

Journal Pre-proof

The influence of stable fly invasion on the behavior of captive black rhinoceros (*Diceros bicornis*)

Daisuke Kohari, Tsubasa Hongo, Kumiko Inoue

PII: S1558-7878(19)30148-0

DOI: <https://doi.org/10.1016/j.jveb.2019.10.008>

Reference: JVEB 1283

To appear in: *Journal of Veterinary Behavior*

Received Date: 1 July 2019

Revised Date: 22 August 2019

Accepted Date: 1 October 2019

Please cite this article as: Kohari, D., Hongo, T., Inoue, K., The influence of stable fly invasion on the behavior of captive black rhinoceros (*Diceros bicornis*), *Journal of Veterinary Behavior* (2019), doi: <https://doi.org/10.1016/j.jveb.2019.10.008>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Inc.

1 **Title:**

2 The influence of stable fly invasion on the behavior of captive black
3 rhinoceros (*Diceros bicornis*)

4

5 **Authors: (*: Corresponding)**

6 Daisuke Kohari¹ *, Tsubasa Hongo¹, Kumiko Inoue²

7

8 **Institute and address:**

9 ¹ College of Agriculture Ibaraki University, Ami 4668-1 Inashiki-gun, Ibaraki,
10 300-0331 Japan

11 ² Kamine City Zoo, Hitachi, Ibaraki 317-0055, Japan

12

13 **Tel & Fax:**

14 +81-29-888-8705

15

16 **E-mail:**

17 daisuke.kohari.abw@vc.ibaraki.ac.jp

18

19

20

21

22

1 **Abstract**

2 To determine the effect of stable fly invasion on the state of captive
3 animals, we investigated the fly abundance and related behavioral responses
4 of captive black rhinoceroses before and after the use of pesticide. Two black
5 rhinoceroses in the Kamine Zoo were used as the subjects. We compared the
6 number of stable flies on their bodies, repelling behavior and maintenance
7 behavior under normal husbandry conditions (control) and after pesticide
8 application (debug). The number of stable flies decreased by nearly 80%
9 under the debug condition compared with the control. Stable flies were
10 observed most frequently on the bellies of the rhinoceroses, and the largest
11 decrease in the number of flies after pesticide application was observed on
12 the animals' backs. The frequency of the rhinoceroses' repelling responses
13 also decreased, by an average of nearly 60%, after the debug treatment
14 compared with the control. Time allocation to the maintenance behaviors of
15 standing rest and lying rest increased significantly, by 5–10%, under the
16 debug condition for both rhinoceroses. On the other hand, the time allocation
17 to walking decreased significantly, by approximately 9–13%, in both
18 rhinoceroses with pesticide application. These results suggest that fly
19 invasion drastically disrupted rhinoceros behavior, and that it likely poses a
20 severe burden in zoo animals during the fly season.

21

22 **Keywords**

23 animal welfare, defensive behavior, hematophagous insect, repelling

1 behavior, zoo

2

3 **Introduction**

4 The stable fly (*Stomoxys calcitrans*) is a hematophagous fly belonging to
5 Diptera: Muscidae. The males and females of this species suck blood from a
6 variety of animal hosts (Hafez and Gamal-Eddin, 1959). The damage caused
7 by this fly is quite substantial and is associated with direct economic losses,
8 such as decreased milk yield in dairy cattle (Bruce and Decker, 1958) and
9 decreased body weight in beef cattle (Campbell et al., 1987). Taylor et al.
10 (2012) estimated that losses in the United States reached \$360 million for
11 dairy cattle, \$358 million for cow-calf herds, \$1.3 billion for pastured cattle
12 and \$226 million for cattle on feed, for a total impact on the US cattle
13 industry of \$2.2 billion per year. Thus, this fly is regarded as a main pest of
14 farm animals in many countries (Todd, 1963; Venkatesh and Morrison, 1980;
15 Kunz et al., 1991; Aorigele et al., 2003).

16 Another crucial issue is that many blood-sucking insects serve as vectors
17 for a variety of diseases. Wild free-ranging and grazing animals are highly
18 exposed to such disease transmission by insects (Kamut and Jezierski, 2014).
19 Equine infectious anaemia, habronemiasis, onchocerciasis, parafilariasis
20 and thelaziasis are known to be transmitted by Muscidae insects. Muscidae
21 are also intermediate hosts of parasites causing parafilariasis, thelaziasis
22 and habronemiasis (Kamut and Jezierski, 2014). Therefore, invasion by
23 stable flies is considered to be a major impediment to the hygiene control and

1 welfare of captive-raised animals.

2 During invasions by stable flies, pain and itching associated with fly bites
3 appear to cause substantial stress and affect various behaviors of animals.
4 Dougherty et al. (1993) documented increased tail swinging and leg raising,
5 and decreased feeding and resting, when they experimentally attached
6 stable flies to the body surfaces of grazing cattle. King and Gurnell (2010)
7 also reported that wild horses grazed less and moved more frequently with
8 increasingly severe fly attacks. Furthermore, Duncan (1983) demonstrated
9 that horses were forced to leave their preferred feeding areas when fly
10 abundance was high.

11 Similar fly invasions of zoo animals have long been reported. However,
12 these studies typically used traps to capture the flies (Rugg, 1982; Ose and
13 Hogsette, 2014; Hogsette and Ose, 2017) and few studies have examined the
14 direct effects of fly control measures on the behavior and state of animals. In
15 the present study, we investigated differences in the behavior of captive
16 rhinoceroses before and after the use of pesticides to determine the effect of
17 stable fly invasion on the state of this zoo animal.

18

19 **Materials and methods**

20 **Animals and management**

21 The subjects for this study were two black rhinoceroses (*Diceros bicornis*)

1 exhibited at the Kamine Zoo, Hitachi, Ibaraki, Japan. The two animals were
2 a male (named Metro)–female (named Maki) pair. Metro was born on 10
3 November 1990 at the Miami Zoo, Florida, USA, and arrived at the Kamine
4 Zoo on 20 August 1993. Maki was born at the Kamine Zoo on 8 June 1990.

5 The rhinoceros enclosure at the Kamine Zoo contains two indoor barns and
6 an outdoor exhibit. The length of the outdoor exhibit space is approximately
7 97 m, and its area is almost 511 m². The exhibit is enclosed by a concrete wall
8 and iron fence, and a sloped moat (1.5 m depth, 3.5 m width) is positioned on
9 the audience side of the enclosure. A 36.5-m² pool inside the enclosure is used
10 as a watering and bathing area. The centre of the exhibit includes a
11 Japanese maple (*Acer palmatum Thunberg*) and several rocks and wallows.
12 Generally, the rhinoceroses were exhibited from 8:30 to 17:00 and fed twice a
13 day. The first feeding occurred during exhibition and the second feeding
14 occurred after evening housing.

15

16 **Behavioral observations**

17 The experiment was conducted for 6 days (three pairs of days) from
18 September to October 2015. To determine the effect of fly invasion, we
19 established two conditions for 3 days each; the first day of each pair involved
20 normal husbandry (control) conditions, and the second day involved pesticide
21 application (debug). The active ingredient of the pesticide was 7.0%

1 etofenprox (bermitol aqueous emulsion, Aqua; Mitsui Chemicals Agro, Inc.,
2 Japan). The pesticide was sprayed evenly over the entire bodies of the
3 rhinoceroses, except the face, using a special atomiser, between 10:00 and
4 10:30, while the animals were on exhibit. The weather conditions during the
5 experiment did not differ significantly in terms of average temperature
6 (control: $21.9 \pm 4.6^\circ\text{C}$, debug: $21.0 \pm 2.5^\circ\text{C}$; Welch two-sample *t*-test, *t* = 0.29,
7 *df* = 3.10) or wind speed (control: 2.27 ± 0.60 m/s, debug: 1.67 ± 0.35 m/s;
8 Welch two-sample *t*-test, *t* = 1.49, *df* = 3.22).

9 Observations were conducted for 8 h from 9:00 to 17:00 on each day. The
10 rhinoceros body was divided into five parts (head, neck, belly, back and hip;
11 **Figure 1**), and a 30 × 30-cm zone of each body part was photographed every
12 30 min for counting of the number of stable flies for estimation of the
13 intensity of invasion. Grooming behaviors, such as rubbing and scratching,
14 and self-defensive behaviors, such as flicking of the ear or tail, were defined
15 as 'repelling responses', and the frequency of each behavior type was
16 recorded using the continuous sampling method. To evaluate the
17 rhinoceroses' quality of life, maintenance behaviors were divided into five
18 categories – feeding, standing rest, lying rest, walking and others – and the
19 frequency of each behavior type was recorded using a 2-min scan sampling
20 method.

21

22 **Statistical analysis**

1 Only data from photographs in which the rhinoceroses' five body parts
2 could be discriminated clearly were used for the analysis of the number of
3 stable flies on the body surface (Metro: 126 photographs, Maki: 127
4 photographs). The average number of stable flies on each body part was
5 measured in units of 100 cm² per hour and compared between the control
6 and debug conditions for each rhinoceros using the paired *t*test. The
7 frequency of repelling responses during each 30 min after 10:00, when the
8 pesticide was applied, were compared between the control and debug
9 conditions for each rhinoceros using Student's *t*test. The time allocation of
10 each maintenance behavior under each treatment condition was assessed
11 according to the frequency of each behavior in both animals for each of the 3
12 days using the χ^2 test. In addition, the difference in each maintenance
13 behavior under the two experimental conditions was examined by residual
14 analysis. All statistical analyses were performed with the free statistical
15 software R (ver. 3.2.2; The R Foundation for Statistical Computing).

16

17 **Results**

18 The numbers of stable flies on the bodies of both rhinoceroses before and
19 after pesticide application are shown in **Figure 2**. Under the control condition,
20 the mean number of flies on Metro was 3.46/100 cm²/h, which was slightly
21 more than the number of flies on Maki (2.44/100 cm²/h). Under the debug
22 condition, the average numbers of flies decreased markedly on Metro

1 (0.87/100 cm²/h; paired *t*-test, *t* = 2.29, df = 4; *P* = 0.08) and Maki (0.49/100
2 cm²/h; paired *t*-test, *t* = 3.70, df = 4; *P* < 0.01). The percentage decreases in
3 the number of flies on Metro ranged from 81.1% to 42.1% in order of belly,
4 back, head, neck and hip, for an overall average 74.8% decline with pesticide
5 application. On Maki, the percentage decreases ranged from 87.6% to 74.8%
6 in order of belly, head, neck, back and hip, with an overall average decrease
7 of 79.8%. Stable flies were observed most frequently on the bellies of both
8 rhinoceroses (Metro: 8.15 flies/100 cm²/h, Maki: 4.61 flies/100 cm²/h). Under
9 the debug treatment, the number of flies exhibited the largest decrease on
10 the backs of both rhinoceroses (Metro: 81.1%, Maki: 87.6%).

11 Due to these substantial decreases in the extent of stable fly invasion, the
12 frequency of the rhinoceroses' repelling responses also decreased drastically
13 after pesticide application (**Figure 3**). The maximum number of Metro's
14 repelling responses under the control condition was 164 times/h (2
15 September, 13:00), whereas this value declined to 61 times/h under the
16 debug condition (3 September, 10:00). For all three pairs of days combined,
17 the number of Metro's repelling responses differed significantly between
18 conditions (control: 45.1 times/h, debug: 19.9 times/h; Student's *t*-test, *t* =
19 2.93, df = 12; *P* < 0.05); the overall mean percentage decrease was 56%. For
20 Maki, the maximum number of repelling responses decreased from 119
21 times/h under the control condition (24 September, 12:00) to 54 times/h
22 under the debug condition (20 October, 14:00). For all three pairs of days

1 combined, the number of Maki's repelling responses differed significantly
2 between conditions (control: 56.7 times/h, debug: 20.7 times/h; Student's
3 *t*-test, $t = 4.98$, $df = 12$; $P < 0.0005$); the overall mean percentage decrease
4 was 63.5%.

5 Time allocation to maintenance behaviors also differed significantly
6 between conditions (Metro: $\chi^2 = 58.7$, $df = 4$, $P < 0.00001$; Maki: $\chi^2 = 27.2$, $df =$
7 4, $P < 0.00005$; **Figure 4**). The residual analysis indicated that the time
8 allocation to standing rest and lying rest increased significantly (Metro) or
9 tended to increase (Maki), by about 5–10%, from the control to the debug
10 condition. By comparison, the time allocation to walking decreased
11 significantly, by approximately 9–13%, in both rhinoceroses ($P < 0.0001$).

12

13 Discussion

14 The skin of the rhinoceros includes a well-keratinised epidermis and a
15 thick, weighty and inelastic dermis (Cave and Allbrook, 1958). This type of
16 skin is very well adapted for resisting attacks from the horns of conspecifics
17 during aggressive behaviors (Shadwick et al., 1992). Due to the enhanced
18 protective nature of this type of skin, one might assume that invasion by a
19 parasite or blood-sucking insect might not pose a serious problem. However,
20 rhinoceros skin is in fact extremely delicate, and damage caused by various
21 hematophagous insects is quite common (Persons and Sheldrick, 1964;

1 Skinner and Smithers, 1990; Penzohn et al., 1994).

2 In the present study, the belly was the area of the body attacked most
3 frequently by stable flies for both rhinoceroses. Previous studies have shown
4 that the lower legs or torsos of farm animals were frequently attacked by
5 flies (Lysyk, 1995; Eicher et al., 2001). In rhinoceroses, the belly skin, which
6 included the flank and upper leg area in our study, is relatively thin and less
7 stiff (Shadwick et al., 1992). Therefore, this area may have been vulnerable
8 to concentrated attack compared with upper areas, such as the back and hip.

9 In contrast, the largest decrease in the number of flies after pesticide
10 application was seen on the back. Repelling responses are types of
11 self-defensive behavior and often include stomping, kicking of the body, tail
12 swishing, skin twitching and head or ear movement (Eicher et al., 2001).

13 Rhinoceroses also defend their bodies from some insects by wallowing and
14 coating their bodies with mud (Julia et al., 2001). However, the back is one of
15 the most difficult places to reach for ungulates (Mooring et al., 2004, DeVries
16 et al., 2006), and it cannot be covered well when wallowing. Thus, a
17 comparatively large number of flies may remain on the back before pesticide
18 application, and the effect of application would be large.

19 The number of repelling responses decreased significantly after pesticide
20 application in this study. Rhinoceroses may spend approximately three times
21 longer engaging in fly-repelling behavior during the fly season compared
22 with the non-season. The primary repelling responses in both rhinoceroses,

1 tail swishing and ear flipping, did not disappear completely under the debug
2 condition in this study. Some flies remained on the animals' bodies (80%, not
3 100%, decline in the number of flies). In addition, the decrease in repelling
4 behavior was not large compared with the decline in the number of stable
5 flies due to pesticide application. Thus, these behavioral responses may have
6 served other functions in addition to repelling insects. Kiely-Worthington
7 (1978) reported that ear flicking is observed during some conflict or
8 transitional situations between bouts of other on-going behaviors in some
9 ungulates and cats, except in fly repulsion situations. She also reported that
10 tail movement in animals, including rhinoceroses, serves a similar function
11 to ear flicking, again except in fighting and fly repulsion situations
12 (Kiely-Worthington, 1976; 1978). Therefore, a frequency of about 20 times/h
13 for these behaviors may represent the normal condition.

14 After pesticide application, the resting behavior of both rhinoceroses
15 increased, whereas walking decreased. One important function of resting,
16 which includes sleeping, is energy conservation for metabolic recovery
17 (Frazer and Broom, 1997; Olsson et al., 2011). Disruption of this behavior
18 can lead to the deterioration of physical and mental health (Galindo and
19 Broom, 2000, Misrani et al., 2019). Previous studies have documented
20 decreased feeding and resting during extremely severe fly invasion, as
21 animals must spend most of their time engaging in repelling behavior and
22 escape movements (Dougherty et al., 1993; King and Gurnell, 2010). In

1 contrast, the proportion of time spent in lying rest in their captive
2 environments increased when animals were in comfortable conditions with
3 few blood-sucking insects (Ito, 1971; Aorigere et al., 2003). In the present
4 study, the reduction of fly invasion by pesticide application led to decreased
5 walking from restlessness, and increased resting behavior. Therefore, the
6 rhinoceroses likely felt more comfortable after pesticide application, as their
7 ability to rest had been severely disrupted by stable fly invasion.

8 In conclusion, the impact of stable fly invasion on captive rhinoceroses was
9 comparatively large. The resting behavior of the rhinoceroses was disrupted,
10 and much of their time was spent engaging in fly-repelling behaviors under
11 the control condition. To enable accurate assessment of the effects of such
12 ectoparasite stress, researchers must establish the nature of normal
13 behaviors as a baseline response level for each animal.

14

15 Acknowledgements

16 The authors would like to thank the Kamine City Zoo for providing
17 animals for cooperation with this study, the staff at the Kamine City Zoo at
18 that time for their enthusiastic assistance with the research. Daisuke Kohari
19 was responsible for the research idea, experimental design, and writing the
20 article. Data collection, care of animals and research schedule management
21 were performed by Tsubasa Hongo, Kumiko Inoue, with data analysis by

1 Daisuke Kohari.

2

3 **Ethical considerations**

4 We read the policy of the journal on ethical consent and standard animal
5 care, and our work was carried out in accordance with these policies.
6 Furthermore, we limited animal use in accordance with “Three Rs” indicated
7 in Directive 2010/63/EU.

8

9 **Conflict of interest**

10 The authors have no conflicts of interest directly relevant to the content of
11 this article.

12

13 **References**

14 Aorigele, K.T., Kanji, M., Tadashi, K., 2003. Influences of pest flies on
15 grooming, grazing and resting behavior in grazing cattle in summer. Grassl.
16 Sci. 49, 158-162 (Japanese with English abstract)

17

18 Bruce, W.N., Decker, G.C., 1958. The relationship of stable fly abundance to
19 milk production in dairy cattle. J. Econ. Entomol. 51, 269-274.

1

2 Campbell, J.B., Berry, I.L., Boxler, D.J., Davis, R.L., Clanton, D.C.,
3 Deutscher, G.H., 1987. Effect of stable flies (*Diptera: Muscidae*) on weight
4 gain and feed efficiency of feedlot cattle. *J. Econ. Entomol.* 80, 117-119.

5

6 Cave, A.J.E., Allbrook, D.B., 1958. Epidermal structures in a rhinoceros
7 (*Ceratotherium simum*). *Nature* 4629, 196-197.

8

9 DeVries, T.J., Vankova, M., Veira, D.M., von Keyserlingk, M.A.G., 2006.
10 Short Communication: Usage of mechanical brushes by lactating dairy cows.
11 *J. Dairy Sci.* 90, 2241-2245.

12

13 Dougherty, C.T., Knapp, F.W., Burrus, P.B., Willis, D.C., Burg, J.G.,
14 Cornelius, P.L., Bradley, N.W. 1993. Stable flies (*Stomoxys calcitrans L.*) and
15 the behavior of grazing beef cattle. *Appl. Anim. Behav. Sci.* 35, 215-233.

16

17 Duncan, P., 1983. Determinants of the use of habitat by horses in a
18 Mediterranean wetland. *J. Anim. Prod.* 52, 93-109.

19

20 Eicher, S.D., Morrow-Tesch, J.L., Albright, J.L., Williams, R.E., 2001.

1 Tail-docking alters fly numbers, fly-avoidance behaviors, and cleanliness,
2 but not physiological measures. *J. Dairy Sci.* 84, 1822-1828.

3

4 Frazer, A.F., Broom, D.M., 1997. Rest and sleep. In: Farm animal behavior
5 and welfare, 3rd ed. CAB International, UK, pp.135-146.

6

7 Galindo, F., Broom, D.M., 2000. The relationships between social behavior of
8 dairy cows and the occurrence of lameness in three herds. *Res. Vet. Sci.* 69,
9 75-79.

10

11 Hafez, M., Gamal-Eddin, F.M., 1959. Ecological studies on *Stomoxys*
12 *calcitrans* L. and *sitiens* Rond. in Egypt, with suggestions on their control.
13 *Bull. Soc. Entomol. Egypte* 43, 245-283

14

15 Hogsette, J.A., Ose, G.A., 2017. Improved capture of stable flies (*Diptera:*
16 *Muscidae*) by placement of knight stick sticky fly traps protected by electric
17 fence inside animal exhibit yards at the Smithsonian's National Zoological
18 *Park. Zoo Biol.* 36, 382-386

19

20 Ito, I., 1971. On the resting form of grazing cattle herd. *Grassl. Sci.* 17,
21 133-140 (Japanese with English abstract)

22

23 Julia Ng, S.C., Zainal-Zahari Z., Adam N., 2001. Wallows and wallow

1 utilization of the Sumatran rhinoceros (*Dicerorhinus sumatrensis*) in a
2 natural enclosure in Sungai Dusun Wildlife Reserve, Selangor, Malaysia. J.
3 Wildl. Parks 19, 7-12.

4

5 Kamut, M., Jezierski T., 2014. Ecological, behavioral and economic effects of
6 insects on grazing farm animals-a review. Anim. Sci. Pap. Rep. 32, 107-119.

7

8 Kiely-Worthington, M., 1976. The tail movements of ungulates, canids and
9 felids with particular reference to their causation and function as displays.
10 Behav. 56, 69-115.

11

12 Kiely-Worthington, M., 1978. The causation, evolution and function of the
13 visual displays of the eland (*Taurotragus oryx*). Behav. 66, 179-222.

14

15 King, S.R.B., Gurnell, J., 2010. Effects of fly disturbance on the behavior of a
16 population of reintroduced Przewalski horses (*Equus ferus przewalskii*) in
17 Mongolia. Appl. Anim. Behav. Sci. 125, 22–29

18

19 Kunz, S.E., Murrel, K.D., Lambert, G., James, L.F., Terrill, C.E., 1991.
20 Estimated losses of livestock of livestock to pests. In: Pimentel, D.(Ed.),CRC
21 Handbook of Pest Management in Agriculture, Vol. I. CRC Press, Boca
22 Raton, FL, pp.69-98

23

1 Lysyk, T.J., 1995. Temperature and population density effects on feeding
2 activity of *Stomoxys calcitrans* (Diptera: Muscidae) on cattle. J. Med.
3 Entomol. 32, 508-514.

4

5 Misrani, A., Tabassum, S., Chen, X., Tan, S., Wang, J., Yang, L., Long, C.,
6 2019. Differential effects of citalopram on sleep-deprivation-induced
7 depressive-like behavior and memory impairments in mice. Prog.
8 Neuro-Psychopharmacol. Biol. Psychiatry 88, 102-111

9

10 Mooring, M.S., Blumstein, D.T., Stoner, C.J., 2004. The evolution of
11 parasite-defence grooming in ungulates. Biol. J. Linn. Soc. 81, 17-37.

12

13 Olsson, I.A.S., Würbel, H., Mench, J.A., 2011. Behavior. Appleby M.C. and
14 Hughe (Eds): In: Animal Welfare the 3rd ed, CABI, UK. pp. 138-154

15

16 Ose, G.A., Hogsette, J.A., 2014. Spatial distribution, seasonality and trap
17 preference of stable fly, *Stomoxys Calcitrans* L. (Diptera: Muscidae), adults
18 on a 12 hectare zoological park. Zoo Biol. 33, 228-233

19

1 Penzhorn, B.L., Krecek, R.C., Horak, I.G., Verstrer, A.J.M., Walker, J.B.,
2 Boomker, J.D.F., Knapp, S.E., Quandt, S.K.F., 1994. Parasites of African
3 rhinos: A documentation. Proceedings of a symposium on “Rhinos as game
4 ranch animals.” 168-175.

5

6 Parsons, B.T., Sheldrick, D.L.W., 1964. Some observations on biting flies
7 (*Diptera Muscidae*, sub-fam. *Stomoxydinae*) associated with the Black
8 Rhinoceros (*Diceros Bicornis (L.)*). East Afr. Wildl. J. 2, 78-85

9

10 Rugg, D., 1982. Effectiveness of Williams traps in reducing the numbers of
11 stable flies (*Diptera: Muscidae*). J. Econ. Entomol. 75, 857-859

12

13 Shadwick, R.E., Russells, A.P., Lauff, R.F., 1992. The structure and
14 mechanical design of rhinoceros dermal armour. Phil. Trans. Roy. Soc. B: Biol.
15 Sci. 337, 419-428.

16

17 Skinner, J.D., Smithers, R.H.N., 1990. Order Perissodactyla, XLI. Family
18 *Rhinocerotidae* Rhinoceros, In: The mammals of the southern African
19 subregion. University of Pretoria, Pretoria, Republic of South Africa, pp.
20 567-575.

1

2 Taylor, D.B., Moon, R.D., Mark, D.R., 2012. Economic impact of stable flies
3 (*Diptera: Muscidae*) on dairy and beef cattle production. *J.Med. Entomol.* 49,
4 198-209.

5

6 Todd, D.H., 1963. The biting fly *Stomoxys calcitrans* (L.) in dairy herds in
7 New Zealand. *New Zeal. J. Agr. Res.* 7, 60-79.

8

9 Venkatesh, K., Morrison, P., 1980. Studies of weight changes and amount of
10 food ingested by the stable fly, *Stomoxys calcitrans* (*Diptera: Muscidae*). *Can.*
11 *Entomol.* 112, 141-149.

12

13

14

15

16

17

18

1 Figure Legends

2

3 Figure 1

4 Body surface classification for the black rhinoceros.

5

6 Figure 2

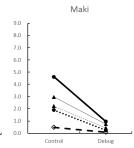
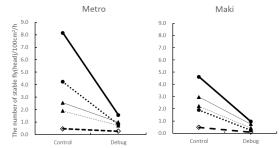
7 Numbers of stable flies before (control) and after (debug) pesticide
8 application.

9

10 Figure 3

11 The frequency of repelling behaviors in both rhinoceroses before (control) and
12 after (debug) pesticide application.

13



14 Figure 4

15 Time allocation to maintenance behaviors before (control) and after (debug)
16 pesticide application. The numbers in each bar graph indicated percentages
17 of each behavior (*: P<0.05, †: P<0.1, Residual analysis).

18

Journal Pre-proof

Journal Pre-proof

Journal Pre-proof

Highlights

- ✓ Lower abdomen is easily attacked by flies also in rhinos.
- ✓ Rhinoceros are disturbed their rest for repelling blood-sucking flies.
- ✓ Behavior responses for fly repelling may include other normal behaviors.