bengalense (p = 0.335),
I. cylindrica (p = 0.516), or N. porphyrocoma (p = 0.625), despite all models satisfying
assumptions of normality and equal variance.
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Shannon Diversity Index across Fire Frequency
per Plot-Dominant Species
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Figure 4.4.7 Linear regression between fire frequency and Shannon Index across Plot-Dominant
Species. Only S. spontaneum showed a significant response (R? = 0.38, p = 0.042); other species did
not show significant patterns. See Appendix E8 for full results.

Shannon across Fire Occurrence per Plot-Dominant Species

To investigate whether species-level plant diversity was influenced by recent burning,
Wilcoxon rank-sum tests were conducted for each of the four dominant grass species. This
has been visualised in figure 4.4.8. A statistically significant difference in the Shannon
diversity index was found for Saccharum spontaneum (W = 22.5, p = 0.0399) and Narenga
porphyrocoma (W = 22, p = 0.0422). In contrast, no significant differences were observed for
Saccharum bengalense (W =5, p = 1) and Imperata cylindrica (W = 35, p = 0.792).

Shannon Diversity Index across Fire Occurence
Fire occurrence between January 2024 and April 2025, stratified by Plot-Dominant Species
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Figure 4.4.8 Shannon Diversity Index for burned and unburned plots across dominant species.
Significant differences were found for S. spontaneum (p = 0.0399) and N. porphyrocoma (p = 0.0422),
with no effects observed for the other species. See Appendix E9 for full results.
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5. Discussion

5.1 Accuracy of fire model

The fire detection model demonstrated a strong performance capturing fire events during the
early fire season (January - February 2025) when validated against ground truth data. It
achieved a high overall accuracy of 92%, with a kappa statistic of 0.8379 indicating an
‘almost perfect agreement’ with the ground truth observations (Rashkovetsky et al., 2021).
The model was especially effective at correctly identifying burned areas, with a recall of
0.963 and precision of 0.897. When comparing the output to satellite imagery from the same
period, the spatial patterns match well with the Planet imagery. Not only at the locations with
ground truth data, but also across other areas where no field validation was available. This
further supports the model's accuracy. Despite its strengths, the model has a slightly
reduced accuracy of the ‘No Fire’ class which suggested that the model is more prone to
false negatives. Overall, the model performed reliably in detecting short-term fire dynamics
during the early season. However, its performance in capturing fire events outside this short
window remains untested and the accuracy of fire detection during the remainder of the dry
season is far less certain.

While the early fire frequency model showed consistent and ecologically plausible results,
detection became less reliable during the middle period (March to April). Unexpected fire
activity appeared in Sal-dominated forest areas which is slightly unusual given both
ecological expectations and field observations from rangers (Dinerstein, 1979b; Ghimire et
al., 2014). One of the most noticeable features in the middle-season fire map is a clear
vertical divide, with most of the fire activity being detected in the eastern part of the park. It is
most likely that burns also occurred in the western section, but because many of these areas
had already burned in February, they were included in the “before” composite, masking any
subsequent spectral change.

These issues are likely a result of several methodological limitations. First, the use of median
pixel composites tends to smooth out more extreme spectral values, reducing the visibility of
burn scars and weakening the disturbance signal. Second, the timing of the composite
images can lead to mismatches. The middle-season fire map is based on before-and-after
composites covering February as the “before” and May as the “after”. Fires that occur in
February are already included in the “before” image which cancels out or weakens their
spectral signal. Similarly, burns that happen in early March may go undetected if vegetation
has recovered by the time the May image is used as the “after” composite. Since the median
values average across the time window, the resulting image may reflect regrowth rather than
disturbance itself.

These timing issues also affected the final fire period in May, where fires activity appeared
very limited. This deviates significantly from both ranger reports and literature identifying
May as a peak fire month in the grasslands, yet the model failed to capture most of this
activity (Dinerstein, 1979b; Bhusal et al., 2024). Other ways of dividing the fire season were
tested, but they did not align better with known fire patterns. Due to time constraints, further
refinement of the seasonal classification was not possible. This has contributed to a weaker
detection performance later on in the dry season.
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Another limitation is that the model may not be able to clearly distinguish fire from other
vegetation disturbance such as mowing and grazing. Since the classification is based on
spectral changes in vegetation (ANBR and NDVI), activities such as grazing and mowing
could mimic fire signals. This could lead to incorrect classification of mowed areas as
burned. While the current threshold of 0.3 is meant to capture significant vegetation loss, it
may still include changes unrelated to fire. Adjusting this threshold could help improve the
model’s ability to separate actual fire events from other forms of disturbance and make the
results more accurate.

Given these limitations, the fire model cannot be considered a precise representation of
seasonal fire activity, particularly for the middle and late periods. However, it still captured
the deliberate management fires of January and February with high accuracy and aligned
with both ground observations and ranger testimonies (Lamichhane et al., 2024). Despite the
reduced reliability later in the season, the early fire detection remains robust enough to offer
valuable insights into spatial fire patterns and their link with vegetation dynamics in Bardia
National Park.

5.2 Fire Regime Patterns

The spatial and temporal dynamics of fire in Bardia National Park reveal a complex pattern
shaped by both ecological gradients and deliberate management. The fire frequency map
(Figure 4.2.1) shows a distinct mosaic across the landscape, with high fire recurrence
particularly concentrated in the northeastern part of the park. This region is at higher
elevations, which likely dries out quickler after the monsoon due to increased drainage and
reduced water retention. This leads to the area becoming more flammable as the dry season
progresses (Bhusal et al., 2024). This interpretation is further supported by the moderate
positive correlation between elevation and burn frequency (figure 4.2.3). Earlier work by
Ghimire et al. (2014) also identified the northeastern and northwestern part of the park as
areas with very high fire risk.

This elevated fire risk can partially be explained by topographic features. Although most of
Bardia is low-lying, about 30% of the park is above 500 metres (see Appendix B3 for
elevation map). Slope is an important factor in fire dynamics with Morandini et al. (2005)
stating that a 10 degree increase in slope can double the rate at which fire spreads. The
steep terrain also makes it harder to fight and suppress fires. Additionally, higher elevation
areas in Bardia have a greater tree density and experience less seasonal flooding which
allows fuel load to accumulate and leads to increased fire activity (Das et al., 2022). Field
insights from rangers support this, noting that the northern grasslands often ignite later in the
season when conditions are driest and harder to manage (Lamichhane et al., 2024). All
these patterns suggest that natural flammability, rather than deliberate burning, plays a large
role in fire recurrence in the northern part of the park.

Ghimiere et al. (2014) also identifies the southern border of BNP as an area with increased
fire risk. However, the fire pattern in these southern grasslands differs from that in the north,
as frequent burning here clearly reflects deliberate fire use. The area is at a lower elevation
near the Karnali River which means that it retains soil moisture for longer periods due to the
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monsoonal flooding which also deposits nutrient-rich silt (Peet et al., 1999). As a result,
these wetter grasslands and adjacent forest edges are less likely to burn during the early
and mid-dry season, due to reduced fuel flammability (Bhusal et al., 2024). If they burn, fire
often stimulates rapid regrowth due to improved nutrient cycling and soil conditions (Thapa
et al., 2021). The fire that occurs in those southern grasslands is mostly the result of
anthropogenic management. The largest grasslands of BNP for example, Lamkauli and
Baghaura, are known management sites which are easily accessible and well used by
herbivores. Here, rangers conduct prescribed burns early in the dry season to reduce fuel
loads, stimulate the regrowth of palatable shoots, and maintain open habitat structure
(Lamichhane et al., 2024; Bhusal et al., 2024). These management burns are part of broader
conservation strategies aimed at supporting habitat quality for large herbivores and their
predators (Dinerstein, 1979b).

5.3 Impact on Vegetation

The results of the study shows that fire plays a complex role in the subtropical grasslands of
Bardia National Park and is in turn shaped by the grasslands themselves. One of the notable
results is the absence of a significant difference in dried biomass between recently burned
and unburned plots. This suggests that fire, at least in the short term, does not reduce total
above ground biomass. Instead, the grasslands appear to recover relatively quickly after
burning, likely due to fire-adapted traits of the plants (Dinerstein, 1979b; Lehmkuhl, 1989).
Even when biomass was assessed across functional groups, no consistent reduction was
observed in response to fire. The results align with other research of Lamichhane et al.
(2024) and Bhusal et al. (2024), who also found no significant biomass differences across
fire treatments in Bardia. This supports the idea that these ecosystems have a broader
ecological resilience and that fire acts as a non-destructive and more shaping force within
Bardia’s grassland (Lehmkuhl, 1989; Peet et al. 1999).

While dried biomass remained stable across fire categories, NDVI, used as a proxy for
vegetation greenness, showed something different. A clear, statistically positive relationship
was found between fire frequency and NDVI. The lowest values in plots have not burned for
nine or more years. The results indicate that greenness, which is more sensitive to recent
vegetative activity, increases with fire exposure. This suggests that fire may stimulate
vegetative growth, particularly in grasslands where there is domination of
disturbance-tolerant species which are capable of rapid post-fire regeneration.

Species composition patterns support this interpretation. Imperata cylindrica was more
commonly found in frequently burned plots, which fits with their known ability to recover
quickly after disturbance (Dinerstein, 1979a; Lehmkuhl, 1989; Lamichhane et al., 2024). At
the same time, Narenga porphyrocoma was more often present in areas with less fires which
fits with its link to later successional stages (Lehmkuhl, 1989). However, the relatively high
occurrence of Saccharum spontaneum in long-unburned sites was unexpected. This may
partly be due to sample size limitations or possible field misidentification, and should be
interpreted with care. Overall, these trends suggest that fire exposure may filter species
according to their regeneration strategies (Das et al. 2021; Bhusal et al., 2024). Visual
inspection of relative dominance patterns further show Saccharum bengalense and Imperata
cylindrica were more common at intermediate fire frequencies, likely due to their ability to
regenerate quickly after fire and tolerate repeated disturbance.

42



Fire also had a clear effect on species diversity. The Shannon Diversity Index increased
significantly with fire frequency, showing that more frequently burned plots support higher
diversity (Figure 4.4.4). This pattern somewhat aligns with the Intermediate Disturbance
Hypothesis, which suggests that regular disturbance can prevent competitive exclusion and
allow a wider range of species to coexist (Connell, 1978). In these grasslands, repeated fire
may reduce the dominance of a few aggressive species and create space for others to
establish, maintaining a more diverse community over time. However, the relationship found
in this research was linear rather than unimodal, meaning that diversity did not peak at
intermediate fire levels. This still supports the general idea behind the IDH but does not fully
reflect its typical curve.

Recently burned plots also showed significantly higher diversity than long unburned ones
(Figure 4.4.5), suggesting that fire has a short-term positive effect on species richness, likely
because fire opens up space and resources, allowing new or previously suppressed species
to establish. However, no significant differences were found between moderately and
recently burned plots, which suggests that this effect may taper off over time. These results,
together with the positive relationship between fire frequency and diversity, indicate that both
recent fire and repeated burning can promote species coexistence, but not uniformly across
all conditions. Lamichhane et al. (2024) similarly found that in the Baghaura grassland in
BNP burned plots supported taller vegetation and greater species diversity. At the species
level, the results showed that these fire effects vary depending on the dominant grass
community. S. spontaneum responded positively to both fire frequency and recent burning
(Figures 4.4.7 and 4.4.8), while no significant effects were observed for S. bengalense, I.
cylindrica, or N. porphyrocoma. This suggests that some grassland types are more
responsive to fire in terms of maintaining or enhancing diversity, while others remain
relatively stable regardless of fire history.

Taken together, the findings appear to somewhat support the IDH. Intermediate fire
frequencies may help to maintain species coexistence and structural heterogeneity
(Lehmkuhl, 1989; Das et al., 2021). However, too frequent burning risks homogenisation,
favouring only the most fire-tolerant species, while fire suppression may lead to woody
succession and biodiversity loss (Dinerstein, 1979a; Thapa et al., 2021; Bijimakers et al.,
2023; Ghimire et al., 2014). While the IDH remains a useful conceptual tool, it is debated
due to its unclear thresholds and limited empirical consistency (Fox, 2012). In Bardia, the
observed trends in diversity broadly align with IDH expectations, but conclusions should
remain cautious due to limited sample size and the lack of sites with very high fire frequency.

Interpretations based on species-level patterns must also acknowledge the study's sampling
limitations. With only 50 vegetation samples and highly uneven species representation
(Themeda arundinacea only occurred in two plots and consequently was excluded for most
analyses), statistical power was limited. Even among the more common species, the number
of samples was limited: S. Bengalanese (11), I. cylindrica (16), N. porphyrocoma (10) and S.
spontaneum (11). Several field-observed trends, such as higher SLA or increased leaf
number, were not statistically significant but might have been under a larger or more
balanced sampling design. In addition, identifying grasses in the field remains difficult, and
misclassification can’t be ruled out. As such, some trends appear ecologically meaningful but
should not be interpreted as definitive.
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To maintain biodiversity in fire-prone grasslands like Bardia, it requires an integrated
approach that combines different disturbance regimes to shape vegetation structure and
ecological function over time. Biodiversity is not only essential for supporting habitat quality
and forage availability for herbivores and their predators, but also for the long-term resilience
of the ecosystem (Brockerhoff et al., 2017). More diverse plant communities are typically
better able to recover after disturbance, buffer against stress, and provide critical resources
across seasons (Bhusal et al., 2024). These dynamics are becoming increasingly important
as climate change raises the risk of extreme fire events and prolonged dry periods across
Nepal (Pokharel et al., 2023). Kirkland et al. (2024) point out that areas undergoing natural
succession, such as abandoned agricultural land, are particularly vulnerable to fire under
these drying trends. This has direct relevance for Bardia, where many short grasslands lie
upon former agricultural lands and are now maintained through prescribed burning. In their
study, Kirkland et al. (2024) show that while grazing has benéefits, it is not enough to maintain
ecological function on its own, highlighting the need for integrated disturbance strategies.
Lamichhane (2024) similarly shows that combining controlled fire with small-scale cutting
improves grazing access and promotes greater structural heterogeneity, thereby supporting
more diverse and resilient grassland communities.Together, this emphasises the importance
of adaptive, multi-faceted disturbance regimes for maintaining both biodiversity and
ecological function in Bardia’s grasslands.

Sustaining ecological function in Bardia’s grasslands therefore depends not only on the
application of individual tools like fire, grazing, or cutting, but on how these are combined
and timed within the broader ecological and climatic context. However, without adaptive and
ongoing management, the system remains vulnerable. Pressures such as fire suppression,
changing rainfall regimes, and expanding land use could shift the balance toward fuel
accumulation, woody encroachment, and biodiversity decline (Bijlmakers, 2023; Das et al.,
2021; Ghimire, 2014). Long-term resilience will require not just ecological insight, but also
flexible management and institutional support that responds to climate uncertainty and
changing social dynamics
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6. Conclusion

This thesis examined how fire regimes shape vegetation structure and species composition
in the subtropical grasslands of Bardia National Park. By combining a decade of
satellite-derived fire frequency data with fifty vegetation plots, the research investigated how
different fire histories influenced biomass, greenness, species diversity, and dominant grass
types across the study area.

Fires were most frequent in dry grasslands, upland zones, and key management areas,
especially in the south where early-season burns are regularly applied to maintain open
habitat. Some fire patterns likely reflect natural variation in flammability and drainage, but
accessibility and conservation priorities also played a role. Sites near roads, such as
Lamkauli and Baghaura, were among the most frequently burned, highlighting the impact of
strategic management. Fires in the drier Sal forest terraces of the north were more likely to
occur later in the season and were often unplanned.

Seasonally, the fire model detected most burning in January and February, when prescribed
fires were commonly set and detection conditions were optimal. The accuracy of the early
fire season was 92 % with a Cohen k of 0.84 for January- February fires. However, this does
not fully represent the actual fire regime. Limitations in the model, including rapid vegetation
regrowth and image timing, contributed to under-detection later in the season. Despite these
shortcomings, the early-season outputs aligned well with ground data and offered a reliable
basis for assessing fire-vegetation interactions.

Vegetation structure showed observable trends across the fire gradient. Although canopy
height and bulk density tended to decrease with more frequent burning, these differences
were not statistically significant. However, NDVI increased significantly with fire frequency,
while dried biomass remained stable. These results indicate that fire resets structural
attributes without reducing overall productivity. Early-successional traits, especially those of
pioneer tall grasses, appeared to drive this structural shift. In contrast, species composition
responded less strongly. Saccharum spontaneum was more common in frequently burned
areas, while Narenga porphyrocoma was associated with long-unburned sites. Still, overall
species turnover was modest. Shannon diversity increased linearly with fire frequency and
recent burns, offering partial support for the Intermediate Disturbance Hypothesis, though no
clear peak in diversity was found at intermediate fire levels.

Effective management in the future will require fire management to further adapt to local
conditions and changing climate. Managing fire in small, varied patches across the
landscape can help maintain habitat diversity, prevent tree encroachment, and ensure forage
availability for large herbivores and the endangered species that rely on open grasslands. As
the region faces longer dry spells and more erratic monsoon rains, improved fire detection
will be increasingly important. This study shows that fire is both a natural part of Bardia’s
grasslands and a practical tool for their management. By combining spatial fire data with
field observations, it becomes possible to better understand how different fire histories shape
grassland structure and composition. At the same time, the findings show the need for
improved monitoring across the full dry season and more balanced sampling across fire
gradients. As climate conditions become less predictable, understanding these dynamics will
be key to supporting resilient and functioning grassland ecosystems.
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8. Appendix

This chapter shows extra figures and tables and for the already mentioned figures in the text

their statistical analysis if applicable.

Appendix A - Methods

A.1 Table of Braun Blaunquets conversion

Table A.1: A table showing Braun-Blaunquet values, percentage range, their description and the
converted midpoint value which was used in further quantitative analysis

Braun-Blanquet Percentage Range Description Converted midpoint
value

i One unique individual Very rare 0.001

r 0-1% Rare 0.005

+ 1-5% (few individuals) Sparse 0.01

1 1-5% (numerous individuals) Low cover 0.05

2 5-25% Moderate cover 0.15

3 25-50% High cover 0.375

4 50-75% Very high cover 0.625

5 75-100% Dominant 0.875

Appendix B - Research Question 1

B.1 Fire Model Classification Map
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Fire Model Classification
Bardia National Park, Jan—Feb 2025
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Figure B.1 Spatial distribution of true and false classifications from the fire detection model across the
study area. Yellow and orange points indicate misclassifications, while the red and green points are
classified correctly.
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B.2 Land Cover Map Bardia National Park

Land Cover Map of Bardia National Park (2019)
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Figure B.2 Land cover classification of Bardia NP (2019), based on Bijimakers et al. (2019), showing
different types of grasslands, forests, shrubland, bare soil and water

B.3 Digital Elevation Model Bardia NP
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Digital Elevation Model — Bardia National Park
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Figure B.3 Digital Elevation Model (DEM) of Bardia National Park, Nepal. Elevation values
range from approximately 100 to 500 metres above sea level, based on 30-metre resolution
SRTM data obtained via the ‘elevatr’ package in R. The map illustrates topographic variation
across the park, with higher elevations concentrated in the north-eastern region.

B.4 Elevation and Burn Fr n
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Figure B.4 Relationship between elevation and burn frequency (2016—2025) across the
research area in Bardia National Park. Each point represents a pixel value from the fire
frequency map plotted against corresponding elevation (in metres). A positive trend is
visible, with higher burn frequencies generally occurring at higher elevations. The Spearman
correlation coefficient (p = 0.5637) indicates a moderate positive association.

Appendix C - Research Question 2

C.1 Grassland Middle Fire Frequency Map
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Middle Fire Frequency in Grasslands (2016—-2025)
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Figure C.1 Middle fire season (March and April), burn frequency of grasslands (Bijimakers et al.,
2019) map in Bardia National Park, Nepal (2016—2025) . Colours indicate the number of years each
pixel was classified as burned, based on dNBR thresholding of Sentinel-2 imagery. Coordinate
system: UTM Zone 44N (EPSG:32644). Data: Copernicus Sentinel-2 (harmonised)

C.2 Grasslands Late Fire Frequency
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Late Fire Frequency in Grasslands (2016-2024)
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Figure C.2 Late fire season May), burn frequency of grasslands (Bijlmakers et al., 2019) map in
Bardia National Park, Nepal (2016—-2025) . Colours indicate the number of years each pixel was
classified as burned, based on dNBR thresholding of Sentinel-2 imagery. Coordinate system: UTM
Zone 44N (EPSG:32644). Data: Copernicus Sentinel-2 (harmonised)

C.3 Middle Fire Burn Frequency by Land Type
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Burn Frequency by Land Type
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Figure C.3 Middle fire period (March—April) burn frequency across different land cover types in
Bardia National Park. The panels show spatial patterns of fire occurrence by land cover class, with the
highest number of burns recorded in Sal forest and riverine forest. Burn frequencies are classified
from 0O to 10 based on the number of fire events detected between 2016 and 2025

Appendix C - Research Question 3

D.1 Biomass by Fire Occurrence
This is the statistical analysis of a figure which can be found in the text as figure 4.3.1

e  Shapiro-Wilk
o Burned: W = 0.66608, p-value = 9.784e-07
o Unburned: W = 0.73622, p-value = 5.867e-05
e Levene’s:
o  DfF value Pr(>F)
o group 1 0.45810.5018
o 48
e  Wilcoxon rank-sum test
o W =343, p-value = 0.5001
o alternative hypothesis: true location shift is not equal to 0

D. 2 Biomass per Fire Occurrence across Functional Groups

57



Biomass per Fire Occurence across Functional Groups
Fire occurrence between January 2024 and April 2025
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Figure D2 Dried biomass in recently burned vs unburned classes across the functional
groups

e  Shapiro-Wilk Test
o Pioneers Tall grass:
m  Burned W =0.951, p =0.608
m  Unburned W =0.877, p = 0.145
o  Short Grasses:
m Burned W =0.933, p = 0.544
m  Unburned W = 0.821, p = 0.048
o Late-Successional Tall Grasses:
m Burmed W=0.752, p =0.013
m  Unburned : W=0.720, p =0.015
e Levene’s:
o Pioneers Tall grass:

[ Df F value Pr(>F)
m group 1 4.7930.0406 *
n 20

o  Short Grasses:
n Df F value Pr(>F)
m group 1 1.6706 0.2171
[ 14

o Late-Successional Tall Grasses:
[ Df F value Pr(>F)
m  group 1 0.0011 0.9745
[ 10

e  Wilcoxon Rank-Sum Tests by Functional Group short & late
o  Short Grasses: W = 44, p-value = 0.2345
o Late-Successional Tall Grasses: W = 21, p-value = 0.6389
e Welch T-test for Pioneers
t=-1.43,df=10.38, p=0.182
Mean biomass (Burned) = 346.81
Mean biomass (Unburned) = 552.80
95% ClI: [-525.18, 113.20]

O O O O
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D.3 Biomass per Fire frequency

This is the statistical analysis of a figure which can be found in the text as figure 4.3.3

e  Shapiro-Wilk normality test
o data: residuals(model_31)
o W =0.8343, p-value = 5.968e-06
e leveneTest(biomass_dried ~ as.factor(burnfreq), data = data)
o Levene's Test for Homogeneity of Variance (center = median)
o DfF value Pr(>F)
o group 11 1.2242 0.3051 38
e  kruskal.test(biomass_dried ~ burnfreq, data = data)
o  Kruskal-Wallis rank sum test
o data: biomass_dried by burnfreq
o  Kruskal-Wallis chi-squared = 7.7713, df = 11, p-value = 0.7336

D. 4 Living Green Biomass across fire frequency

This is the statistical analysis of a figure which can be found in the text as figure 4.3.4
e  Shapiro-Wilk normality test
o data: residuals(model)
o W =0.94963, p-value = 0.03295
e Levene's Test for Homogeneity of Variance (center = median)

o Df F value Pr(>F)
o group 11 1.071 0.4089
o 38

° Kruskal-Wallis rank sum test
o data: fresh_weight_green_leaf by as.factor(burnfreq)
o  Kruskal-Wallis chi-squared = 7.8674, df = 11, p-value = 0.7251

D. 5 NDVI across Fire Frequencies

This is the statistical analysis of a figure which can be found in the text as figure 4.3.5

e  Shapiro-Wilk

o W =0.97753, p-value = 0.4532
e Breausch-Pagann test (linear model!)

o BP=10.355, df = 11, p-value = 0.4988
e Linear regression analysis

o Im(formula = NDVI ~ burnfreq, data = data)
Residuals:

Min 1Q Median 3Q Max

-0.11769 -0.02391 0.00000 0.02795 0.13664
Coefficients:

Estimate Std. Error t value Pr(>[t])
(Intercept) 0.24077 0.02012 11.964 1.87e-14 ***
burnfreq1 0.05126 0.05692 0.901 0.37350
burnfreq2 0.07919 0.03118 2.540 0.01530 *
burnfreq3 0.04977 0.03674 1.354 0.18358
burnfreq4 0.07760 0.02756 2.816 0.00767 **
burnfreq5 0.17551 0.02962 5.925 7.22e-07 ***
burnfreq6 0.07969 0.02962 2.690 0.01055 *
burnfreq7 0.14776 0.02962 4.988 1.38e-05 ***
burnfreq8 0.15314 0.03118 4.912 1.75e-05 ***
burnfreq® 0.29136 0.05692 5.119 9.16e-06 ***
burnfreq10 0.07122 0.05692 1.251 0.21852

O 0O O 0O o 00 0O o0 O o o O o0 o o
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burnfreq12 0.29144 0.05692 5.120 9.12e-06 ***

Signif. codes: 0 “** 0.001 *** 0.01 ** 0.05 ‘" 0.1’ 1
Residual standard error: 0.05324 on 38 degrees of freedom
Multiple R-squared: 0.6759, Adjusted R-squared: 0.5821
F-statistic: 7.204 on 11 and 38 DF, p-value: 1.915e-06

D.6 NDVI fre £ in functional

O O O O O O

This is the statistical analysis of a figure which can be found in the text as figure4.3.6
Pioneers Tall Grasses

- Shapiro-Wilk normality test: W = 0.906 , p = 0.04
- Levene’s Test: F=0.8,p=0.611
- Adjusted R?=0.546|p=0|n=22

Analysis for: Short Grasses

- Shapiro-Wilk normality test: W = 0.958 , p = 0.619
- Levene’s Test: F = 8.36 , p = 0.004
- Adjusted R?=0.286 |p=0.019 | n=16

Late-Successional Tall Grasses

e  Shapiro-Wilk normality test: W = 0.968 , p = 0.884
e Levene’s Test: F=6.1,p=0.024
e Adjusted R2=0.03|p=0.275|n=12

D.7 NDVI across Time since Last Fire
This is the statistical analysis of a figure which can be found in the text as figure 4.3.7

° Shapiro-Wilk normality test
o W =0.91878, p-value = 0.00213
e Levene's Test for Homogeneity of Variance (center = median)

o Df F value Pr(>F)
o group 2 0.8320.4415
o 47

e  Kruskal-Wallis rank sum test

o  Kruskal-Wallis chi-squared = 14.782, df = 2, p-value = 0.0006167
e Dunn (1964) Kruskal-Wallis multiple comparison

o p-values adjusted with the Bonferroni method.

Comparison
1 Long unburned [9+ years] - Moderate time since burn [1-4 years ago]
2 Long unburned [9+ years] - Recent burn [0 years]

3 Moderate time since burn [1-4 years ago] - Recent burn [0 years]
Z P.unadj P.adj

1-3.39839564 0.0006778232 0.0020334695

2 -3.72213005 0.0001975492 0.0005926477

3 -0.05410875 0.9568485186 1.0000000000

O O O O O O O O

D.8 Plant water content across fire frequencies




Plant Water Content Across Fire Frequencies
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Figure 4.3.8 Plant water content (dried-to-fresh biomass ratio) across fire frequencies. Kruskal-Wallis
test showed no significant difference (x?= 10.83, p = 0.457, n = 50).

e  Shapiro-wilk Test
o W =0.93936, p-value = 0.01271
e Levene's Test for Homogeneity of Variance :
o Levene's Test for Homogeneity of Variance (center = median)

o Df F value Pr(>F)
o group 11 0.6327 0.7895
o 38

e  Kruskal-wallis test
o  Kruskal-Wallis chi-squared = 10.833, df = 11, p-value = 0.4573

D.9 Water Content per Vegetation Community

Dried/Fresh Ratio per Vegetation Community

1.4 e
1.2
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0.8
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Saccharum spontaneum Saccharum bengalense Imperata cylindrica Narenga porphyrocoma
Vegetation Community
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Figure D9 Water content across vegetation communities. Kruskal-Wallis test found no significant
species-level differences (x? = 3.04, df = 3, p = 0.385).

e  Shapiro-Wilk normality test

o

o

data: residuals(model_water)
W =0.92271, p-value = 0.003709

e Levene's Test for Homogeneity of Variance (center = median)

o

(¢]

o

Df F value Pr(>F)
group 3 0.0429 0.988
44

o Kruskal-Wallis

e}

chi-squared = 3.0404, df = 3, p-value = 0.3854

D.10 Stem diameter across fire occurrence per vegetation communities

Stem Diameter by Fire Occurrence Across Vegetation Communities
Fire occurrence between January 2024 and April 2025
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Figure D.10 Average stem diameter [cm] in burned and unburned plots across dominant vegetation
communities in Bardia National Park between January 2024 and April 2025. While burned plots of
Saccharum spontaneum, Imperata cylindrica, and Narenga porphyrocoma showed slightly smaller
average stem diameters compared to unburned plots, these differences were not statistically
significant (p > 0.3). Shapiro—Wilk tests confirmed normality for most groups (all p > 0.19), and
Levene’s test showed no significant variance differences between burned and unburned groups. A
non-parametric Wilcoxon test was used for Saccharum bengalense due to small sample size, also
indicating no significant difference (p = 0.43).

e  Shapiro-wilk Test

o

data: subset(data_no_TA, scientific_names == "Saccharum spontaneum" & burned_status
"Burned")$avg_stem_diameter
m  W=0.83219, p-value = 0.1939
data: subset(data_no_TA, scientific_names == "Saccharum spontaneum" & burned_status
"Unburned")$avg_stem_diameter
m W =0.92531, p-value = 0.4744
data: subset(data_no_TA, scientific_names == "Saccharum bengalense" & burned_status
"Burned")$avg_stem_diameter
m W =0.63194, p-value = 0.0001332
Error in shapiro.test(subset(data_no_TA, scientific_names == "Saccharum bengalense" & :
[ sample size must be between 3 and 5000

62



o data: subset(data_no_TA, scientific_names == "Imperata cylindrica" & burned_status ==
"Burned")$avg_stem_diameter
m W =0.91228, p-value = 0.3704
o data: subset(data_no_TA, scientific_names == "Imperata cylindrica" & burned_status ==
"Unburned")$avg_stem_diameter
m W =0.88854, p-value = 0.2268
o data: subset(data_no_TA, scientific_names == "Narenga porphyrocoma" & burned_status ==
"Burned")$avg_stem_diameter
m W =0.89678, p-value = 0.3552
e data: subset(data_no_TA, scientific_names == "Narenga porphyrocoma" &
burned_status == "Unburned")$avg_stem_diameter
o W =0.94053, p-value = 0.6576
Levene's Test for Homogeneity of Variance :
o  Saccharum spontaneum:

u Df F value Pr(>F)
m  group 1 1.13550.3144
] 9

o Imperata cylindrica
[ Df F value Pr(>F)
m group 1 0.5617 0.466
[ 14

o Narenga porphyrocoma
] Df F value Pr(>F)
m group 1 1.67750.2314
n 8

Wilcoxon
o  Saccharum bengalense:W = 2, p-value = 0.4292
T test (two sample)
o  Saccharum spontaneum:
m t=-0.8606, df = 9, p-value = 0.4118
m alternative hypothesis: true difference in means between group Burned and group
Unburned is not equal to 0

m 95 percent confidence interval:

m  -0.3054045 0.1370711

m  sample estimates:

[ mean in group Burned mean in group Unburned
(] 0.4933333 0.5775000

o Imperata cylindrica
m t=-1.0596, df = 14, p-value = 0.3073
m alternative hypothesis: true difference in means between group Burned and group
Unburned is not equal to 0
m 95 percent confidence interval:
m -0.29485493 0.09985493
m  sample estimates:
(] mean in group Burned mean in group Unburned
[ 0.4875 0.5850
o Narenga porphyrocoma
m t=-0.34825, df = 8, p-value = 0.7366
m alternative hypothesis: true difference in means between group Burned and group
Unburned is not equal to 0
95 percent confidence interval:
-0.2921648 0.2154981
sample estimates:
mean in group Burned mean in group Unburned
0.7166667 0.7550000
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D.11 Average Leaf Size per Fire occurrence and Vegetation Communit

Average Leaf Size per Fire Occurence
Fire occurrence between January 2024 and April 2025, stratified by vegetation community
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Figure D.11 Average leaf size (cm?) in burned and unburned plots across dominant vegetation
communities in Bardia National Park, based on fire occurrence between January 2024 and April 2025.
None of the observed differences in average leaf size were statistically significant (p > 0.18, Wilcoxon
and t-tests). Shapiro—Wilk tests showed non-normal distributions for some unburned groups (p <
0.05), and Levene’s test indicated no significant variance difference (p = 0.53) in Narenga
porphyrocoma. Despite variation in means, statistical tests did not support a meaningful effect of fire
occurrence on average leaf size

e  Shapiro-wilk Test

e}

data: subset(data_no_TA, scientific_names == "Saccharum spontaneum" & burned_status ==
"Burned")$avg_leaf size

m W =0.98992, p-value = 0.8079
data: subset(data_no_TA, scientific_names == "Saccharum spontaneum" & burned_status ==
"Unburned")$avg_leaf size

m W =0.79889, p-value = 0.02785
data: subset(data_no_TA, scientific_names == "Saccharum bengalense" & burned_status ==
"Burned")$avg_leaf_size

m W =0.90918, p-value = 0.2754
Error in shapiro.test(subset(data_no_TA, scientific_names == "Saccharum bengalense" & :

sample size must be between 3 and 5000

data: subset(data_no_TA, scientific_names == "Imperata cylindrica" & burned_status ==
"Burned")$avg_leaf_size

m W =0.84476, p-value = 0.08428
data: subset(data_no_TA, scientific_names == "Imperata cylindrica" & burned_status ==
"Unburned")$avg_leaf size

m W =0.8073, p-value = 0.03425
data: subset(data_no_TA, scientific_names == "Narenga porphyrocoma" & burned_status ==
"Burned")$avg_leaf size

m W =0.88841, p-value = 0.31
data: subset(data_no_TA, scientific_names == "Narenga porphyrocoma" & burned_status ==
"Unburned")$avg_leaf size

m W =0.92768, p-value = 0.5808

o  Wilcoxon

e}

Saccharum spontaneum
L] Wilcoxon rank sum test with continuity correction
m data: avg_leaf_size by burned_status
s W=19, p-value = 0.1846
m  alternative hypothesis: true location shift is not equal to 0
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T-test

Saccharum bengalense

m  Wilcoxon rank sum test with continuity correction

m data: avg_leaf_size by burned_status

m W =28, p-value = 0.4292

m alternative hypothesis: true location shift is not equal to 0
Imperata cylindrica

] Wilcoxon rank sum test with continuity correction

m data: avg_leaf_size by burned_status

m W =39, p-value = 0.4948

m alternative hypothesis: true location shift is not equal to 0
Narenga porphyrocoma

m  Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 1 0.4296 0.5306

8

Narenga porphyrocoma

m  Two Sample t-test

m t=-1.1278, df = 8, p-value = 0.2921

m  alternative hypothesis: true difference in means between group Burned and group
Unburned is not equal to 0
95 percent confidence interval:
-152.45285 52.31035
sample estimates:

mean in group Burned mean in group Unburned
94.1950 144.2663

D.12 Grass height across fire occurrence
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Figure D.12 Plant height comparison between burned and unburned plots. Although the median
height in burned plots appears higher, this difference was not statistically significant (p = 0.15,
Wilcoxon rank-sum test). Shapiro—Wilk tests indicated a deviation from normality in both groups (p <
0.05), while Levene’s test confirmed homogeneity of variance (p = 0.17). Despite visible spread
differences, the analysis does not support a significant effect of burn status on plant height.

Shapiro-Wilk normality test

o

o

Burned

m W=0.92, p-value = 0.03468
Unburned

m W =0.88482, p-value = 0.01495
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e Homoscedasticity (Levene’s test)
o Df F value Pr(>F)
o group 1 1.9208 0.1724

o 46

e  Wilcoxon rank-sum test
o W =353, p-value =0.1516
o alternative hypothesis: true location shift is not equal to 0

D.1 Ir height acr:
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Plant Height vs Burn Frequency by Plant Species
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Figure D.13 Relationships between plant height and fire frequency over the past 10 years across
dominant grass species. Regression analysis revealed differing trends per species. Saccharum
spontaneum showed a significant decline in height with increasing burn frequency (p = 0.026), while
Narenga porphyrocoma exhibited a similar pattern with multiple significant negative coefficients (p <
0.05). In contrast, Imperata cylindrica and Saccharum bengalense showed no statistically significant
trends (p > 0.1). Residuals conformed to normality (Shapiro—Wilk p > 0.3) and heteroscedasticity tests
(Breusch—Pagan p > 0.07), except for S. bengalense, which showed slight deviation from normality (p

= 0.016).

e Linear regression
o Imperata cylindrica

Residuals:

Min 1Q Median

3Q

Max

-64.533 -11.325 0.000 5.925 65.267

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 84.80

burnfreq2
burnfreq3
burnfreq4
burnfreq5
burnfreq7
burnfreq8
burnfreq9

37.80
52.20
18.30
58.80
83.53
53.50
77.40

43.31

48.42
61.25
53.05
53.05
50.01
53.05
61.25

0.781
0.852
0.345
1.108
1.670
1.009
1.264

1.958 0.0859.

0.4575
0.4189
0.7390
0.2999
0.1334
0.3427
0.2419
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Signif. codes: 0 “** 0.001 *** 0.01 ** 0.05 ‘" 0.1 "1
Residual standard error: 43.31 on 8 degrees of freedom
Multiple R-squared: 0.3854, Adjusted R-squared: -0.1524
F-statistic: 0.7166 on 7 and 8 DF, p-value: 0.6632

Narenga porphyrocoma

Residuals:
3 6 9 13 15 17

-1.500e+01 -3.810e+01 1.500e+01 3.660e+01 -3.400e+00 -3.660e+01

19 47 48 49
-1.776e-15 3.400e+00 3.810e+01 5.329e-15
Coefficients:

Estimate Std. Error t value Pr(>[t])

(Intercept) 300.40 27.51 10.919 0.0004 ***
burnfreq5 -122.50 38.91 -3.148 0.0346 *
burnfreq7 -140.00 38.91 -3.598 0.0228 *
burnfreq8 -132.00 38.91 -3.393 0.0275*
burnfreq10 -123.40 47.65 -2.590 0.0607 .
burnfreq12 -13.80 47.65 -0.290 0.7865
Signif. codes: 0 “** 0.001 *** 0.01 ** 0.05 ‘" 0.1 " 1
Residual standard error: 38.91 on 4 degrees of freedom
Multiple R-squared: 0.8477, Adjusted R-squared: 0.6572
F-statistic: 4.451 on 5 and 4 DF, p-value: 0.08652

Saccharum bengalense

Residuals:
1 8 25 26 27 28
8.604e-15 -1.199e-15 2.488e-16 -3.700e+00 2.970e-16 -4.170e+01
29 31 38 43 44
4.410e+01 -1.180e+01 -1.137e-14 1.180e+01 1.300e+00
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 98.60 31.53 3.127 0.0353 *
burnfreq2 -6.20 44.60 -0.139 0.8961
burnfreq3 60.20 38.62 1.559 0.1941
burnfreg4  96.00 44.60 2.153 0.0977 .
burnfreg5 115.80 44.60 2.597 0.0603 .
burnfreq6  67.30 35.26 1.909 0.1289
burnfreq7 6.80 44.60 0.152 0.8862
Signif. codes: 0 “** 0.001 *** 0.01 ** 0.05 ‘0.1 "’ 1
Residual standard error: 31.53 on 4 degrees of freedom
Multiple R-squared: 0.7918, Adjusted R-squared: 0.4796
F-statistic: 2.536 on 6 and 4 DF, p-value: 0.1935

Saccharum spontaneum

Residuals:

Min  1Q Median 3Q Max
-63.12-14.90 0.00 14.90 48.08
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 213.12  18.85 11.307 2.86e-05 ***
burnfreq1 -12.52  46.17 -0.271 0.795
burnfreqg4 -66.02 35.26 -1.872 0.110
burnfreq6 -103.62 35.26 -2.939 0.026 *
burnfreq8 -39.92  46.17 -0.865 0.420
Signif. codes: 0 “** 0.001 *** 0.01 ** 0.05 ‘" 0.1 " 1
Residual standard error: 42.15 on 6 degrees of freedom
Multiple R-squared: 0.628, Adjusted R-squared: 0.38
F-statistic: 2.532 on 4 and 6 DF, p-value: 0.1485

Shapiro-Wilk normality test
data: residuals(model_ic)

o

67



m W =0.93729, p-value = 0.3172
o data: residuals(model_np)
m W =0.93048, p-value = 0.4526
o data: residuals(model_sb)
m W =0.81694, p-value = 0.01572
o data: residuals(model_ss)
m W =0.96241, p-value = 0.8013
e Breusch-Pagan
o data: model_ic
m BP =8.6233, df = 7, p-value = 0.2808
o data: model_np
m BP =10, df = 5, p-value = 0.07524
o data: model_sb
m  BP =4.1124, df = 6, p-value = 0.6615
o data: model_ss
m  BP =5.8947, df = 4, p-value = 0.2071

D.14 Bulk density across fire frequency

Bulkdensity per Fire Frequency
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Figure D.14 Bulk density across different fire frequencies between 2016 and 2025. No significant
relationship was detected between fire frequency and bulk density (Fi,ss = 1.42, p = 0.206).
Assumptions of normality (Shapiro-Wilk p = 0.354) and homogeneity of variances (Levene’s p =
0.368) were met.

e  Shapiro-wilk Test

o  p-value = 0.354
e Levene's Test for Homogeneity of Variance :

o p-value = 0.3684
e One-way ANOVA
> summary(model_bulkburn)

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(burnfreq) 11 0.2577 0.02343 1.416 0.206
Residuals 38 0.6287 0.01655

O O O O

D. 15 Volumetric moisture Content
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Volumetric Moisture Content Across Fire Frequencies
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Figure D.15 Volumetric soil moisture content across different fire frequencies (2016-2025). No
statistically significant differences in moisture content were found among fire frequency classes (Fi1,3s
= 0.31, p = 0.979). Assumptions of normality (Shapiro—Wilk p = 0.226) and equal variances (Levene’s
p = 0.323) were satisfied

e Shapi

o

(¢]
[¢]
(¢]

ro-wilk Test

W = 0.96974, p-value = 0.2258

e Levene's Test for Homogeneity of Variance :
Df F value Pr(>F)

group 11 1.1958 0.3226

38

e One-way ANOVA
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(burnfreq) 11 675 61.37 0.31 0.979

(¢]

o

[¢]

Residuals

38 7516 197.80

Appendix D - Research Question 4

E.1 Fire Frequencies across Vegetation Communities

This is the statistical analysis of a figure which can be found in the text as figure 4.4.1

e  Shapiro-wilk Test

W =0.95403, p-value = 0.05794

e Levene's Test for Homogeneity of Variance :
Df F value Pr(>F)

group 3 0.5399 0.6574

o

@]
O
(¢]

44

e One way anova
summary(model_ta)

(¢]

o

(¢]

o

o

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(dominant_species) 3 100.7 33.57 4.727 0.00606 **

Residuals

44 312.5 7.10

e Tukey HSD Post Hoc Test
$"as.factor(scientific_names)’

o
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diff lwr  upr
Saccharum bengalense-Saccharum spontaneum 1.7272727 -1.3069625 4.761508
Imperata cylindrica-Saccharum spontaneum 2.0511364 -0.7359867 4.838259
Narenga porphyrocoma-Saccharum spontaneum 4.3636364 1.2544704 7.472802
Imperata cylindrica-Saccharum bengalense 0.3238636 -2.4632594 3.110987
Narenga porphyrocoma-Saccharum bengalense 2.6363636 -0.4728023 5.745530
Narenga porphyrocoma-Imperata cylindrica 2.3125000 -0.5560160 5.181016

p adj
Saccharum bengalense-Saccharum spontaneum 0.4345399
Imperata cylindrica-Saccharum spontaneum 0.2167826
Narenga porphyrocoma-Saccharum spontaneum 0.0028106
Imperata cylindrica-Saccharum bengalense 0.9895023
Narenga porphyrocoma-Saccharum bengalense 0.1223004

Narenga porphyrocoma-Imperata cylindrica 0.1527969

O 0 O 0o 0 o0 0O o O o O O o o

E.2 Average Leaf Size across fire freq

Average Leaf Size per Fire Frequency by Vegetation Communties
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Figure E.2 Leaf size across fire frequencies for four dominant grass species. No significant
relationships were found (all p > 0.3), and model assumptions were only violated in N. porphyrocoma
(variance) and I. cylindrica, S. spontaneum (normality).

Saccharum bengalense
e  Shapiro-Wilk normality test: W = 0.889 p = 0.136
e Levene's Test: F =2.85p =0.165
e Adjusted R2=-0.047 | p = 0.476
Imperata cylindrica
e  Shapiro-Wilk normality test: W = 0.824 p = 0.006
e Levene's Test: F =0.45p =0.842
e Adjusted R2=0.007 | p=0.312
Narenga porphyrocoma
e  Shapiro-Wilk normality test: W = 0.965 p = 0.842

e Levene's Test: F =2.487109e+30p =0
e Adjusted R2=-0.115|p =0.793
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Saccharum spontaneum

e  Shapiro-Wilk normality test: W = 0.844 p = 0.035
e Levene's Test: F=0.75p = 0.594
e Adjusted R2=-0.098 | p =0.755

E.3 Amount of Leaves across fire freq

This is the statistical analysis of a figure which can be found in the text as figure 4.4.3
e  Shapiro-Wilk normality test
o data: residuals(model_labf)
o W =0.84574, p-value = 1.189e-05
e Levene's Test for Homogeneity of Variance (center = median)

o Df F value Pr(>F)
o group 11 2.2111 0.03466 *
o 38

0 -
o  Signif. codes: 0 “*** 0.001 *** 0.01 ** 0.05“" 0.1’ 1

e  Kruskal-Wallis rank sum test
o data: avg_leaf by burnfreq
o  Kruskal-Wallis chi-squared = 22.143, df = 11, p-value = 0.02329

° Post hoc Dunn'’s test with Bonferroni correction
o > dunnTest(avg_leaf ~ burnfreq, data = data, method = "bonferroni")
o  Dunn (1964) Kruskal-Wallis multiple comparison
o p-values adjusted with the Bonferroni method.

E.4 Specific L eaf Area during fire occurrence

Specific Leaf Area (SLA) across Fire Ocurrence
Fire occurrence between January 2024 and April 2025, stratified by vegetation community
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Figure E.4 Specific Leaf Area (SLA) by fire occurrence across four grass species. No significant
differences were detected between burned and unburned samples (p > 0.1 for all species; Wilcoxon
tests). Model assumptions were largely met, except normality violations in S. spontaneum (unburned

group).

Saccharum spontaneum

° Shapiro-Wilk normality test
o data: subset(species_data, burned_status == "Burned")$specific_leaf_area
o W =0.92308, p-value = 0.4633
o data: subset(species_data, burned_status == "Unburned")$specific_leaf area
o W=0.67807, p-value = 0.001269

e Levene's Test for Homogeneity of Variance (center = median)
o Df F value Pr(>F)
o group 1 0.6443 0.4428

71



9

Wilcoxon rank sum test with continuity correction

o data: specific_leaf_area by burned_status
o W=12, p-value =1
o alternative hypothesis: true location shift is not equal to 0

Imperata Cylindrica

Shapiro-Wilk normality test
o data: subset(species_data, burned_status == "Burned")$specific_leaf_area
o W =0.93216, p-value = 0.536
o data: subset(species_data, burned_status == "Unburned")$specific_leaf_area
o W =0.9435, p-value = 0.6458
Levene's Test for Homogeneity of Variance (center = median)

o Df F value Pr(>F)
o group 1 0.01830.8945
e} 14

Wilcoxon rank sum test with continuity correction
o data: specific_leaf_area by burned_status
o W =24, p-value = 0.4309
o alternative hypothesis: true location shift is not equal to 0

Narenga porphyrocoma

Shapiro-Wilk normality test
o data: subset(species_data, burned_status == "Burned")$specific_leaf_area
o W =0.96464, p-value = 0.8547
o data: subset(species_data, burned_status == "Unburned")$specific_leaf_area
o W=0.84122, p-value = 0.199

> leveneTest(specific_leaf_area ~ burned_status, data = species_data)
Levene's Test for Homogeneity of Variance (center = median)

o Df F value Pr(>F)

o group 1 2.3693 0.1623

o 8

> wilcox.test(specific_leaf area ~ burned_status, data = species_data, exact = FALSE)
Wilcoxon rank sum test with continuity correction
o data: specific_leaf_area by burned_status
o W =4, p-value = 0.1098
o alternative hypothesis: true location shift is not equal to 0

Saccharum bengalense

Shapiro-Wilk normality test
o data: subset(species_data, burned_status == "Burned")$specific_leaf_area
o W=0.91787, p-value = 0.3396
Levene's Test for Homogeneity of Variance (center = median)

o Df F value Pr(>F)
o group 1 0.88550.3713
o 9

Wilcoxon rank sum test with continuity correction
o data: specific_leaf_area by burned_status
o W =3, p-value = 0.6353
o alternative hypothesis: true location shift is not equal to 0

E.5 Shannon acr Fire Fr n

This is the statistical analysis of a figure which can be found in the text as figure 4.4.4

Linear Model
° Min 1Q Median 3Q Max
e -0.77841-0.20408 0.02674 0.24292 0.51553
e Coefficients:



Estimate Std. Error t value Pr(>[t])

(Intercept) 0.58816 0.08098 7.263 2.91e-09 ***
burnfreq 0.04756 0.01488 3.196 0.00246 **
Signif. codes: 0 “** 0.001 *** 0.01 ** 0.05 ‘0.1 "’ 1
Residual standard error: 0.3027 on 48 degrees of freedom
Multiple R-squared: 0.1755, Adjusted R-squared: 0.1583
F-statistic: 10.22 on 1 and 48 DF, p-value: 0.002462
° Shapiro-Wilk normality test

o data: residuals(model_shannon)

o W =0.96431, p-value = 0.1347
e  Breusch-Pagan test

o data: model_shannon

o BP=0.35715, df = 1, p-value = 0.5501

E.6 Shannon across Time Since Last Fire
This is the statistical analysis of a figure which can be found in the text as figure 4.4.5
®  Shapiro-Wilk normality test
o data: residuals(model)
o W =0.97007, p-value = 0.2329
e Levene's Test for Homogeneity of Variance (center = median)

) Df F value Pr(>F)
o group 2 1.054 0.3566
o 47
e > summary(anova_model)
o Df Sum Sq Mean Sq F value Pr(>F)

o fire_recency 2 1.001 0.5007 5.432 0.00754 **
o Residuals 47 4.332 0.0922
o  Signif. codes: 0 “** 0.001 *** 0.01 **0.05°" 0.1 “* 1

° Tukey multiple comparisons of means

o 95% family-wise confidence level

o  Fit: aov(formula = shannon_index ~ fire_recency, data = data)

o  $fire_recency

o diff Iwr upr

o Moderate time since burn [1-4 years ago]-Long unburned [9+ years] 0.2338883 -0.10244519
0.5702217

o Recent burn [0 years] -Long unburned [9+ years] 0.4046157 0.09411730
0.7151141

o Recent burn [0 years] -Moderate time since burn [1-4 years ago] 0.1707274 -0.06437816
0.4058330

o p adj

o Moderate time since burn [1-4 years ago]-Long unburned [9+ years] 0.2223247

o Recent burn [0 years] -Long unburned [9+ years] 0.0077656

o Recent burn [0 years] -Moderate time since burn [1-4 years ago] 0.1950967

E.7 Shannon Diversity Index per Vegetation Community
This is the statistical analysis of a figure which can be found in the text as figure 4.4.6
summarise(p_value = shapiro.test(shannon_index)$p.value)

scientific_names p_value
<fct> <dbl>
1 Saccharum spontaneum 0.194
2 Saccharum bengalense 0.652
3 Imperata cylindrica 0.531
4 Narenga porphyrocoma 0.726

e Levene's Test for Homogeneity of Variance (center = median)
o Df F value Pr(>F)
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e}

o

group 3 1.4147 0.2512
44

e > summary(anova_model)

o

o

e}

Df Sum Sq Mean Sq F value Pr(>F)
scientific_names 3 0.393 0.1311 1.267 0.297
Residuals 44 4.553 0.1035

E.8 Fire Fr n nd Shannon per Vegetation mmunit

This is the statistical analysis of a figure which can be found in the text as figure 4.4.7

° Shapiro-Wilk normality test

data: residuals(model_spont)
W =0.90488, p-value = 0.2118

e  studentized Breusch-Pagan test

[ ]
[ ]
Bengalense

data: model_spont
BP =0.2753, df = 1, p-value = 0.5998

e Linear Model S

(e]

O O O 0O 0O 0O 0o O O ©o

(e]

Residuals:

Min 1Q Median 3Q Max
-0.30711 -0.20929 -0.00884 0.18723 0.40620
Coefficients:

Estimate Std. Error t value Pr(>[t|)

(Intercept) 0.6648 0.1737 3.828 0.00404 **
burnfreq  0.0367 0.0360 1.019 0.33459
Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05°." 0.1 ‘"1
Residual standard error: 0.2456 on 9 degrees of freedom
Multiple R-squared: 0.1035, Adjusted R-squared: 0.003919
F-statistic: 1.039 on 1 and 9 DF, p-value: 0.3346

e  Shapiro-Wilk normality test

o

W = 0.94685, p-value = 0.604

e  studentized Breusch-Pagan test

o

BP = 0.63939, df = 1, p-value = 0.4239

Imperata cylindrica
° Linear Model
. Residuals:

O 0O 0O 0O 0O 0o 0o o0 O o

o

Min 1Q Median 3Q Max
-0.78690 -0.15090 -0.03229 0.24024 0.46590
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.70151 0.17251 4.067 0.00116 **
burnfreq  0.02135 0.03207 0.666 0.51645
Signif. codes: 0 “*** 0.001 *** 0.01 ** 0.05°.” 0.1 ‘" 1
Residual standard error: 0.3385 on 14 degrees of freedom
Multiple R-squared: 0.03068, Adjusted R-squared: -0.03856
F-statistic: 0.4431 on 1 and 14 DF, p-value: 0.5164

° Shapiro-Wilk normality test

o

W =0.95167, p-value = 0.5166

° studentized Breusch-Pagan test

o

BP =0.05039, df = 1, p-value = 0.8224

Narenga porphyrocoma
e Linear Model

o

O O O 0O 0O 0O o0 O O ©°

Residuals:
Min  1Q Median 3Q Max
-0.2914 -0.2331 0.0150 0.1673 0.3639
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.84525 0.23616 3.579 0.0072 **
burnfreq 0.01614 0.03179 0.508 0.6254
Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05°." 0.1 ‘"1
Residual standard error: 0.2503 on 8 degrees of freedom
Multiple R-squared: 0.0312, Adjusted R-squared: -0.0899

74



o  F-statistic: 0.2577 on 1 and 8 DF, p-value: 0.6254

° Shapiro-Wilk normality test
o W=0.92742, p-value = 0.423
° studentized Breusch-Pagan test

o BP=2.9347, df =1, p-value = 0.0867

E.9 Shannon across Fire Occurrence per Vegetation Community
This is the statistical analysis of a figure which can be found in the text as figure 4.4.8
Saccharum spontaneum
° Shapiro-Wilk normality test
o W=0.90178, p-value = 0.1943
° leveneTest(shannon_index ~ burned_status, data = spontaneum_data)

o Df F value Pr(>F)
o group 1 1.7044 0.2241
o 9
° Wilcoxon rank sum test with continuity correction

o data: shannon_index by burned_status
o W =225, p-value = 0.03985
o alternative hypothesis: true location shift is not equal to 0

Saccharum bengalense
° Shapiro-Wilk normality test
o W=0.95062, p-value = 0.6519
e leveneTest(shannon_index ~ burned_status, data = bengalense_data)

o Df F value Pr(>F)
o group 1 2.9746 0.1187
o 9
° Wilcoxon rank sum test with continuity correction

o data: shannon_index by burned_status
o W=5, p-value =1
o alternative hypothesis: true location shift is not equal to 0

Imperata cylindrica
° Shapiro-Wilk normality test
o W =0.95254, p-value = 0.531
° leveneTest(shannon_index ~ burned_status, data = imperata_data)

o Df F value Pr(>F)
o group 1 3.2243 0.09416 .
o 14

o  Signif. codes: 0 “*** 0.001 ** 0.01 ** 0.05‘" 0.1’ 1
e  Wilcoxon rank sum test with continuity correction
o data: shannon_index by burned_status
o W =35, p-value = 0.7924
o alternative hypothesis: true location shift is not equal to 0

Narenga porphyrocoma
e  Shapiro-Wilk normality test
o W =0.95484, p-value = 0.7258
e leveneTest(shannon_index ~ burned_status, data = narenga_data)

o Df F value Pr(>F)
o group 1 1.0995 0.325
o 8
° Wilcoxon rank sum test with continuity correction

o data: shannon_index by burned_status
o W =22, p-value = 0.0422
o alternative hypothesis: true location shift is not equal to 0
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