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The “trophic downgrading of planet Earth” refers to the systematic decline of the world’s largest vertebrates.
However, our understanding of why megafauna extinction risk varies through time and the importance of site- or
species-specific factors remain unclear. Here, we unravel the unexpected variability in remaining terrestrial megafauna
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assemblages across 10 Southeast Asian tropical forests. Consistent with global trends, every landscape experienced License 4.0 (CC BY-NC).
Holocene and/or Anthropocene megafauna extirpations, and the four most disturbed landscapes experienced

2.5 times more extirpations than the six least disturbed landscapes. However, there were no consistent size- or

guild-related trends, no two tropical forests had identical assemblages, and the abundance of four species showed

positive relationships with forest degradation and humans. Our results suggest that the region’s megafauna

assemblages are the product of a convoluted geoclimatic legacy interacting with modern disturbances and that

some megafauna may persist in degraded tropical forests near settlements with sufficient poaching controls.

INTRODUCTION
The loss of the world’s largest terrestrial vertebrates is a conspicuous
portent of the Anthropocene mass extinction (1). Megafauna, defined
here as large carnivores (Carnivora) with average adult body masses
>15 kg (2) and terrestrial megaherbivores with average adult body
masses =100 kg (3), are disproportionately targeted by hunters for
both food and trade, which is often unsustainable because of their
comparatively slow reproductive cycles (I). Megafauna are also acutely
affected by habitat loss and fragmentation because of their large
home ranges and dietary requirements (2, 3). More than 60% of all
large carnivores and megaherbivores are now threatened with ex-
tinction (3, 4). Downgraded megafauna assemblages have important
ramifications for conservation because these species are dispropor-
tionately important for maintaining diverse food webs and ecological
processes, and their extinctions have often triggered unexpected
cascading effects that degrade ecosystems (5, 6). Understanding and
halting local megafauna abundance declines that rapidly reduce eco-
system functioning and foreshadow extinctions is urgently needed (7).
The drivers of megafauna extinctions have drastically shifted be-
tween the Pleistocene (between 2.6 million and 11,700 years before
present), Holocene [11,700 to 100 years before present (8, 9)], and
Anthropocene epochs [<70 years before present (1)]. During the
Pleistocene, slowly operating geological, climatic, and biological
processes, such as fluctuations in sea levels and the resulting suitable
habitat, were key factors shaping extinction dynamics (10, 11). The
Late Pleistocene and Early Holocene epochs saw a surge of mega-
fauna extinctions coinciding with human colonization and settlement
patterns (12) in combination with ongoing climatic factors that drove
fluctuations in habitat availability (13, 14). Humans’ influence on
biodiversity patterns has only intensified through time, and since
the mid-20th century (i.e. ~1950 CE), a period now referred to as
the Anthropocene epoch, the direct and indirect actions of humans
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are now the primary drivers of species extinctions, culminating in at
least 322 terrestrial vertebrate extinctions since 1500 CE (I, 15).
However, there is a tendency to assume that globally emergent pat-
terns will manifest locally with less attention paid to the immense
variations in species- and site-specific circumstances (16).

Southeast Asia is an ideal setting to study dynamic conservation
threats because it retains high megafauna diversity yet suffers from
extreme deforestation and poaching and has the highest percentage
of threatened megafauna globally (4, 17). While it is often assumed
or argued that extant megafauna remains largely confined to remote
areas characterized by intact forests and minimal anthropogenic
pressure (2, 3), there are numerous Southeast Asian examples of
small protected areas near human settlements that retain high
megafauna richness (18-20). The region also has a unique geological,
climatic, and anthropogenic history that includes the Quaternary
period’s largest volcanic super-eruption [Toba Caldera Complex
~75,000 years ago (21)], several dramatic changes in sea level that
connected and separated Java, Sumatra, Borneo, and the Malay
Peninsula as recently as ~10,000 years ago (8, 9), and more than
60,000 years of continued human existence, including the earliest
pronounced human population expansion outside Africa (22). Even
in contemporary Southeast Asian tropical forests, megafauna face
unique challenges due to the forest’s irregular supra-annual mast
fruiting phenology, where most fruiting plants in a forest release
>90% of viable fruit in ~6 weeks followed by years without fruit
(23). However, the degree to which Southeast Asia’s unique history
and dynamic ecological forces have resulted in homogenization or
variation in megafaunal assemblages remains unclear.

Here, we assess patterns in Holocene mammal extinctions, con-
temporary mammal abundances, and resulting Anthropocene assem-
blages for 14 megafauna species across 10 Southeast Asian tropical
forest landscapes using a synthesis of occurrence records and 21 new
camera trapping surveys (Tables 1 and 2 and table S1). We examine the
role of key variables related to forest quality, anthropogenic, and abiotic
influences to explain these patterns (table S2). We test three broadly
held hypotheses to determine whether Southeast Asian megafauna
assemblages follow globally emergent and well-documented patterns
resulting in systematically downgraded assemblages (5), or if assem-
blages are more idiosyncratic than previously appreciated, suggesting
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Table 1. Study site descriptions. All landscape covariates were calculated in a 10-km radius area around the centroid of our camera trapping surveys in each
landscape, except for forest size. FLII stands for Forest Landscape Integrity Index (26), and HFP stands for Human Footprint Index (38). NP = national park,
WS = wildlife sanctuary, PF = production forest, and CA = conservation area. + refers to protected areas that are connected to larger expanses of forest.

Intact forest cover

Human density

Landscape Region Forest size (km?) (%) FLIl score (km™2) HFP score
1) Khao Yai NP Central Thailand 2168 68.7 8.7 742 6.1
z)KhaoBanThatWS NMalayPen|nsu|a 300 e 532 [ 54 e 21151 s 142 -
3)U|u|v|udap|: e NMa|aypenmsu|a 1152 e 769 [ 90 e 34 JE 43 -
4 ;Zsszrv?re“ 5. Malay Peninsula 130 494 33 10,595 1.0
5)5mgapore s 5|ngapore 49 e ]25 [ 04 s 3224317 s 420 -
6)Gunung Leuseer Northsumatra 8630+ 696 [ 79 JE ST 7602 R 54 -
7)Ker|nc|5eb|ath Cemral 5umatra . 13300 649 [ 77 e 1295 R 51 -
8) Bukit Barisan South Sumatra 3568 80.0 8.8 0 56

Selatan NP
9)|_amb|rH|||sz Sarawak 70 e 534 [ 26 e 6349 R 34 -
10)Danum Va“ey CA sabah 433* e 720 [ 96 e o R 69 -

the importance of site- and species-specific factors. First, we predicted
that large carnivores would suffer more extirpations than mega-
herbivores because of their territoriality and reliance on healthy prey
populations that put them at a higher risk than megaherbivores
(4, 24). Second, we predicted that larger species within each guild would
suffer more extirpations than smaller species (I). Last, we predicted
that landscapes with more forest degradation and human pressure
would suffer more extirpations and have lower abundances (5).

RESULTS

Species detections

We detected five large carnivore and nine megaherbivore species in
11,784 captures over a trapping effort of 63,423 days across 10 tropical
forest landscapes in Thailand, Peninsular Malaysia, Singapore,
Sumatra, and Borneo (Fig. 1, Tables 1 and 2, and tables S1 and S3).
At the extremes of species detections, wild boar (Sus scrofa) repre-
sented 65% of all megafauna detections (7656 detections, present in
all naturally occurring landscapes), while we failed to detect any
Sumatran rhinoceros (Dicerorhinus sumatrensis) despite a trapping
effort of 14,507 trap nights across three landscapes where the spe-
cies is currently thought to persist (25). Accordingly, Anthropocene
extirpations were defined as when a species went undetected in
large camera trapping surveys at landscapes where they are currently
recognized as extant by the IUCN Red List, noting that this defini-
tion includes species that persist at such low abundances, they can
be considered functionally extinct, such as Sumatran rhinoceros
(25). For brevity, we consider nondetections as either functional
extinctions or real extirpations and refer to all nondetections as
“extirpations” hereafter.

Megafauna extirpations

We documented 74 megafauna extirpations total (both the Holocene
and Anthropocene) and recorded few significant predictors of
extirpations (Fig. 2). The relative number of extirpations did not
significantly differ between large carnivores and megaherbivores
(Welch two-sample t test, f4g=112 = —0.06, P = 0.95 for the Holocene;
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tg6 = —1.1, P = 0.30 for the Anthropocene; Fig. 3A) or between the
largest and smallest species within each guild (Holocene carnivores:
t,7=-0.23, P=0.83; Anthropocene carnivores: t, = —0.76, P = 0.53;
Holocene herbivores: fg; = 2.1, P = 0.08; Anthropocene herbivores:
tso = —0.32, P = 0.76; Fig. 3B). Similarly, the proportion of species
extirpated per landscape did not significantly vary with any of the
12 habitat covariates describing forest quality, anthropogenic con-
ditions, or abiotic conditions [all coefficients in the univariate binomial
generalized linear models (GLMs) had P > 0.05; table S4]. However,
the four most disturbed landscapes—as measured by the Forest
Landscape Integrity Index (FLII) (26) (Table 1)—experienced sig-
nificantly more total extirpations than the six least disturbed land-
scapes (9 versus 3.6 total extirpations per landscape; t47 = —4.9,
P =0.005; Table 1 and Fig. 2C).

Holocene extirpations did not vary significantly among guilds or
between subregions but did exhibit large variation among species.
We documented 58 Holocene extirpations, which were defined as
when the species’ [IUCN Red List range no longer includes landscapes
present in its Holocene range, as defined in prior work (table S3).
There were 21 large carnivore extirpations out of 43 possible and
there were 37 of 75 possible megaherbivore extirpations (Fig. 2,
orange bars). Sumatran rhinoceros suffered the highest number of
Holocene extirpations, being lost from 7 of 10 landscapes. This was
followed by banteng (Bos javanicus), which were extirpated from six
of seven landscapes, and bearded pigs (Sus barbatus), which were
extirpated from five of nine landscapes. Meanwhile, there were no
Holocene extirpations of wild boar or mainland serow (Capricornis
sumatraensis; Fig. 2A). There were 6.2 Holocene extirpations per
landscape in mainland Southeast Asia, 3 extirpations per landscape
in Borneo, and 0.6 in Sumatra, noting that Kerinci Seblat National
Park in central Sumatra did not experience any extirpations. The
two most modern disturbed landscapes of Singapore [FLII = 0.4,
with 10 being the most pristine, and Human Footprint Index (HFP) =
42, with 50 having the most human influence] and Lambir Hills
National Park in Borneo (FLII = 2.6 and HFP = 8.4) lost 85 and 78%
of their megafauna assemblages during the Holocene, respectively
(Fig. 2C). However, the two least modern disturbed landscapes of
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Fig. 1. Idiosyncratic megafauna assemblages are not systematically shaped by disturbances. (A) Highly variable Anthropocene megafauna assemblages across our
10 study landscapes, and each circle represents the Forest Landscape Integrity Index (FLII) (26) in a 10-km radius around the center of each landscape. In (B), the base
layer of the map depicts the contemporary habitat quality using the FLII, binned into high (FLII scores 9 to 10), medium (6 to 9), and poor (<6) integrity forest. The tan
coloration shows land area that was exposed 50 m above current water levels at the onset of the Holocene [~12,000 years ago (68)]. See Table 1 for more information
about each landscape and table S3 for all megafauna detected and abundance relative to each landscape. (C and D) Variation in FLIl and HFP (38) for each study site. The
study landscapes with new camera trapping on all panels are numbered as follows: 1, Khao Yai National Park; 2, Khao Ban That Wildlife Sanctuary; 3, Ulu Muda Forest
Reserve; 4, Pasoh Forest Reserve; 5, Singapore; 6, Gunung Leuser National Park; 7, Kerinci Seblat National Park; 8, Bukit Barisan Selatan National Park; 9, Lambir Hills

National Park; and 10, DVCA.

Danum Valley Conservation Area (DVCA) in Borneo (FLII = 9.6 and
HFP = 6.9) and Ulu Muda Forest Reserve in Peninsular Malaysia
(FLII = 9.0 and HFP = 4.3) also lost 33 and 43% of their megafauna,
respectively (Fig. 2A).

For the Anthropocene, there were 16 extirpations including 8 of
30 possible extirpations of large carnivores and 8 of 46 possible for
megaherbivores (Fig. 2, gray bars). All landscapes experienced at
least one Anthropocene megafauna extirpation except for the
highly intact forest of DVCA in Borneo and Singapore, which
had already lost most species before 1950, which counted toward
the Holocene (Fig. 2C). Tigers (Panthera tigris) and Sumatran
rhinoceros experienced the most Anthropocene extirpations (each
extirpated from three landscapes), while six species did not experi-
ence any (Fig. 2B). By region, there were 1.6 Anthropocene extirpa-
tions per landscape in mainland Southeast Asia, 1 in Borneo, and
1.6 in Sumatra.

Megafauna abundance trends

We assessed relationships between local megafauna abundances using
hierarchical N-mixture abundance modeling while accounting for
imperfect detection. Elevation was the most important variable
assessed using AICc model selection and appeared in eight species’
top models, including significant positive relationships for tigers,
clouded leopards (Neofelis nebulosa and diardi), sun bears (Helarctos
malayanus), Malay tapir (Tapirus indicus), and bearded pigs; a
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significant negative relationship for sambar deer (Rusa unicolor);
and nonsignificant relationships with Asian elephants (Elephas
maximus) and mainland serow (see table S5 for full competing
model descriptions for all species).

Most of the top models explaining megafauna abundance included
negative effects from habitat degradation or humans (Fig. 4A, green).
The top models for sun bear and Malay tapir showed significant
positive relationships with intact forest cover (Bsun bear = 0.30, SE =
0.10, P = 0.002; Btapir = 0.29, SE = 0.12, P = 0.014). The top model for
bearded pigs included a positive relationship with distance from
human settlements (B = 3.42, SE = 0.20, P < 0.0001), sambar deer
had a positive relationship with distance from roads (p = 0.25,
SE = 0.06, P < 0.0001), and serow had a negative relationship with
HFP (B = -0.79, SE = 0.35, P = 0.024). The top model for clouded
leopard included a negative relationship with recent forest loss
(B =-2.55,SE = 0.86, P = 0.003).

Contrary to our predictions, four species showed positive associ-
ations with habitat degradation or humans in their top models
(Fig. 4B, red). Tigers showed a positive relationship with human
population density (B = 0.35 SE = 0.14, P = 0.014), clouded leopards
showed a significant negative relationship with distance from human
settlements (B = —0.72, SE = 0.23, P = 0.002), wild boar showed a
negative relationship with intact forest cover ( = —0.40, SE = 0.02,
P <0.001), and Asian elephants showed a positive relationship with
HEP (B = 0.41, SE = 0.11, P < 0.001).
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Table 2. Southeast Asian large carnivores and megaherbivores at our study landscapes. Table S3 provides additional details.

. . Holocene Anthropocene Landscapes
Weight range (kg) JLE s e [ Detec.tmns L landscapes (no. landscapes (no. detected in our
status sites) N A
occupied) occupied) surveys
Tiger (Panthera tigris) 180-245 Endangered 10 5 3
SNl e 27-63 Vulnerable 447 10 9 8
malayanus)
Leapame) (R 45-65 Vulnerable 5 2 2
pardus)
Dhole (Cuon alpinus) 15-21 Endangered 8 4 2
Clouded leopard
(Neofelis nebulosa 15-23 Vulnerable 120 10 8 7
and diardi)
AT S T 3000-5000 Endangered 194 10 7 5
(Elephas maximus)
Sumatran rhinoceros Criticall
(Dicerorhinus 900-1000 y 10 3 0
. Endangered
sumatrensis)
Gaur (Bos gaurus) 650-900 Vulnerable 5 1 1
Banteng (Bos 600-800 Endangered 7 1 1
javanicus)
Malay tapir (Tapirus 250-350 Endangered 396 9 5 5
indicus)
Sambar deer (Rusa 180-260 Vulnerable 647 10 9 8
unicolor)
Mainland serow
(Capricornis 110-160 Vulnerable 7 7 7
sumatraensis)
Wild boar (Sus scrofa) 75-200 Least Concern 7656 8 8 8
Bearded pig (Sus 50-120 Vulnerable 2153 9 4 3
barbatus)
DISCUSSION in the relative number of extirpations between guilds or body sizes,

We documented remarkable variation in the extirpation patterns and
abundances of Southeast Asia’s megafauna, suggesting that species
responses to disturbances are more complex than previously appre-
ciated. We expected to find “trophic downgrading” with the systematic
loss of the largest species from landscapes experiencing the highest
rates of forest degradation and human pressures. There was some
general support for the role of forest degradation and human pressure
driving megafauna losses because the four most disturbed land-
scapes experienced 2.5 times more extirpations than the six least
disturbed landscapes. However, we did not identify a clear pattern
of trophic downgrading, and there were no crucial landscape-level
drivers of Holocene or Anthropocene extirpations. Instead, our most
poignant observation was peculiar mammal assemblages in remain-
ing protected areas with no two sites having identical assemblages,
suggesting that the complex synergy between multiple threats and
the unique responses of each species appear to be changing mega-
faunal assemblages in ways unique to each landscape (14, 27). We
also found mixed support for the prediction that contemporary
megafauna abundances would be positively associated with forest
cover metrics and negatively associated with humans. Tigers, clouded
leopards, Asian elephants, and wild boar showed positive relation-
ships with forest degradation or humans, suggesting that these fac-
tors are not necessarily prescriptive. There was also little difference
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lending no support for the hypothesis that the largest carnivores are
more threatened than other megafauna. The final outcomes are
idiosyncratic assemblages in the Anthropocene that do not clearly
reflect globally emergent trends in trophic downgrading.

While megafauna assemblages were more variable than expected
as a whole, there were still some predictable trends. Eight of 14
megafauna species experienced extirpations during both the Holocene
and Anthropocene, suggesting alarming ongoing range contractions
that is consistent with other work regionally and globally (1, 28).
The extirpation of Sumatran rhinoceros from all our study landscapes
likely resulted from well-documented poaching pressure targeting
rhino horn and the low reproductive performance among the few
remaining females (29). On the other hand, wild boar experience
very little poaching pressure due to the regionally widespread Halal
dietary taboo on pork, and they have the highest reproductive capa-
bilities of the region’s megafauna (30), likely explaining their long-
term persistence across the region. Furthermore, crop-raiding provides
important cross-boundary food subsidies allowing wild boar popu-
lations to increase 100-fold in forest fragments nearby agriculture
(30, 31). Dietary breadth may also explain contrasting extirpation
patterns in large carnivores. Obligate carnivores such as tigers,
leopards, and clouded leopards are acutely threatened by the
loss of prey from poaching (4), and these species experienced more
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Fig. 2. Highly variable megafauna extirpation dynamics among species and sites in Southeast Asia. (A) The Holocene and Anthropocene extirpations of 14 mega-
fauna across 10 tropical forest landscapes (table S3). The relative abundance of extant species is shown by the size of points as determined from hierarchical abundance
modeling. High abundance corresponds to abundance >75% quartile of each species’ relative abundance estimates, medium corresponds to relative abundance esti-
mates between 25 and 75% quartiles, and low is <25% quartile. Bar chart (B) shows the number of landscapes each species was extirpated from, and bar chart (C) shows
the number of species extirpated from each landscape. The 14 study species are grouped as large carnivores first followed by megaherbivores. Within each guild, species
are listed from largest to smallest on the basis of average adult body size (Table 2). Landscapes are organized from left to right by increasing FLII scores (Table 1). Species
listed in descending order are as follows: tiger, sun bear, leopard, dhole, clouded leopard, Asian elephant, Sumatran rhino, gaur, banteng, tapir, sambar, bearded pig,
mainland serow, and wild boar (scientific names, descriptions, and relative abundance estimates in Table 2 and table S3).
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Fig. 3. Species traits (guild and body size) do not explain extirpation patterns. We conducted Welch two-sample t tests and found no significant differences between
the relative number of extirpations between large carnivores and megaherbivores (A) or between different sized species within each guild (B). The maximum number of
Holocene extirpations possible was 10 for species whose range covered the whole region and fewer for species with smaller distributions, including leopards, dhole, gaur,
banteng, tapir, bearded pigs, mainland serow, and wild boar.
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Fig. 4. Species-specific responses to habitat degradation and humans. The response variable (y axis) is the predicted abundance from hierarchical abundance modeling
in relation to covariates (x axis), with each panel showing an important variable from each species’top model based on AICc model selection. (A) Six negative relationships
between megafauna abundance and forest degradation or human pressure that are consistent with globally emergent trends. (B) Four relationships that contradict
global trends and suggest positive relationships with forest degradation or human pressure. (C) Five species that had insufficient independent detections (<30) to imple-

ment hierarchical abundance models. Table S5 provides the full model descriptions.

extirpations than sun bears that are primarily insectivorous and
frugivorous (32). Positive abundance relationships with human pres-
sures may be explained by landscape-specific conservation and
enforcement. Heightened protection appears successful in Khao Yai
in central Thailand and in Bukit Barisan Selatan in southern Sumatra
where there is intense patrolling to protect the few remaining
Sumatran rhinoceros (33, 34). High mammal abundances of Khao Yai
may also arise from being part of the Indo-Malayan biogeographic
subregion, being more deciduous, and having managed grasslands,
compared to all other study landscapes located in the Sundaic bio-
geographic subregion and which have evergreen rainforest and no
grasslands (35). On the contrary, the lack of anti-poaching enforce-
ment in some larger and more remote parks (36) may explain the
recent extirpation of tigers from Ulu Muda, one of our largest and
least disturbed landscapes. Overall, while there were some predict-
able outcomes, Southeast Asia’s remaining megafauna often showed
divergent responses to the same threats, which has been partially
noted by past work (37).

Of the major tropical forest zones globally (e.g., the Amazon and
Congo), Southeast Asia suffers the most forest degradation (26) and
human pressures (38). Often missing from this alarming state is the
large variation among its four major landmasses that span several
biodiversity hotspots (39). We found that mainland Southeast Asia
and Borneo experienced more extirpations during the Holocene, while
Sumatra experienced more extirpations during the Anthropocene,
although this may be biased by Sumatra’s lack of paleontological

Amir et al., Sci. Adv. 8, eabq2307 (2022) 21 October 2022

research to establish Holocene ranges (35). Recent Sumatran extir-
pations have likely been driven by rapid deforestation for pulp,
rubber, and oil palm production, and this deforestation has occurred
at a rate faster than Borneo and mainland Southeast Asia (17). Forest
fragmentation and landcover changes in the matrix between frag-
ments across vast areas are strongly associated with extinction risk
in terrestrial mammals (40). We fear that megafauna extirpations in
Sumatra may increase through the Anthropocene because of its
growing extinction debt (41), such as on Java where considerably
more megafaunal extinctions have accumulated after its longer
history of land clearing (42).

Southeast Asia’s idiosyncratic Anthropocene megafauna assem-
blages are partially explained by the region’s biogeographic history.
The Quaternary period saw multiple megafauna extinction events
in Southeast Asia (43), and while past researchers believed that early
human hunting and extreme geological events shaped Pleistocene
distributions, such as the Toba Caldera Complex super-eruption
(44, 45), contemporary researchers find little support for this (21, 43).
Instead, pre-Holocene and Holocene megafauna distributions were
primarily shaped by the rapid loss of tropical grasslands and forest
habitats due to climate changes and sea-level rise that isolated
Sumatra, Borneo, Java, and Peninsular Malaysia (10). These habitat
changes would have favored rainforest specialists over more open-
adapted species (43). In turn, the more recent anthropogenic degra-
dation of tropical forests may positively affect those species adapted
to more open habitats, such as wild boar, Asian elephants, and
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tigers, and this has been argued for orangutans (14). Given the pro-
found habitat changes before the Holocene and the long exposure
to humans, species remaining in the Anthropocene may have passed
through an extinction filter and are more disturbance-resistant than
previously appreciated (11), potentially explaining how megafauna
can persist in disturbed tropical forests near human settlements.

The rise and fall of megafauna species trigger ecological cascades
that change ecosystems (5, 6). For example, apex predators are key-
stone species in some ecosystems and structure food webs via top-
down regulation of herbivores (46). However, Southeast Asian apex
predators may not play such important roles because of their natu-
rally low densities and possible bottom-up control associated with
the strict mast fruiting phenology in the region (23, 33, 47). Asian
elephants are ecosystem engineers whose physical disturbances re-
shape the understory, and they disperse some of the largest seeded
trees (48). In addition, the ability of smaller vertebrates to compensate
for the loss of megafauna to perpetuate their vital ecological roles
remains under doubt (48). For example, the Malay tapir is unlikely
to fully substitute the ecological role of Asian elephants because it
cannot disperse the region’s largest seeded plants (49). The rise of
some megafauna in degraded forests is also a problem. High densities
of wild boars in forest edges produce strong shifts in plant diversity
and function (50, 51), and their collapse due to African swine fever
could be equally disruptive (52). Ecological cascades research will
be especially important for this region.

The peculiar distributions of Asian megafauna are an enduring
puzzle for biogeographers, ecologists, and conservation biologists.
While there is broad consensus that poaching and deforestation are
the primary causes of dramatic declines across the region (26, 36),
we also noted high diversity in tropical forests surrounded by agri-
culture and settlements, such as Bukit Barisan Selatan, Pasoh, and
Khao Yai. This suggests that some megafauna can persist in disturbed
landscapes where there is effective management. Last, the recent
natural rewilding of wild boar and sambar deer in Singapore follow-
ing a strict ban on poaching and substantial reforestation and con-
servation efforts (53) underscores the tenuous ability of humans to
positively shape biodiversity patterns into the Anthropocene.

METHODS

Study landscapes

We conducted camera trapping surveys to document megafauna
extirpations and measure megafauna local abundance in 10 lowland
primary tropical forest landscapes in Sumatra (3), Borneo (2),
Singapore (1), Peninsular Malaysia (2), and Thailand (2) (Fig. 1, map).
We refer to our sampling areas as a “landscape,” typically a national
park, production forest, or collection of forest patches. In Sumatra,
Indonesia, we surveyed Gunung Leuser National Park (8630 km?),
Kerinci Seblat National Park (13,753 km?), and Bukit Barisan Selatan
National Park (3568 km?), which all comprise the UNESCO Tropical
Rainforest Heritage of Sumatra (33). All Sumatran landscapes had a
mixture of primary forest and some smaller forests with selective
logging over 20 years ago and moderate levels of hunting (33). In
Malaysian Borneo, we surveyed one primary forest fragment, Lambir
Hills National Park (69.5 km?), which has experienced high historical
hunting pressure (54) and one continuous primary forest site, DVCA
(438 km®). In Singapore, we surveyed the Central Catchment Nature
Reserve (37 km?) and a small offshore island Palau Ubin (10 km?)
and treated them as a single landscape due to their proximity and

Amir et al., Sci. Adv. 8, eabq2307 (2022) 21 October 2022

similar historic hunting pressure. In Peninsular Malaysia, we surveyed
Pasoh Forest Reserve (130 km?) and its adjacent selectively logged
production forest and the Ulu Muda Forest Reserve (1152.6 km?), a
largely intact primary forest on the border with Southern Thailand.
In Thailand, we surveyed Khao Ban That Wildlife Sanctuary
(1267 km?), which is a fragmented sliver of forest along a low
mountain range near densely populated human settlements, and
Khao Yai National Park (2168 km?), an intact primary forest con-
nected to the larger UNESCO World Heritage Dong Phayayen-
Khao Yai Forest Complex (34). All study landscapes fall within the
Sundaic biogeographical subregion with the key exception of Khao
Yai National Park, which sits in the Indo-Malaysian biogeographical
subregion. We included Khao Yai because it retains a similar mega-
fauna assemblage and has experienced similar Anthropocene dis-
turbances to the study landscapes in the Sundaic biogeographical
subregion. See Fig. 1 for a map of all study landscapes and Table 1
for a characterization of each landscape.

Study species

We collected data on five apex predator species [Carnivora with aver-
age adult body masses >15 kg (2)]: The largest were tigers (Panthera
tigris), followed by sun bears (Helarctos malayanus), leopards (Panthera
pardus), dholes (Cuon alpinus), and clouded leopards (Neofelis nebulosa
and diardi, but analyzed as one species). We also collected data on
nine megaherbivore species [terrestrial mammalian herbivores with
average adult body masses >100 kg (3)]: The largest were Asian
elephants (Elephas maximus), followed by Sumatran rhinoceros
(Dicerorhinus sumatrensis), gaur (Bos gaurus), banteng (Bos javanicus),
Malay tapir (Tapirus indicus), sambar deer (Rusa unicolor), bearded
pig (Sus barbatus), mainland serow (Capricornis sumatraensis), and
wild boar (Sus scrofa). Average adult body masses for all species was
determined by the PanTHERIA database (55) and by Francis and
Barrett (56) for species not included in the database (e.g., gaur). We
limited our analysis to megafauna species currently recognized by the
TUCN as extant in at least one of our 10 landscapes; thus, we did not
include species historically distributed across our 10 landscapes [e.g.,
Javan rhino (Rhinoceros sondaicus) (57) or spotted hyena (Crocuta
crocuta) (35)]. For species weights, [UCN status, and detection his-
tories, see Table 2. For detailed accounts of each study species’
Holocene and Anthropocene distributions, see table S3.

Camera trapping

We collected information on megafauna populations using 21 sys-
tematic camera trapping sessions at our 10 landscapes. At each
landscape, we deployed 22 to 112 passive infrared camera traps set
across areas of 48 to 830 km? (see table S1 for full deployment
details). We standardized camera deployment between landscapes
by attaching cameras to trees 0.2 to 0.3 m high and placing them
along natural wildlife trails without baits. Cameras were deployed
for approximately 60 to 90 days (mean = 40.4, SD = 31.6) at each site
with 63,423 total trap nights across the entire study (table S1). We
considered captures independent if they occurred at least 30 min
apart. Cameras were systematically deployed in each landscape, but
because of varying camera spacing between large forests (> 0.5 km)
and small fragments (< 0.5 km), we spatially resampled our camera
trapping locations by overlaying a grid of 7.79 km~ hexagonal cells
(hereafter “sampling unit”), and when multiple cameras fell within
the same sampling unit, we aggregated the detections on the basis of
their date. This ensures comparability among landscapes, prevents
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spatial pseudo-replication, and, by using a sampling unit size larger
than the species' home range, ensures that abundance is being mea-
sured, as opposed to habitat use (58).

Generating covariates

We collected data on 12 forest quality, anthropogenic, and abiotic
variables for each of our camera trapping deployments to examine
how they affect megafauna extirpations and local abundance (table
S2). Our covariates were derived from GIS layers of varying resolu-
tion and included the linear distance from the camera trap location
to the covariate of interest (e.g., distance to forest edge, rivers, and
settlements), and the percentage of a landcover type in a 1-km radius
around each camera trap for various landcover classes common in
Southeast Asia (e.g., oil palm plantations, intact forest cover, and
degraded landcover) (59). We also calculated point values of several
covariates at each camera trap location, including elevation, annual
precipitation, FLII, and HFP. The FLII is a globally continuous
measure of the world’s forests status that integrates both observed
and inferred human pressures (e.g., deforestation and hunting pres-
sure, respectively) with the loss of forest connectivity to represent
landscape-level ecological integrity (26). The HFP is a globally con-
tinuous measure combining eight variables that measure the direct
and indirect human pressures on the environment to represent
landscape-level anthropogenic disturbances (38). When multiple
camera traps fell into a single 7.79 km” sampling unit (described
above), we averaged the values of the covariates for each camera. Last,
we calculated the same covariates in a 10-km radius around each
study landscape to characterize each landscape, which allowed us to
group the landscapes into binary categories following prior examples
(26, 38) into “most disturbed” (i.e., intact forest cover <60%, FLII
<7, human population density >6000, and HFP > 7) or “least dis-
turbed” (i.e., intact forest cover >60%, FLII >7, human population
density <6000, and HFP < 7). While we acknowledge an HFP score
of 6+ would suggest a high anthropogenic pressure (38), the omni-
present grasp of humanity across our study region inflates the HFP
values within each landscape above global mean values; hence,
we have chosen a higher threshold to distinguish between least and
most disturbed landscapes. See table S2 for a full list of covariates
and sources.

Determining extirpation
Holocene ranges were defined as the most likely distribution across
our 10 study landscapes ~11,700 years ago, at the beginning of the
Holocene epoch (8, 9). Holocene ranges were extracted and fact-
checked in the published literature, primarily using two main
references (35, 57). We also used “snowball sampling,” where we
examined the reference lists from the two main references (37, 53),
and IUCN Red List reports for each species (table S3). Because of
some incompleteness of paleontological records and the wide-ranging
movements of megafauna plus fluctuations in available land area
and suitable habitat, we intentionally treat our time definition as
loosely covering the Late Pleistocene~Holocene boundary (10). We
acknowledge that there were megafaunal range contractions occur-
ring throughout the Early Pleistocene-Holocene (2.6 million to
~11,700 years ago) and excluded species from areas wherever there
was strong evidence that they were lost before the Late Pleistocene—
Holocene boundary (28).

To determine Anthropocene extirpations, we used distributions
defined by the IUCN Red List (as of 2021; see table S3 for sources).
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A species was documented as present if their [TUCN Red List range
overlapped with our camera trap detections (plus 10-km buffer),
assessed using the “sf” package (60) in R version 4.0.2 (61). We did
not count Anthropocene extirpations in areas the IUCN distribu-
tion defined as “Extinct” or “Possibly Extinct,” and only counted
Anthropocene extirpations in areas the IUCN defined as “Extant”
and “Possibly Extant.” In the event a species was not detected in a
camera trapping session, we assume that it was extirpated from the
landscape or persists at such a low abundance that it is functionally
extinct (hereafter “extirpated”). One limitation to this approach is
that extirpations were treated as a binary variable despite some
species potentially naturally occurring at extremely low densities or
being so cryptic as to have no detections. Last, we determined con-
temporary extirpations from the small island nation of Singapore
using the government’s official list of mammals (62) to exclude
species within 10 km on the Malaysia-Singapore border (e.g., Asian
elephants; table S3).

Examining extirpations as a function of guild, size, and
environmental factors

To test our prediction that large carnivores would experience sig-
nificantly more extirpations than megaherbivores, we conducted a
Welch two-sample ¢ test to examine whether the relative number of
species extirpated between guilds was significantly different from
each other, and we repeated this for both Anthropocene and Holocene
extirpations. In addition, we used ¢ tests to compare the relative
number of species extirpated during the Holocene and Anthropocene
within each guild by splitting species by the median average adult
body weights as determined by the PAnTHERIA database (55) and
by Francis and Barrett (56) for species not included in the database
(e.g., gaur). Last, we used a t test to compare total extirpations
between our four least disturbed and six most disturbed landscapes.
To examine whether forest degradation and anthropogenic pressures
drive both Anthropocene and Holocene extirpations, we assessed
the impact of our 12 covariates (table S2) by implementing univariate
GLMs. Our response variable was the proportion of megafauna spe-
cies extirpated relative to the number of potential species present
per landscape and was treated with a binomial error distribution.
We ran univariate GLMs for each covariate averaged across all
cameras in a single landscape and scaled the covariate with a mean
of 0 and SD of 1 to ensure comparable results. We evaluated which
covariates were important by inspecting beta (B) coefficients, SE,
and P values using the “glm” function in R. The B, SE, residual
deviance, and P values from all univariate GLMs are included in
table S4, and all statistics were implemented in R (61).

Hierarchal abundance modeling

We estimated species abundance at each landscape using hierarchal
N-mixture models that account for imperfect detection (63). This
detection-corrected estimated local abundance (hereafter just
“abundance”) serves as an unbiased metric compared to traditional
camera trapping measures (64). A key advantage of using N-mixture
models is that it accurately quantifies the spatial variation in abun-
dance as a function of covariates and is useful for elucidating key
variables that drive abundance trends across species’ populations
(65). Instead of interpreting the output as true densities, we consider
that the variation in abundance across the range of observed covari-
ates reflects true differences (65). For each species with more than
30 independent detections, we produced count history matrices
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from each landscape where the species was detected at least once
and used the total number of individuals captured in a window of
3 days. All N-mixture models were implemented in the R package
“unmarked” (66). To account for differing effort per sampling units,
the number of trap nights per sampling unit was included as a
detection probability covariate in all N-mixture models. To account
for landscapes with repeated surveys and unmodeled variation be-
tween landscapes, a landscape fixed effect was included as an
abundance covariate in all N-mixture models. Therefore, our “null”
model to compare competing models contained a fixed effect for
effort on the detection probability formula and a fixed effect of
landscape on the abundance formula. We tested how the abundance
of each species was affected by each forest quality, anthropogenic,
and abiotic covariate (table S2) by implementing univariate models
that built upon our null model. We compared models per species
using AICc scores, with the best AICc being the lowest by at least 2
(67). If a species had multiple univariate models with a AAICc <2,
and the variables were not strongly correlated (r < |0.6]), we imple-
mented multivariate models to determine the best combination of
covariates that explain the species abundance. Full model selection
information with covariate effect sizes, P values, AIC scores, and
R* values are provided for all species assessed in table S5.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq2307

View/request a protocol for this paper from Bio-protocol.
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