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ABSTRACT

Many aspects of habitat selection have been largely ignored in conservation planning of
large mammals, including variation between day and night movement patterns, inter-
individual niche variation of conspecifics and translocated individual’s responses to new
environments in relation to the influence of ecogeographical variables. Being a solitary
moving animal with a known tendency to move through the night, the black rhino
Diceros bicornis is a perfect species to test theories about individual spatial and temporal
variation in habitat utilisation. | tested the appropriateness of using carrying capacity
(CC) estimates as a tool for population conservation planning, and as an indicator of
habitat utilisation for black rhino. I found individual selection was not related to the value
of the habitat according to modelled CC. | therefore do not recommend the use of a priori
calculations of resource quality and abundance of habitats (CC estimates), which do not
take into account the factors that influence an animal’s selection of a habitat, as indicators
of species habitat use. Secondly | tested whether current methods of analyzing mainly
diurnal location data of animals result in accurate ecological or conservation conclusions.
| found a circadian variation in habitat use for different behaviours, and that excluding
nocturnal data from home and browsing range analyses would provide inaccurate results
for black rhino habitat use. | then tested for inter-individual niche variation amongst two
populations of black rhino at various scales of selection, ranging from habitat through to
browse selection. | showed that black rhino, a selective browser, had a significant degree
of inter-individual habitat and dietary niche variation. Consequently, pooling habitat
location data and diet selection data for black rhino individuals in a population does not
reflect the actual selection of any, or many, individuals. To clarify which ecogeographical
variables might influence this selection I ran maximum entropy models on individual’s
diurnal locations across the landscape. | was then able to develop a habitat suitability
model which was based on the individual rather than population, providing a more
accurate prediction. | repeated the individual models in phases, from the initial post-
release phase after the release of individuals onto a new reserve through to their ‘settled’
phase, allowing me to explore the effect of habitat variables on different settling phases

of translocated animals. The results indicate that all the rhinos’ acclimation phase lasted



no longer than 25 days and that to minimize disturbance to the settling process all
individuals in a newly released cohort should be released within this period. This study as
a whole provides conservation managers with a better ecological understanding of black
rhino in conjunction with a number of management tools. This will enable conservation
managers to better understand the way animals utilise and perceive their environment,
allowing for better monitoring and analyses of animal movements. This will aid in the
development of strategic management plans in the conservation of not only animal
species but also the ecosystems that they reside in and the identification of suitable areas

for future conservation of animal species.
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tested with location data spanning three years and six seasons and specificity was
calculated using 10 000 pseudo-absence points. Each test was conducted using
location data from the cool dry season and warm wet season data. Test 1 was
conducted with location data of three individuals removed from model
development. Test 2 was conducted with location data of the modelled population
from the year following model development............cccooe i, 99
A habitat suitability model for black rhino on the Mun-ya-Wana Game Reserve
during the dry season. The map illustrates the suitability of each grid cell
according to the suitability value of the individual in the population which ranked
that cell the highest and the degree of inter-individual variation amongst the
population. Low variation indicates agreement amongst the populations predicted
suitability ~ values for a cell, while high variation indicates
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fence for different post-release phases on the Mun-ya-Wana game Reserve. (a)
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CHAPTER 1

General Introduction

When managing or repopulating a conservation area, especially with an endangered
species, it is important to have a comprehensive understanding of the suitability of the
land as well as the optimal population numbers in order to ensure ecosystem functioning
(Bothma et al. 2004, Amin et al. 2006). A measure of habitat value helps ecologists and
managers to better understand the ecosystems that they are dealing with, and to apply the
most effective management strategies. If, however, an overestimate of value is made, the
ecosystem will be managed incorrectly and overused, resulting in habitat degradation.
Various methods have been developed to measure the value of habitats, based either on
our perception of value using habitat analyses and carrying capacity (CC) estimates (Fritz
& Duncan 1994, McLeod 1997, Luo et al. 2001, Adcock 2004, Bothma et al. 2004), or
according to the species in question by using a measure of habitat utilisation or densities
of resident species (e.g. Aebischer et al. 1993, Schadt et al. 2002, Morris 2003b,
Braunisch et al. 2008).

Habitat selection, utilisation and suitability modelling are extensively studied
topics (e.g. Johnson 1980, Rosenzweig 1981, Aebischer et al. 1993, Wintle et al. 2005)
due to the importance they play in wildlife conservation and management decisions (Ben-
Shahar & Skinner 1988, Morris 2003a). Sound management decisions are crucial to the
conservation of large mammals, especially where these species are ecologically and

economically significant.

1.1. Habitat explained

The base framework for conservation and management planning within an ecosystem is
structured around the habitats that comprise it. In the literature the term ‘habitat’ is

extensively used in a wide variation of studies, but very few actually go so far as defining
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what constitutes a habitat. In some descriptions species survival or population growth
within the habitat is incorporated as part of the definition (Fabricius & Mentis 1990,
Morris 2003a). For example Morris (2003a) defines habitat as ‘a spatially-bounded area,
with a subset of physical and biotic conditions, within which the density of interacting
individuals, and at least one of the parameters of population growth, is different than in
adjacent subsets’. Others go further to include that a habitat needs ‘to provide for the life
needs of an organism’ (Melton 1987, Harris & Kangas 1988, Owen-Smith 1988,
Fabricius & Mentis 1990). | believe that these definitions are misleading, as in many
studies the delineation of the habitats is made before any idea of the density or
populations growth in the areas is known (Boyce et al. 2003, Osko et al. 2004, Calenge et
al. 2005b, Le Mar & McArthur 2005). Habitats may also exist in an ecosystem that may
not be utilised by or provide for a species (unpublished data). It seems that we can
simplify this definition to ‘a spatially-bounded area, with a subset of physical and biotic
conditions...” (Morris 2003a). With this definition managers can use existing vegetation
mapping units and ecogeographical variables to configure a habitat map for an area. This
can be achieved without having to incorporate any animal movements or requirements,
which is the process presently being followed by the majority of studies. Following this, a
habitat could influence the density and population growth of the species in question and
possibly contain some of the resources required for a species survival.

Initially conservation managers may prescribe CC values to specific habitats as an
indication of initial stocking densities (Bothma et al. 2004). Species and habitat
monitoring programs guide the modification of existing management plans and CC
values according to cues from ecosystem or population dynamics (McLeod 1997, Bothma
et al. 2004, del Monte-Luna et al. 2004). The availability of essential resources or the CC
of an area is used as an indication of habitat value (Verner et al. 1986, Fritz & Duncan
1994, Bothma et al. 2004), even though CC models have been shown to be misleading in
describing plant-herbivore interactions in stochastic environments (see McLeod, 1997
and Del Monte-Luna et al., 2004 for reviews of CC models). They do, however, have a
place in describing short-term equilibrium densities as a function of resource-
availabilities (McLeod 1997), but ultimately the interconnected number of dynamic biotic

and abiotic factors result in a constantly changing CC (del Monte-Luna et al. 2004).
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Despite ecosystem complexity, the majority of CC models are based on only a few of the
essential factors affecting the CC of a habitat (McLeod 1997, Bothma et al. 2004, del
Monte-Luna et al. 2004), which may have been identified using expert knowledge or via
regression analyses based on presence-only or presence/absence data of a species
(Millspaugh et al. 2006). This is where the split in the determination of the CC of an area
is made — either only using environmental variables or a relationship between animal
species dynamics and habitat factors (McLeod 1997, del Monte-Luna et al. 2004). After
reviewing seven different models, based on their ability to be objective, to produce
quantitative estimates and their ability to consider environmental variation, McLeod
(1997) found the interactive model, which related plant biomass to the rate of increase
and food intake of herbivores, as the most suitable. This illustrates the importance of
incorporating both environmental and animal dynamics into our understanding of habitat
value.

So how do we record the value that an animal places on the quality of a habitat?
As mentioned previously, animals may exhibit a non-random utilisation of available
habitats (Morris 2003a) which we can use as an indication of selection made by the
population or an individual. However, empirical studies have shown species density
indices may not always indicate habitat quality under all conditions (Van Horne 1983,
Greene & Stamps 2001). Environmental factors influencing this include seasonal and
other temporal changes in habitat resources and habitat patchiness (Van Horne 1983). We
therefore need to ensure that we collect density data over the variety of seasons (Van
Horne 1983) and that the correct scale of selection is being analysed (Johnson 1980,
Aebischer et al. 1993, Boyce et al. 2003, Alldredge & Griswold 2006). Thomas and
Taylor (1990) identified three study designs at which habitat availability and use can be
measured. In design | studies habitat use is calculated at a population level, with no
individuals being identified, and the entire study area delineated as available. The next
two designs are the more commonly used designs, especially in studies using radio-
tracking data (Aebischer et al. 1993). Design Il studies identify individuals in the
population, but still define the area of availability at the population level, while in design
I11 studies both the availability and use is measured at an individual level. The last two

designs are the more appropriate as design | studies assume that all individuals in a
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population are making similar decisions regarding habitat selection, which is often not the
case (Alldredge & Griswold 2006). It is important that the issues of scale are taken into
account (Johnson 1980, Cumming et al. 2006) as a mismatch in scale between actual
ecological processes and the management strategies governing them will result in
mismanagement of natural resources (Cumming et al. 2006). For example, animals may
behave at temporal scale that incorporates a full 24 hours, while, from a management
perspective, we may only concern ourselves with their daytime movements and habitat
utilisation. While it may seem obvious that this will cause a mismatch of scales, there is
currently little literature addressing this specific issue.

We can then begin to understand the variation in habitat selection via the
identification of specific resource selection functions which will enable to us to forecast
habitat utilisation (Boyce & McDonald 1999) using habitat suitability models with
correct scaling (Cumming et al. 2006). Conservationists and managers use these models
to define landscape properties and map the distribution of wildlife habitat. They would be
made more efficient if adjusted to incorporate various temporal, behavioural and spatial
scales determined by social, ecological and socio-ecological processes (Cumming et al.
2006). Within this framework, they will allow us to produce probability maps depicting
the likelihood of species occurrence and their response to environmental change, which is
vital in planning conservation strategies (Store & Kangas 2001, Wintle et al. 2005, Traill
& Bigalke 2006).

1.2. Rationale

| aim to address variations in our current perspective of habitat value versus that of
animals at various spatial, temporal and behavioural scales, allowing us to better
recognise ecological-species interactions at the right scale. I aim to discuss this
understanding in a conservation planning framework in the identification and
management of habitats for animal species. The objectives were thus 1) to question our
knowledge of CC estimates and models and whether there is link between our perception

of habitat value and animal habitat utilisation, 2) to question our use of temporally
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restricted population location data to make assumptions about animal movement and
habitat utilisation, 3) to address issues of interindividual niche variation by conspecifics,
4) to determine whether modelling habitat suitability is best done at an individual or
population level and 5) finally whether we can understand the influence of
ecogeographical variables on a population of reintroduced animals.

I will use the Mun-ya-Wana Game Reserve, located in KwaZulu-Natal, South
Africa, and a founder black rhinoceros Diceros bicornis minor population to achieve

these aims and objectives.

1.3. Overview of the thesis

| have written the data chapters (2 to 6) as independent journal articles (Chapter 2 has
been published and the other four are in submission). A full reference list is given at the
end of the thesis rather than at the end of each chapter. | completed a black rhino habitat
suitability map for the study site, incorporated as a subsection supporting the paper of
Chapter 6. I will conclude the thesis in Chapter 7 with a general discussion on the new
science learnt from the study and its application in the conservation and management

planning for mammals.

1.3.1. Data chapters

In Chapter 2 | address our understanding of habitat utilisation, at various levels, and CC
estimates and whether there is any correlation between the two. I did this at an individual
selection level after finding that black rhino exhibit no concordance of habitat selection
amongst themselves, at any of the selection levels | tested at. Resource availability drives
individual productivity and we can assume individuals to select those habitats with a
higher quality, abundance and productivity of key resources (i.e. the value of a habitat as
indicated by the CC estimates assigned to them). Using a ranking method to display

selection and CC estimate values I found that this is not the case. | discuss these findings



and question the reliability of habitat CC estimates for species that display either variable
individual selection of habitats or patches, or that are selective foragers.

In Chapter 3, I investigate how circadian shifts in a mammal’s ecology could
make interpretations using only an animal’s diurnal activities, habitat selection and
ranging behaviour, inaccurate. | also analysed behaviour when analysing the spatial data
for habitat selection, as animals may well select specific habitats for particular
behaviours. | overlaid day and night habitat movements and selection for various
behaviours, and demonstrated variation in spatial use of habitats over time for different
black rhino behaviours. | discuss these findings in a conservation management context,
especially with regards to monitoring frameworks.

In Chapter 4 | investigate the degree of interindividual habitat and dietary niche
variation exhibited by the MGR black rhino population at a broad scale. After finding
notable levels of interindividual variation, | sourced fine scale feeding data from another
black rhino population and conducted the same analysis. | then analysed the depth of the
interindividual dietary variation to see whether the variation was based on their primary
or subsidiary diets. Following this I discuss the need to understand the individual before
we can make assumptions about populations based on pooled individual information.

In the fifth chapter I will further develop the concept of the individual and test
whether we can use a number of individually created habitat suitability models to develop
a population level model using a maximum entropy model (Maxent). Currently only
complex generalised additive mixed models (e.g. Aarts et al. 2008) and eigenanalyses
(Calenge et al. 2005a) allow for the inclusion of individual variation in sample sizes and
niche selection among individuals. | will generate a number of Maxent outputs and
establish whether we can generate a more accurate indication of population level habitat
suitability using this simpler modelling technique.

In Chapter 6 | investigate our understanding of how ecogeographical variables
(EGV) affect newly reintroduced animals and how this knowledge can be used to
increase the settling rate of released animals. | again used a novel application of Maxent
to assess whether we could generate an indication of changes in suitability over time to

answer this question. By doing so I queried whether we are able to incorporate a temporal



aspect to Maxent modelling, and how this could benefit us in answering questions related
to conservation ecology.

Finally in Chapter 7 1 include a general discussion and describe how research in
this field could continue into the future. | envisage this study to provide conservation
managers with various tools that will enable them to better understand the way animals
use and perceive their environment. This will allow for better monitoring and analyses of
animal movements and a foundation for sound conservation planning. It will also aid in
the development of strategic management plans in the conservation of not only animal
species, but also the ecosystems that they reside in and the identification of suitable areas
for future conservation of animal species.

| selected the black rhino as a study species as a better understanding of the
ecology of this endangered mega-herbivore (Estes 1993) is required. The conservation
plans for several African countries specify the need for the establishment of new breeding
populations of black rhino (De Alessi 2000, Brooks 2001, Emslie 2001, Mills et al.
2003). Populations on state-controlled land in South Africa are already showing signs of
density dependence and new private or communal areas that can sustain growing
populations need to be identified (Hall-Martin & Castley 2003, Sheriffs 2003). In South
Africa the black rhino Range Expansion Project moved 15 black rhino onto the MGR in
KwaZulu-Natal (Sheriffs 2003), which provided a known population of black rhino
which was easily identifiable and located for study purposes. Being a solitary moving
animal with a known tendency to move through the night (Goddard 1967, Owen-Smith
1988, Estes 1993, Brown et al. 2003) it was deemed a suitable species to test theories

about individual, spatial and temporal variations in habitat utilisation.



1.4.  Study Area

1.4.1. Location and land use

The Mun-ya-wana Game Reserve (MGR), located approximately 25 km from Hluhluwe
town and 30 km from the coastline between 27° 40¢ — 27° 55° S and 32° 12° — 32°26’ E,
was proclaimed in 2004 and encompasses a total of 18 050 ha. This area of Kwa-Zulu
Natal lies at the southern end of the East African coastal plain and is between the
Lebombo Mountains and the ocean. Forming a link between other conservation areas the
MGR forms part of the Greater St. Lucia Wetland Reserve. The reserve runs
predominantly in a north-south direction with the longest section at 30 km and the
shortest at 3.3 km, with its borders fenced off. The majority of the reserve’s western and
southern boundary is adjacent to the Mkhuze Game Reserve and smaller private game
reserves, whilst the eastern boundary falls mainly onto rural community areas.

The MGR is a collaboration made up of the following private game reserves:
Phinda Private Game Reserve (12 740 ha), Bumbeni (1 530 ha), Zuka (1 390 ha) and
Mziki (260 ha), Pumalanga (2 130 ha) and van Rooyens (170 ha) (Fig. 1.1). Before the
majority of these reserves were established, they were used for a combination of farming
practices, including cotton, cattle and pineapples, while a few were small game farms
with limited amounts of wildlife and few large mammals. The farming practices were
discontinued with the formation of Phinda in 1991. Currently the Phinda, Bumbeni and
Zuka sections of the reserve are being operated as an up-market tourism operation with a
total of six lodges. Qualified rangers drive guests on an extensive road network that
encompasses the whole of the MGR. Mziki is a housing share block with private home

owners who self-drive across the Mziki and Pumalanga sections of the MGR only.

1.4.2. Geology and soils

Due to the high variation in geological formations across the reserve (Fig. 1.2) there is a
corresponding high variation in the vegetation structure. The north-eastern half of the

reserve is made up of Cretaceous siltstone deposits that have been overlaid with
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argillaceous sands of the Quartenary System (Hobday 1979). Across the centre of the
reserve runs a stretch of conglomerate, siltstone and sandstone and a band of marine
glauconitic siltstone with shelly horizons. Across the eastern section of the reserve there
Is a variation of soils from the higher- to the lower-lying areas made up of red loamy to
clayey soils and black vertisols respectively. Rhyodacite and rhyolite dominate the west,
while the far southern section of the reserve is dominated by basalt. Moderately fertile
clayey but shallow lithosols have been produced across these rhyolite and basalt areas
(Hobday 1979).

1.4.3. Land types

Land types are areas with a uniform climate, terrain form and soil pattern. A terrain unit
is any part of the land surface with homogeneous form and slope. Terrain unit 1
represents a crest, 2 = scarp, 3 = midslope, 4 = footslope and 5 = valley bottom. There are
four groups and seven different land types that fall into the MGR (ldema 1988), namely
land types Ae, Ah and Ai; Db and Dc; Ea and Ib (Fig. 1.3). See Appendix 1 for details on
the land types on MGR.

1.4.4. Topography

The altitude on the reserve varies between a low of 4 m a.s.l on the Mzinene floodplain to
the highest point at 340 m a.s.l on the Lebombo mountains, which run through the
southwestern section of the reserve (Hunter 1998, Goodman 2004, van Rooyen &
Morgan 2007). Over 88 % of the MGR’s slope profile (Table 1.1) is classified as level to
very gentle or gentle (Goodman 2004).

1.4.5. Climate

The Maputaland region experiences dry warm winters from April to September and hot
wet summers from October to March. During the study period of January to December

2005, the heavy rains came in April and November, just before the dry season and then
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slightly into the wet season. Data collected on Phinda Private Game Reserve indicate the
years rainfall was 841 mm, which is above the last ten years average of 764 mm at
Phinda (MGR weather records) (Fig. 1.4). During the study period the lowest recorded
temperature in the neighbouring Mkhuze Game Reserve was 9.6° C in July, with the
lowest mean monthly temperature of 18.8° C for the same month. The highest recorded
temperature was 41.5° C in November, with the highest mean monthly temperature of
26.8° C for the month of January (Mkhuze Game Reserve weather records, Ezemvelo
KZN Wildlife).

1.4.6. Flora

The broad vegetation types on the MGR are the Maputaland Coastal Belt, Southern
Lebombo Bushveld, Western Maputaland Clay Bushveld, Sand Forest and Zululand
Lowveld (Mucina et al., 2005). The high variation in geological formations across the
reserve (Anon., 1988) drive a corresponding high variation in the vegetation structure and
25 fine scale vegetation types were identified on the MGR (van Rooyen & Morgan 2007;
see Appendix 1 for a detailed description of the vegetation types). These 25 types were
grouped into management units and a total of 16 habitat types were identified (van
Rooyen & Morgan 2008; see Appendix 2 for a detailed description of the habitat types).
Van Rooyen and Morgan (2007) based the classification on the woody layer, which
provided a good indication of the vegetation needed to analyse a browsers’ movements

and habitat utilization.

1.4.7. Fauna

Well over 300 bird species, 30 frog and nearly 100 butterfly species have been recorded
in this diverse area (Butchart & Roche 2002). Noted mammal species in the reserve
include the following: African elephant Loxodonta africana, Burchell’s zebra Equus
burchelli, white rhinoceros Ceratotherium simum, black rhinoceros Diceros bicornis,
hippopotamus Hippopotamus amphibious, bushpig Potamochoerus porcus, warthog

Phacochoerus aethiopicus, giraffe Giraffa camelopardalis, blue wildebeest
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Connochaetes taurinus, red duiker Cephalophus natalensis, common duiker Sylvicarpa
grimmia, suni Neotragus moschatus, impala Aepyceros malampus, African buffalo
Syncerus caffer, kudu Tragelaphus strepsiceros, nyala Tragelaphus angasii, reedbuck
Redunca arundinum, mountain reedbuck Redunca fulvorufula, waterbuck Kobus
ellipsiprymnus, brown hyaena Hyaena brunnea, spotted hyaena Crocuta crocuta, cheetah
Acinonyx jubatus, leopard Panthera pardus, lion Panthera leo, black-backed jackal Canis
mesomelas, honey badger Mellivora capensis, large-spotted genet Genetta tigrina, white-
tailed mongoose Ichneumia albicuada, slender mongoose Galerella spp., thick-tailed
bushbaby Otolemur crassicaudatus, chacma baboon Papio cynocephalus ursinus, vervet

monkey Cercopithecus aethiops and aardvark Orycteropus afer.

1.5.  Study species

Rhino are large odd-toed ungulates that fall into the Perissodactyla order and the
rhinocerotidae family. This order has six representatives left in Africa, namely the two
rhino species, three zebra species and the wild ass (Estes 1993). The black rhino is a large
grey animal that stands 1.4 - 1.7m and weighs between 996 - 1 362kg. The females weigh
in just less than the males, but are not much smaller (Estes 1993). Black rhino have an
upper prehensile lip that they use for browsing which is a predominant physiological
difference between the two African rhino species. This lip enables them to browse
selectively on a diverse array of woody species across their range (Goddard 1968, Estes
1993, Kotze & Zacharias 1993, Rossouw 1998, Buk 2004, Ganga et al. 2005, Van der
Heiden 2005). They have poor eyesight, which they compensate for with an acute sense
of smell and hearing (Estes 1993; pers. obsv.). Black rhino have two continually growing
horns that are variable in shape and size with the front horn normally longer the rear horn.
rhino horn is made up of keratin and is used for predator defence, a stave in encounters
with other rhino (Estes 1993; pers. obsv.) and a tool for pulling down hard to reach
branches for feeding (pers. obsv.). These horns are largely responsible for the demise of
the African rhino, due to a demand for their ornamental use and in concoctions of
Chinese medicines (IUCN 2008).
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1.5.1. History

The first proper rhino species appeared in the Oligocene over 37 Ma® and peaked into the
Miocene and Pliocene (Estes 1993). Then recently, in rhino history, the rhino of Europe
and Northern Asia started disappearing between 10 000 and 30 000 years ago, due to
climatic changes and hunting pressure by humans (Owen-Smith 1988). There are now
only five species of rhino left represented by three genera (Morales & Melnick 1994,
Emslie & Brooks 1999). The black rhino and white rhino are the result of a divergence
resulting in two sister groups with different specialisations, browsing and grazing
respectively, and have an approximate 2% DNA sequence divergence (Morales &
Melnick 1994). The black rhino has four sub-species that are recognised, specifically D.
b. minor, D. b. bicornis, D. b. michaeli and D. b. longipes (Emslie & Brooks 1999,
Emslie 2004). Historically the black rhino ranged across most of Southern and Eastern
Africa and spreading West, below the Sahara, into some reaches of West Africa outside
of rainforest areas (Fig. 1.5). In this study the sub-species D. b. bicornis is studied, its
present day distribution limited to the Eastern sections of Southern and East Africa (Fig.
1.6) (Cumming et al. 1990).

1.5.2. Status

Of the three remaining genera of rhino many are critically endangered (IUCN 2008). The
three exceptions are all sub-species of the two surviving species of African rhino, the one
being the Southern white rhino C. s. simum, which is classified as near threatened. The
second is the Western black rhino thought to be now extinct (Largot 2007) and the last is
the study animal for this dissertation, the South-Eastern black rhino D. b. bicornis, which
is classified as vulnerable by the IUCN (IUCN 2008). In the early 1970’s there was in
excess of 60 000 black rhino in Africa (Emslie & Brooks 1999, Emslie 2004). The
numbers plummeted to an all time low of ~ 2 400 animals in 1995, and have slowly
increased to an estimated 3 610 in 2003. This downfall was largely due to poaching to
supply the need for rhino horn in Asia for traditional Chinese medicine and in Northern
Yemen for traditional dagger handles (Emslie 2004, IUCN 2008). Nearly 70% of all
Africa’s black rhino are to be found in Namibia and South Africa and over 25% in
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Zimbabwe and Kenya. Of these, 75% are on land owned by state-run conservation
agencies and 23% are on private sector land, with a large proportion of these on a

custodian basis and still owned by the state (Emslie 2004).

1.5.3. Behaviour

Black rhino are somewhat solitary and sedentary in their movements (Lent & Fike 2003;
pers. obsv.). Adult bulls will spend time socialising with females and on occasion with
other males, while females socialise often with other females and may have sub-adults
which ‘attach’ themselves to them for long periods (Lent & Fike 2003). Adult bulls can
behave territorially and this behaviour seems to vary across the continent (Adcock 1994).
In KwaZulu-Natal it seems there are definite territories that are established (Estes 1993,
Adcock 1994; pers. obsv.) and within three of the four adult bulls territories in the study
site there are sub-ordinate males which are tolerated in the adult bulls territories. The
female’s movements are within an established home range, which may overlap with one
or more bull’s ranges (Lent & Fike 2003). The size difference between the sexes’ home
ranges differs across the continent, with both sexes having the same size range in the
Ngorongoro Crater (Goddard 1967) while vast differences were seen in the Serengeti
(Frame 1980) and in a Kenyan sanctuary (Tatman et al. 2000). On the MGR | noted that
the females have a smaller core ranges than the adult bulls, but similar in size to the sub-
ordinate males (pers. obs.).

The gestation period is 15-16 months with an inter-calving period of 2%/, — 4 years
(Estes 1993). After birth the previous calf is driven away, at this stage between 2'/, - 3/,
years old. At this age the sub-adult will probably accompany other sub-adults or an

unrelated cow until reaching adulthood (Estes 1993).
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Table 1.1 Slope classes as determined by Goodman (2004).

Slope Class Area (ha) % Total Area
Level to very gentle 12278.7 67.2
Gentle 3834.8 20.9
Moderate 1755.9 9.6
Moderately steep 393.4 2.2
Steep 4.1 0.02
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Figure 1.1. The properties comprising the Mun-ya-Wana Game Reserve.
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Figure 1.2 Geology of the Mun-ya-Wana Game Reserve, with the reserve boundary
indicated by the thick black line (Linstrom & Wolmarans 1985; adapted from van

Rooyen and Morgan, 2007).
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Figure 1.3 Land types of the Mun-ya-Wana Game Reserve, with the reserve boundary
indicated by the thick black line (Anon 1988; adapted from van Rooyen and Morgan,

2007).
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Figure 1.4 Historical rainfall and temperatures in the Mkhuze Game Reserve, which lies
to the west of the Mun-ya-Wana Game Reserve (Anon 1998; adapted from van Rooyen

and Morgan, 2007).
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Figure 1.5 Probable historical distribution of black rhino (taken from Emslie and Brooks,

1999)
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Figure 1.6 Distribution of the four black rhino Diceros bicornis sub-species in 1997
(taken from Emslie and Brooks, 1999). It is thought that D. b. longipes has since gone

extinct (Largot 2007).
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CHAPTER 2

A priori valuation of land use for the conservation of black rhinoceros

(Diceros bicornis)

2.1.  Summary

The appropriateness of using carrying capacity (CC) estimates to indicate habitat
utilisation for a particular species, and thus as a tool for conservation population
planning, has been questioned. We argue individual fitness is driven by resource
availability, and we therefore assume individuals select habitats with a higher quality,
abundance, and availability of key resources. In the past such selection has been related
to the CC of a habitat. We tested whether we can use CC estimates to indicate habitat
selection by individuals using a selective forager, black rhinoceros Diceros bicornis, for
which CC approaches underpin species conservation plans. We tested for correlation of
individuals’ habitat selection with predicted CC values at three spatial scales of selection.
Individual selection was not related to the value of the habitat according to our CC
estimates for any of the three scales we tested at. We discuss how density-dependence,
environmental variables, scale of selection, individual variation and intra- and inter-
specific dynamics may have influenced these results. Following this, we question the use
of a priori calculations of potential resource quality and abundance of habitats (CC
estimates), which do not take into account the various factors that influence an animal’s
selection of a habitat, as an indicator of species habitat selection. We raise caution
regarding the use of such CC models to determine optimal population numbers for an

area.

2.2. Introduction

When managing or repopulating an area with animals, especially an endangered species,

an understanding of habitat selection, habitat quality and the potential of the land, help
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with determining sizes of population required for optimal population growth (Bothma et
al. 2004, Metzger et al. 2007) and how populations will use the space provided (Fagen
1988, Morris 2003b). A commonly used management approach has been to calculate a
priori estimates of the carrying capacity (hereafter referred to as CC) of the land for a
species, based on resource availability and quality, and to plan the future conservation
management of the population on this (Bothma et al. 2004, Hayward et al. 2007). This
includes decisions about reintroduction population size, harvesting strategies, the
identification of potential high utilisation habitats and a measure of future conservation
success. Here we concentrate on the usefulness of CC estimates for determining the
quality of habitats as a tool for identifying areas of utilisation by a species for
management purposes.

Many variations of calculations, and hence definitions, of CC for herbivores have
been used in the past. Due to the stochastic nature of most natural environments, the
concept of CC can be unreliable, especially for a herbivore population (for a review see
McLeod, 1997). In variable environments, such as African savannah, “...carrying
capacity is not a measurement of long-term equilibrium density but of short-term
potential density as a function of resource availability” (McLeod 1997). Resource
availability therefore drives individual fitness, in this case reproductive productivity, and
we would assume individuals will select those habitats with a higher quality, abundance
and productivity of key resources (Fretwell & Lucas Jr. 1970, Fagen 1988), i.e. higher
value of a habitat as indicated by the CC estimates we assign to them. However, resource
utilisation may vary depending on population density (Fretwell & Lucas Jr. 1970, Hobbs
& Hanley 1990).

The predictive power of using CCs to estimate habitat selection may differ
between individual and population scale. Habitat selection is defined here as the process
whereby individuals preferentially use, or occupy, a non-random set of available habitats
(Morris 2003a). At the level of individual selection, a habitat’s CC may be used as an
effective indicator of selection by a species (Fagen 1988, Hobbs & Hanley 1990) and vice
versa. At the population level there has been some discrepancy as to whether one can use
CC estimates as an indicator of selection (Van Horne 1983, Fagen 1988, Morris 2003b).
For reviews see Hobbs and Hanley, 1990, Garshelis, 2000 and Chalfoun and Martin,
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2007. At the population level, simplified simulation models have shown that habitat
use/availability indices were not necessarily good indicators of CC, especially if there
was variation in the abundance of resources across habitats (Hobbs & Hanley 1990).
However, one could relate population use/availability ratios directly to habitat values and
CC, as long as ideal free distribution is assumed for the population (Fretwell & Lucas Jr.
1970, Fagen 1988). This assumption, however, does not take into account the
complicated social dynamics and behaviours of many species that do not follow the
assumptions of ideal-free distribution and that show signs of density-dependence (Hobbs
& Hanley 1990, Garshelis 2000).

Simulation models that make predictions of population habitat selection often
cannot take into account the potentially high individual variability within a species’
selection (Aebischer et al. 1993). It is, therefore, imperative that we test these models,
because population growth is ultimately a function of individual fitness. However, due to
potentially large variations in habitat selection among individuals (Aebischer et al. 1993,
Osko et al. 2004), a population-based model may be a flawed approach to understanding
habitat selection. Here we test empirically whether we can use habitat CC estimates to
indicate habitat utilization by individuals, using a threatened black rhino (Diceros
bicornis) population.

The conservation plans for several African countries specify the need for the
establishment of new breeding populations and increased meta-population growth rates of
the critically endangered black rhino (http://www.iucnredlist.org; Emslie 2001, Metzger
et al. 2007), as many population’s growth rates are slowing down due to high densities of
rhino (Emslie 2001, Hall-Martin & Castley 2003). A better understanding of the ecology
and habitat selection of black rhino is required for the successful establishment of new
populations, and it is for this reason that we used the black rhino as a study species.

Our aim was to establish whether we can use current a priori estimates of habitat
quality, derived from CC approaches, to predict habitat utilization by black rhino. Our
objectives were therefore (1) to determine values for habitat quality and rank habitats
based on population-scale CC estimates; (2) to rank the same habitats according to
selection indices by individual black rhino; (3) to determine whether there is a

discrepancy between our a priori estimates of habitat quality and the individual rhinos’
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selection of habitats. We then conclude about the value of such population-level CC

approaches for conservation management.

2.3. Materials and methods

2.3.1. Study site

The 180 km? Mun-ya-Wana Game Reserve (MGR) (27° 40— 27° 55° S and 32° 12’ — 32°
26’ E), KwaZulu-Natal, South Africa (Fig. 2.1), was established in 2004 with the
dropping of fences between a group of already existing game reserves. Altitude varies
between a low of 4 m a.s.l on the coastal Mzinene floodplain and a high of 340 m a.s.l on
the Lebombo Mountains, which run through the south-western section of the reserve (Fig.
2.1). The region experiences dry warm winters from April to September and hot wet
summers from October to March. During the study year the rainfall in the centre of the
MGR was just above the last 10 years average rainfall (841 mm versus an average of 764
mm), but was preceded by three years of below average rainfall (427mm, 354 mm and
698 mm). The rainfall for the year in the neighbouring Mkhuze Game Reserve was below
the yearly average (473 mm versus an average of 578 mm).

The broad vegetation types across the MGR were Maputaland Coastal Belt,
Southern Lebombo Bushveld, Western Maputaland Clay Bushveld, Sand Forest and
Zululand Lowveld (Mucina et al. 2005). The high variation in geological formations
across the reserve (Anon 1988) drive a corresponding high variation in the vegetation
structure and sixteen finer scale habitat types have been identified (Table 2.1) (van
Rooyen and Morgan, 2007; see Appendix 2 for a detailed description of the habitat types
used in this chapter). Van Rooyen and Morgan (2007) based the classification on the
woody layer, which provided a good indication of the vegetation needed to analyse a

browsers’ movements and habitat utilization.
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2.3.2. Study species

Black rhino are locally selective browsers (Oloo et al. 1994, Muya & Oguge 2000, Ganga
et al. 2005), yet utilise a diverse array of woody species across Africa (Kotze & Zacharias
1993, Ganga et al. 2005, Adcock 2006), and are fairly solitary and sedentary in their
movements. Adult bulls spend time socialising with females and on occasion with other
males, while females often socialise and sub-adults may associate with females for long
periods. Adult bulls can behave territorially; this behaviour seems to vary across the
continent (Goddard 1967, Adcock 1994, Adcock et al. 1998). In neighbouring reserves
within the study region definite territories are established (pers. obsv.; Adcock 1994) and
on the MGR three of the four adult bulls tolerate sub-ordinate males in their territories.

Females move within an established home range, which may overlap with the
ranges of one or more bulls. The size difference between the home ranges of males and
females differs across the continent, with both sexes having the same size range in the
Ngorongoro Crater (Goddard 1967) while vast differences were seen in the Serengeti
(Frame 1980) and in a Kenyan sanctuary (Tatman et al. 2000). On the MGR we observed
females to have smaller diurnal core ranges smaller in size than those of the adult bulls,
but similar in size to sub-ordinate males (unpublished data). We have noted that there is a
significant difference between a black rhino’s spatial utilisation during the day versus the
night (unpublished results) and for this reason we will differentiate between the day and
night movements/ranging patterns of rhino in this paper.

Our study ran from January through December 2005. During this time we located
the rhinos at least once every four days with the aid of radio telemetry (see Linklater et
al., 2006 for details on horn implant methods). We studied all members of the recently
introduced (October, 2004) population: seven adult females and eight males (four adult
and four sub-adult) (N = 15). Due to the terrain and habitat occupied by this species, and
the typically long distances from the road network to where individuals spent their time,
we recorded the majority of locations on foot, using a Garmin 12 GPS (Garmin
International Inc., Kansas, USA). This allowed us to approach the rhino (on average
within 40 m), decreasing the error associated with triangulating GPS locations (Saltz
1994). We could expect an average GPS error reading of 10 m in a closed canopy habitat
type and less than 10 m in more open habitats (Wing et al. 2005). The error of our
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coordinates for rhino movements, home range sizes and habitat patches is minimal and
falls within the error of the GPS. We attempted to remain undetected by the rhino,
recording their initial behaviour at sighting, the time of day and a GPS location, before
leaving the location.

2.3.3. Black rhino habitat carrying capacity scores

There is a visual method for determining black rhino browse availability (Black Rhino
Browse Availability Assessment v2.0, Adcock 2004) that is combined with a model
determining the estimated black rhino CC of the land (BrCC-Model v2_1; Adcock 2006).
This model has recently been developed and, as yet, has not been used prior to black
rhino introductions, but rather as a follow up procedure to monitor the land and to
establish future harvesting (live-removals) of rhino.

We completed black rhino browse availability assessments (BAA) for all plants
available to rhino, according to the guidelines set out by Adcock (2004). This entailed a
calibrated visual assessment of the actual biomass of browse, based on the cover and
volume of each plant species available to a black rhino, within a number of cylindrical
plots (10 m diameter and 2 m in height) in each of the vegetation types across the reserve.
Adcock (2004) tested the visual estimate technique for variability in estimates amongst
researchers and for discrepancies between actual and estimated values, both of which
showed an insignificant variability (Adcock 2004), making this technique robust and
easily replicated. The final score for each habitat type was the average BAA score of the
plots within that habitat.

From the survey of feeding trails we completed on the Mun-ya-wana GR (see
methods below) we identified and recorded all those plants browsed by black rhino.
Black rhino browse is very recognizable from other browsers; as the characteristic 45°
clean cut from the proximal molars gives the branch a ‘pruned’ look. We then established
a preference list of species by calculating the frequency that rhinos browsed each species
relative to the total number of browse points along all the feeding trails. We used our list
in conjunction with suitability scores calculated from other black rhino populations in

Southern Africa (Adcock 2006) to identify those species non-browsed by, or deemed
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unsuitable for, black rhino from the BAA. We then weighted each habitat’s black rhino
browse availability score according to the percentage of suitable plants present for black
rhino (see Adcock, 2004 for detailed methods).

We calculated the black rhino CC score for each habitat using the BrCC-Model
v2_1 designed by Adcock (2006), which is based largely on the BAA scores. We deemed
this model the most representative and up to date CC model available for a single species.
Adcock continues to develop the model over time and has incorporated baseline data
from at least 15 other reserves. The model includes numerous factors, including the
quantity of suitable browse available for black rhino, monthly growth rate of plants,
monthly rainfall data and each habitat’s soil fertility and fire regime. So, although the
analyses are done on a yearly basis, monthly variation is taken into account. These
additional characteristics help with determining the quality and potential growth of the
available browse to black rhino. By doing so we based the value assigned to each habitat
on its quantity and quality of available resources, giving resource quantity and quality

equal weights to one another.

2.3.4. Individual habitat selection

We imported the diurnal GPS locations of the rhino into Arcview ® 3.2 (ESRI,
California, USA) and established a 95% kernel home range (KHR) to indicate the
greatest range extent (Worton 1989) for each rhino, using the Animal Movement
extension (Hooge et al. 1999). We could produce accurate home ranges as we had an
average of 90 sightings (min. of 49) per individual over a twelve-month period (Lent &
Fike 2003) and these locations were unaffected by autocorrelation, as they were each
recorded on separate days.

Different selection processes may operate at different scales (Luck 2002) making
it important for us to test selection at various scales, which we categorise here and
explain below. Thomas and Taylor (1990) identified three study designs for the design
and analysis of resource selection studies, which were subsequently generalised by Manly
et al. (2002) and again expanded on by Thomas and Taylor (2006). We used a variation
of the design 2 study, using the proportion of habitats within each rhino’s KHR relative to
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the available habitats, and we labelled this as the rhino’s habitat selection. At a slightly
finer scale we labelled the utilization of habitats within the KHR, a design 3 study
(Thomas & Taylor 2006), as the rhino’s habitat preference (Johnson 1980, Thomas &
Taylor 2006). Finally we assessed the selection of habitats at a foraging scale, based on
those areas utilised for browsing by the rhino at night, labelled as the browse-level
selection of habitats.
1) Habitat selection - We established an individual’s preference index for each
habitat by dividing the proportion of its area in the rhino’s KHR by the proportion

available:

[area of habitat / total area of KHR]
[area of habitat type available / total area available]

Habitat selection index =

An index value less than one indicates selection against, a value around one
indicates no selection, while a value above one indicates selection for (Manly et
al. 2002). We therefore split these proportions into three categories for analyses; 0
— 0.75 selection against, 0.76 — 1.25 no selectivity and > 1.25 positive selection.
Design 2 studies usually use the area of the habitat types in the home range
relative to the area of habitats available in the total study area (Thomas & Taylor
2006). However, we questioned this method for two reasons, firstly the study area
is arbitrarily defined and with the largest KHR of a black rhino (32 km?) on the
reserve being less than 20 % the size of the reserve (180 km?), it did not seem
possible that the whole area was available to the rhino to include in a single home
range. Secondly, there was an overlap among the KHRs of males that utilised
similar areas (a single adult male with one or two sub-adult males), but a lack of
overlap, especially of the core 50 % KHR area, among all neighbouring males.
Male rhino were probably being excluded from these areas through territorial
conflicts (Adcock 1994). The females also seemed to display ‘clusters’ (sensu
Lent & Fike 2003), and either utilised areas similar to the clusters of males
already mentioned or to other females. This sharing or utilization of similar home
range areas by black rhinos has been noted in other populations (Conway &
Goodman 1989, Tatman et al. 2000, Lent & Fike 2003).
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We therefore decided to redefine the availability of habitats for males and
females within these clusters to help us understand population patterns and
variation in the response of individuals to changing availabilities of habitat types
(Mysterud & Ims 1998, Osko et al. 2004). For females we considered a minimum
convex polygon (MCP) around all the black rhino KHRs whose core areas
overlapped into her KHR, as available. We did the same for males, but excluded
those areas that extended into a neighbouring male’s KHR (Fig. 2.2). This method
would include areas that male and females could potentially shift their KHR to. If
there was a relatively small unused area between the fence and MCP it was
included in the available area for both the males and females. This variation in our
assessments of available habitats for each of the rhinos across the reserve reflects
actual conditions. Another option would have been to use virtual species
modelling.

Habitat preference - We calculated a preference index for each habitat by dividing
the proportion of a rhino’s locations (the diurnal sightings of the rhino) in a
habitat by the proportion of the habitat available within a rhino’s KHR:

[# of locations in habitat type / total # of locations]
[area of habitat type in KHR / total area of KHR]

Habitat preference index =

If a habitat type was not present within a rhino’s KHR we excluded it from that
individual’s analysis. We ranked the habitats in ascending order, giving the

highest preference index a rank of one.

iii) Browse-level selection - We evaluated the rhino’s selection based on the browsing

regime of the rhinos at night. We selected 11 individuals, which we deemed to be
the easiest to track (six males and five females), and backtracked their trails, using
their spoor, from a sighted location of the animal at sunrise. We attempted to
complete the track to the previous evening’s sunset location of the same animal,
but this proved difficult due to the terrain we were tracking on. We completed 102
backtracks, covering a total track length of over 150 km. We recorded each
separate plant that the rhino browsed along the track, identified due to its
greenness (an indication that it was freshly browsed) and the spoor of the rhino

near the browse point. The average number of browsed plants per meter walked
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(br/m) in each habitat type was used as an indication of preference. We ranked the
habitats in ascending order with the highest number of br/m being the most

preferred habitat and given a rank of one.

2.3.5. Correlation between individual rhinos’ selection and habitat values

We ranked the habitats within each rhino’s KHR, in ascending order, according to its CC
score; we gave the habitat with the highest CC score a rank of one. The CC scores we
used were the absolute values; we did not weight them according to the area they
encompassed. We ran Spearman rank correlations between the CC habitat ranks and the
habitat preference ranks, at each selection level (i — iii) for each rhino. The use of null-
hypothesis testing and p-values (Stephens et al. 2005) allowed us to determine whether
the rhinos were selecting habitats in relation to the estimated carrying capacity scores of
the habitat types at any level. We used an alpha of 0.05 for all statistical analyses, which
were performed using SPSS 15.0 (SPSS Inc., Illinois, USA).

2.4. Results

2.4.1. Individual habitat selection

Individual black rhino, on MGR, generally did not select habitats according to their
availabilities at the three scales of selection we tested, illustrated by the range of habitat
selection indices in Fig. 2.3 (a — c). They were therefore positively selecting some
habitats available to them while selecting against others. There is a large amount of
variation shown amongst the individuals’ selection (Fig. 2.3). This is an interesting result
beyond the scope of this manuscript’s discussion and we are pursuing this in another

study.
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2.4.2. Correlation between rhino habitat ranks and CC ranks

The habitat types within individual black rhino KHR’s (habitat selection) were not
selected by the rhino according to their value determined by the BrCC-Model v2_1 scores
(all individual correlation tests were non-significant, other than one individual (F1))
(Table 2.2). Within their KHR (habitat preference) individual black rhino did not prefer
habitats with higher CC scores (all individual correlation tests were non-significant)
(Table 2.2). Black rhino did not selectively browse in those habitats with higher CC
scores (all individual correlation tests were non-significant, other than one individual
(DM3)) (Table 2.2).

2.5. Discussion

An a priori carrying capacity (CC) model, based largely on the quantity of suitable
available browse, could not predict black rhino habitat selection at three different scales
of selection. We would expect negative density dependent resource utilisation by black
rhino, and for this low density population to prefer those habitats within their home
ranges, within which we assume ideal-free habitat selection (Fretwell & Lucas Jr. 1970)
that have abundant levels of favourable browse. Conversely, these black rhino did not
rank their diurnal habitat preference according to the CC value we placed on the habitats,
even at this low population density. The diurnal locations included all activities, yet when
we based the rhinos’ selection of habitats according to those in which they browsed in
more frequently at night, when most browsing takes place (Goddard 1967, Owen-Smith
1988; unpublished results) and canopy cover for bedding sites is not a confounding
constraint on selection (Tatman et al. 2000; pers. obsv., Rice & Jones 2006), there was
still no correlation between their selection and the estimated CC value of the habitat.
There are several potential reasons for why these rhino did not select the more
productive, browseable habitats:
1. Animals base their selection of habitats on a myriad of factors (Aebischer et al. 1993,
Luck 2002, Morris 2003b, Buk 2004, Van der Heiden 2005, Chalfoun & Martin
2007) and not just the availability and quality of browse. Habitat heterogeneity, slope,
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rockiness and the distance to water, roads and fences all play a role in habitat
selection by black rhino (Buk 2004, Van der Heiden 2005). As we have
demonstrated, using a simple predictive model which assigns value to a habitat
without regard to any factors other than those relating to browse quality and
abundance would be flawed.

Density dependence may influence plant level selection (Kausrud et al. 2006) and,
hence, the selection of patches/habitats. Being selective browsers (Oloo et al. 1994,
Muya & Oguge 2000, Ganga et al. 2005) black rhino in the Fish River Game Reserve
were able to select only highly preferred plant species due to an abundance of
available forage (Ganga et al. 2005). A similar process may be occurring in the low
density population of MGR. Here, individual black rhinos are selecting
patches/habitats with highly preferred forage, but not necessarily with high
abundances of browseable species (Ganga et al. 2005), which is used as the base
indicator of habitat quality in most CC estimates (Bothma et al. 2004, Adcock 2006).
This highlights that we cannot interchange abundance and quality of resources when
predicting habitat use of a selective forager. Future research may reveal whether a
sliding scale of black rhino browse utilisation based on preference and population
density exists. Highly preferred browse may be negatively density-dependent and
low-preference browse being positively density-dependent, as noted in domestic
sheep Ovis aries at a diet level (Kausrud et al. 2006).

. Animals select habitats and resources at various scales (Johnson 1980, Chalfoun &
Martin 2007). The scale at which we make assessments of habitat quality may not
align with that of the animal’s selection. In conjunction with (2) we noted a variation
in habitat selection among black rhino on MGR (Fig. 2.3; unpublished results), which
would indicate the rhino were potentially making a common selection at a finer scale
than the three levels we tested. Being selective foragers (Oloo et al. 1994, Muya &
Oguge 2000, Ganga et al. 2005) predictions of selection would benefit from analyses
at a fine scale, thereby removing the variation amongst individuals that has been
noted at larger scales of selection.

. Access to resources differs amongst individuals (Mysterud & Ims 1998, Garshelis

2000, Osko et al. 2004) not only at a home range level, but also within home ranges
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(Wittemyer et al. 2007). CC estimates of habitat quality are based on the concept of
ideal-free distribution, assuming equal access to resources by all members within a
population (Fretwell & Lucas Jr. 1970). We factored this into the habitat selection
level for black rhino, by assessing their selection of habitats within clusters (see
Materials and Methods). However, in a species with a dominance hierarchy, like
black rhino (Frame 1980; pers. obsv., Adcock 1994), certain individuals could restrict
access and ‘hoard’ resources from other cluster ‘buddies’. Dominant elephant groups
have displayed such behaviour during times of resource scarcity (Wittemyer et al.
2007). Further insight into the social dynamics within the clusters may yield
interesting results in this regard.

Interspecific competition can play a role in habitat selection (Garshelis 2000), not
only through competition for resources, as seen in black rhino (Birkett 2002) and
African elephant (Kerley & Landman 2006), but also by the presence of a physically
dominating species (Wasserberg et al. 2006). Social interactions between African
elephant and rhino can result in conflict, in some incidences even leading to fatalities
of rhino (Slotow et al. 2000). It is interesting to note there were no combined elephant
and black rhino sightings during the study period, indicating black rhino were
potentially avoiding areas when elephant were present. There is a relatively dense
population of elephant on MGR (~0.6 / km?) (Slotow et al. 2005) that may negatively
influence black rhino movement patterns and hence habitat selection. Future research
into the influence of interspecific interactions and habitat selection among mega-

herbivores may yield interesting insights into competition between these two species.

It is clear we would not be able to rely on the BrCC-Model v2_1 to estimate areas of

utilisation by black rhino, especially in low density populations, as would be the case for

all founder populations. Managers should rather rely on the use of established resource

selection functions (Manly et al. 2002) or predictive distribution models (Carter et al.

2006, Elith et al. 2006, Klar et al. 2008), integrated with a species’ behavioural ecology,

to make accurate predictions of utilisation. Creation of such integrated decision-making

tools warrants further attention.
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Here we have highlighted various reasons why the habitat selection of a species
cannot be predicted by a priori calculations of potential resource quality and abundance
of habitats. This leads us to raise caution to the use of such CC models which aim to
determine optimal population numbers for an area and yet do not take into account the

various factors which influence an animal’s utilisation and selection of a habitat.
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Table 2.1 Habitat types of the Mun-ya-Wana Game Reserve according to van Rooyen

and Morgan (2007). The un-weighted carrying capacity (CC) score, according to the

BrCC-Model v2_1, and its rank are shown for each habitat.

CC score
Habitat type
rhino/km2 (rank)

0) Old fields 0.590 (1)
(i) Acacia borlea shrubland 0.333 (2)
(iii)  Ziziphus mucronata bushland on slopes 0.332 (3)
(iv)  Mixed Acacia broad-leaved shrubland and woodlands 0.262 (4)
(V) Acacia luderitzii thickets and woodlands 0.229 (5)
(vi)  Acacia tortilis woodlands 0.225 (6)
(vii)  Terminalia sericea woodland on pallid sands 0.210 (7)
(viii)  Riparian woodlands and forests 0.194 (8)
(ix)  Spirostachys africana woodlands 0.191 (9)
) Combretum apiculatum Lebombo open woodlands 0.170 (10)
(xi)  Floodplain grasslands 0.164 (11)
(xii)  Wetlands 0.164 (11)
(xiii)  Pteleopsis myrtifolia closed woodlands 0.115 (13)
(xiv) Palm veld 0.110 (14)
(xv)  Sand forest 0.056 (15)
(xvi) Grasslands on clay soils 0.020 (16)

(See ESM 1 for a detailed description of the habitat types)
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Table 2.2 Spearman rank correlation (r;) tests, indicating no correlation between
individual black rhino habitat preferences and carrying capacity values, according to
the BrCC-Model v2_1, on the Mun-ya-Wana Game Reserve, other than the two

results in bold.

Habitat selection” Habitat preference” Browse level selection®
Rhino*  N° g P* N rs P* N rs P*
F1 12 0.59 0.04 8 0.62 0.10 7 0.64 0.12
F2 12 049 0.10 9 0.44 0.23 7 019 0.69
F3 9 -0.52 0.15 8 0.34 0.41 6 0.09 0.87
F4 9 -0.27 0.49 9 -0.14 0.73
FS 12 0.20 0.52 9 0.15 0.70 7 -0.54 0.22
F6 9 -0.18 0.65 8 0.20 0.64
F7 12 -0.14 0.67 7 0.38 0.40 5 0.00 1.00

DM1 9 -044 0.23 8 -0.05 0.91 8 040 0.32

DM2 9 037 0.33 9 0.25 0.51 5 0.0 0.39

DM3 11 0.55 0.08 10 0.32 0.36 10 0.66 0.04

DM4 9 017 0.67 9 0.07 0.86 7 -0.61 0.15

SM1 9 -011 0.78 7 -0.18 0.70

SM2 11 0.30 0.37 10 0.42 0.23 10 0.59 0.07

SM3 9 -0.23 0.55 9 -0.08 0.83

SM4 11 0.52 0.11 9 0.70 0.04 5 015 0.81

'F = female, DM = dominant male and SM = subordinate male, the number identifies individual rhino.
? The selection of habitats within a rhino’s home range relative to those available within the local
cluster of ranges (see text).

¥ N = number of habitat types available.

* Significant P < 0.05

® The preference of habitats by a rhino relative to the available habitats within its home range.

® The selection of habitats made by a rhino for feeding in at night.
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Figure 2.1 A digital elevation map of the Mun-ya-Wana Game Reserve showing its

location in KwaZulu-Natal, South Africa.
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Figure 2.2 The method used to determine the area considered available for habitat
selection for a black rhino in the Mun-ya-Wana Game Reserve. A minimum convex
polygon was drawn around an individual black rhino’s (here DM3) kernel home range
(KHR) and that of any other black rhino which had a core range overlapping into its
KHR (here F1 and SM2), excluding those areas within a competing males KHR (here
DM1, DM2 and DM4). We used our discretion in allocating unused areas to the
availability polygon between KHR’s and the fence line. Rhino are designated by their
sex class (F = female, DM = dominant male, SM = subordinate male) and identity

number.
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Figure 2.3 The black rhino habitat selection on Mun-ya-Wana Game Reserve.
Variation in (a) habitat selection relative to habitat availability for their kernel home
ranges, (b) preferences according to habitat utilization within their kernel home ranges
and (c) their preference of habitats for browsing in at night are illustrated. In graphs
(@) and (b) the three selection groups (against, none and positive) are differentiated by
the shaded area. We ordered the habitat groups from the highest to lowest carrying
capacity score, ranked according to the BrCC-Model v2_1, and omitted those habitats
which were not available. Data are box plots: thick line within box is the median
preference ratio; box represents the 25" and 75™ percentiles; and the whiskers indicate
the 5™ and 95" percentiles. The minimum number of rhinos using each habitat type

presented is three. Outliers are designated by their sex class (F = female, DM =
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dominant male, SM = subordinate male) and identity number. In (c) we removed the

extreme outliers, SM2 (Habitat v; 0.137) and F3 (Habitat ix; 0.080), from the graph.

CHAPTER 3

Black Rhino circadian variation in spatial and behavioural habitat

utilisation

3.1.  Summary

We question whether current methods of analysing mainly diurnal location data of
animals provide accurate ecological or conservation conclusions. We determined the
diurnal home ranges of black rhino Diceros bicornis to assess whether there was any
habitat preference for two important different behaviours, browsing and resting. We
followed the tracks of black rhino nocturnal movements to assess whether they
selected or avoided habitats for browsing in at night. We then determined whether
there were significant nocturnal movements of rhino outside of their diurnal ranging
areas. During the day some black rhino selected habitats based on browsing or resting
requirements, while other rhino did not base their selection of habitats for these
activities. However, at night all the rhino exhibited a similar behaviour, by all
selecting habitats to browse in. Black rhino moved significantly outside of their
diurnal core and home ranges at night, and some of the areas the rhinos browsed in
during the night were spatially distinct from those used during the day for browsing.
This study highlights a circadian variation in habitat use for different behaviours.
Excluding nocturnal data from home and browsing range analyses would provide
inaccurate results for black rhino habitat use. We encourage the continued use of
backtracking techniques to incorporate nocturnal ranging and browsing habits of
black rhino. We suggest that before informed management decisions can be made that
there is a need for adequate knowledge of the variation in a species’ habitat utilisation

and movements during both the day and night.
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3.2. Introduction

Circadian shifts in a mammal’s ecology potentially make interpretations using only
diurnal activities, habitat selection and ranging behaviour inaccurate. Factors such as
predator-prey relationships, luminosity, temperature, rainfall patterns and access to
resources (Erkert & Kappeler 2004, Donati & Borgognini-Tarli 2006) drive the
majority of species’ circadian patterns (Halle & Stenseth 2000). For example,
temperature changes across the day and into the night affects the movement patterns
and habitat selection of large-bodied species such as Loxondonta africana African
elephant (Kinahan et al. 2007). Assessing whether there is any circadian variation in
the movement patterns and selection of species is the first step in fully understanding
species ecology. Following this, sound management-orientated research on how these
factors affect animals, and the decisions they make, will aid in the conservation and
management planning of ecologically significant species.

Black rhinoceros Diceros bicornis spend a large portion of the day inactive
(Schenkel & Schenkel 1969, Rice & Jones 2006), which means it is possible that they
utilise areas outside of their diurnal home ranges at night (Conway & Goodman
1989), when they spend most of their time browsing (Goddard 1967, Brown et al.
2003). Since black rhino are not only a critically endangered species (IUCN 2008) but
also an ecologically important species we need to establish whether current
monitoring and habitat studies based on diurnal movements of black rhino are

accurate.

In South Africa the Black Rhino Range Expansion Project moved 15 black
rhino onto the Mun-ya-Wana Game Reserve (MGR) in KwaZulu-Natal (Sheriffs
2003). This provided a known population of black rhino, which was easily identifiable
and located. It is important that the scale and set of resources being analysed are
classified (Orians & Wittenberger 1991, Bowyer & Kie 2006), because animals have
different orders and scales of resource selection (Johnson 1980, Bowyer & Kie 2006).
We previously noted individual black rhino on the MGR to select specific habitats
within their home ranges during the day (Morgan et al. 2009). We therefore decided
to analyse the highest order of habitat selection, which within small reserves is third
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order selection, pertaining “to the usage made of various habitat components within
the home range” (Johnson 1980). Our objectives in this study were to (1) gain a better
understanding of behavioural habitat selection of the black rhino population on MGR
during the day and during the night and (2) to establish whether there are any
variations in black rhino movements during the day and night. We interpret the

conservation implications of such variation.

3.3. Materials and methods

3.3.1. Study area

The South African Mun-ya-Wana Game Reserve (MGR) (27° 40— 27° 55° S and 32°
12° — 32° 26’ E, 180 km?), was established in 2004 with the dropping of fences
between a group of already existing game reserves (Fig. 3.1). The MGR is situated at
the southern end of the East African coastal plain, between the Lebombo Mountains
and the vegetated sand dunes abutting the ocean. The altitude on the reserve varies
between 4 — 340 m a.s.l. The region experiences dry warm winters from April to
September and hot wet summers from October to March. During 2005 the rainfall was
841 mm, which falls just above the ten year mean (x standard error) annual rainfall of
758 £ 65 mm (MGR, unpublished data). The climate is typified by hot/wet summers
and dry/warm winters. A detailed vegetation map of the MGR was developed, based
primarily on the woody layer (N. van Rooyen and S. Morgan, Mun-ya-Wana Game
Reserve, unpublished report; Appendix 2).

3.3.2. Study species

Black rhino are odd-toed ungulate browsers, with adult weights reaching up to 1 600
kg (Morkel & Kennedy-Benson 2007). They utilise a wide variety of woody forage
across Africa (Kotze & Zacharias 1993, Ganga et al. 2005, Adcock 2006) while being
locally selective in their choice of species (Oloo et al. 1994, Muya & Oguge 2000,
Ganga et al. 2005). Both sexes of black rhino are solitary in their movements and

establish individual home ranges, although they will socialise often with other black
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rhino that have overlapping home ranges (Lent & Fike 2003). Adult bulls can behave
territorially, with evidence suggesting a variation in this behaviour across the
continent (Goddard 1967, Emslie & Adcock 1994, Adcock et al. 1998).

3.3.3. Data Collection

We collected location data of the rhinos (n = 15) from January to December 2005.
There were seven females, four adult males and four sub-adult males, all of which we
located with the aid of VHF radio telemetry (see Linklater et al., 2006); as satellite
technology has yet to be developed for black rhino. Due to the terrain and habitat
utilised by this species, and the typically long distances of their locations from the
road network, we made the majority of sightings on foot. This also helped with
accurate activity readings, because it was easier to view the rhinos without disturbing
them while on foot. We were limited to small numbers of rhino to study due to the
time involved in locating and the difficulty of tracking black rhino.

For diurnal sightings we attempted to make sightings of each rhino once every
four days. The rhino were located sequentially until we had found each one, where
upon the list was started again. In some cases rhino were located incidentally,
following which we recorded their locations and added them to the dataset. The
majority of these sightings were made from midday till sunset, because the nocturnal
tracks were being recorded in the morning. We also used the morning locations of the
rhino before we started tracking them as a diurnal sighting. Due to the temperament of
the rhinos, the density of the bush, and the frequency of sightings, we would try to
remain undetected, and record only the initial behaviour observed, time of day and
GPS location.

To record nocturnal movements a single rhino was located as close to sunrise
as possible and backtracked from that location along the tracks it made in the ground.
We selected eleven individuals to track: five females, four adult males and two sub-
adult males. We chose rhino based on sex and the ease with which we could track
them. Again, we tracked the rhino sequentially and we attempted to locate and track
each rhino’s nocturnal movements equally. However, due to environmental conditions
and faulty transmitters not all individuals were tracked with equal frequency, in total

we managed to complete over 180 km of backtracks (Table 3.1). This method allowed

45



us to determine where the rhino moved through the night and its activities along the
way.

Coordinates were recorded every 8 seconds along the rhino track, to represent
the path that the animal took, using a Garmin 12 GPS. We found this period gave us
the optimum number of points along a track for the time we were walking, due to a
limit of memory on the GPS unit. We made a further GPS waypoint for each
browsing event; black rhino browse is recognisable as a 45° cut in the twig (Joubert &
Eloff 1971) and we could discern fresh browse from day old or older browse by the
colour and wetness. We made cut samples of the various species to establish what
fresh browse would look like and how it changed as it dried. There is a probability we
underestimated the consumption of grasses and certain annuals using the backtracking
method (van Lieverloo et al. 2009), but we believe for the purposes of this study we
managed to collect a large enough sample and that our error would have been spread
equally across habitat types. We also recorded a waypoint for resting, indicated by

any point on the track where the rhino had lain down.

3.3.4. Data Analysis

For the purpose of this study we used the 16 habitat types identified by van Rooyen
and Morgan across the reserve. Due to the high heterogeneity of habitats across the
reserve and degrees of interindividual variation in habitat (Morgan et al. 2009) and
browse selection (Chapter 5) by black rhino, we analysed all the data at an individual
level and made no comparisons between individual rhino and the specific habitats
they selected in this study. We were interested in whether black rhino were utilising
habitats indiscriminately during the day and night for browsing and resting in
(irrespective of the actual habitat selected). We did not analyse any of the data
seasonally because of the small numbers of tracks completed in each season.

We have previously shown that black rhino on MGR preferred certain habitats
over others during the day (Morgan et al. 2009). We based our previous analysis on
preference indices that calculated the proportional utilisation of a habitat relative to
the proportional area available to the rhino (Morgan et al. 2009). Here, we go into
more detail and establish whether individual rhino favoured habitats for browsing or

resting in during the day. At each sighting of a rhino we recorded whether it was
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socialising, mobile, drinking, standing, browsing or resting. There were, however,
incidences when we either disturbed the rhino or were unable to see it, and therefore
could not take a behavioural record. We relocated disturbed rhino 3 to 4 days after
disturbance, during which time we felt the impact of the disturbance had no bearing
on their location or behaviour. We removed rhino F3 from the diurnal habitat
selection analysis due to her large number of unknown behavioural sightings, which
was largely due to her temperament and tendency to occupy dense thicket patches
during the day.

To determine whether any one habitat type’s terrain or structure biased our
ability to record an activity reading for the rhino we ran a Pearson correlation test
between the total and the number of unknown behavioural sightings for each
individual across the habitats. There was a significant correlation, meaning we could
analyse the data without concern for biases resulting from unknown behavioural
sightings in certain habitats. The exception was rhino SM1 which had a bias in the
distribution of its unknown sightings (Pearson r = 0.535 and P = 0.216), meaning we
could not analyse its data using the methods outlined below.

If black rhino favour certain habitats for either browsing or resting, we would
expect a non-significant correlation in the frequency of observations of behaviours
across the habitats relative to the total number of locations in a habitat. We ran a
Pearson correlation test for each rhino between the distribution of sightings across the
habitats and the distribution of (1) their browsing locations and (2) their resting
locations. Using this method we steered away from needing to incorporate sometimes
arbitrary measures of availability and rather looked at the spatial distribution of the
rhino and whether an individual’s decision to select a habitat was governed by its
need to browse or rest. and interindividual variation in selection (Chapter 5) we do not
go into the specifics of the habitat types selected, but rather whether decisions by
these rhino to occupy specific habitats was based on their browsing or resting
requirements.

From tracks we completed of rhino movements from sunset to sunrise the
following day (n = 8) we were able to determine an average movement rate (+
standard error) for the rhino of 0.26+0.04 km/hr (maximum of 0.47 km/hr). This is a
conservative calculation because we removed one hour for potential resting stops,
although we only located two resting spots along the eight tracks completed. Using

the maximum movement rate as a conservative guide we removed tracks covering less
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than 500 m and the first 500 m of each backtrack from this analysis, effectively the
last hour of rhino movement, to ensure we encapsulated nocturnal rather than
crepuscular activities. The average distance (x standard error) of each track was
2.23£0.27 km, which effectively would translate to over 8 hours of nocturnal rhino
movement. To calculate whether the rhinos preferred certain habitat types for
nocturnal browsing we compared the expected and actual number of browse points
per m (br/m) walked by each rhino in every habitat. We calculated the expected
values by the proportion of overall track length in a habitat type multiplied by the total
number of browse points. We performed a Log-likelihood G-test (Zar 1999) to
establish whether there were significant differences between the actual and expected
number of br/m walked. To overcome the problem of dividing by 0 we used a value of
0.1 browse points in those habitats with no recorded browsing (Aebischer et al. 1993).
Due to the infrequency of the tracked rhino resting at night we could not make
statistical inferences as to whether the rhino were selecting specific habitats to rest in
at night.

To establish the variation in the day and night ranging movements of the rhino
we first calculated diurnal home ranges for each of the 15 rhino from their the diurnal
location data, using the Animal Movement extension (Hooge et al. 1999) in Arcview
® 3.2. To illustrate the diurnal spatial utilisation by the rhino we established a core
range which is commonly estimated to be a 50 % probability kernel (Jacomo et al.
2009, Weston et al. 2009, William et al. 2009) and home range (95 % probability
kernel). We used this technique so probability of occurrence could be made with
nocturnal locations and for comparison to recent studies of black rhino (Tatman et al.
2000, Lent & Fike 2003, Reid et al. 2007). The mean number of locations per
individual for this study was 90 (min of 49), which is greater than the recommended
30 locations needed to establish an annual home range that will be comparable to
other studies (Lent & Fike 2003). Using the same method we established a 95 %
probability kernel for each rhino using only the diurnal browse sightings of a rhino
(diurnal browse range).

To determine variations between black rhino diurnal and nocturnal movements
we selected a single track point and a single browse point from each individual’s
night-tracks. We selected a point located as far from the centre of its range as
possible. Since the numbers of nocturnal tracks were far fewer than the diurnal
locations, we felt justified in selecting those locations far from the centre, as they are
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probable locations had we searched for the rhino at night. We used a Log-likelihood
G-test to establish whether there were significant differences between the numbers of
an individual’s selected nocturnal points outside the diurnal home and browse ranges
against an expected value of 50 % of the number of points for the core home range
and 95 % of the number of points for the home and browse ranges. Since the
nocturnal data are limited the results from this analysis would only suffice as an

indication of nocturnal and diurnal variation.

3.3.5. Statistical analyses

We performed all statistical tests in SPSS 15 (SPSS Inc., Illinois, USA).We used an
alpha of 0.05 for all analyses and the assumptions of parametric tests were tested and

satisfied.

3.4. Results

We studied the rhino’s habitat use during the day and night and compared this
selection spatially. We tested each rhino individually and did not test whether they
were selecting similar habitats to one another due to the high heterogeneity of
available habitats and noted levels of interindividual habitat selection (results shown
here and Chapter 5).

Some rhino strongly selected habitats to browse or rest in during the day,
while others showed no preference for habitats to browse or rest in (Table 3.2). To
help us understand these results we eliminated the effect of different habitat
availabilities on selection (Osko et al. 2004) by grouping rhino into clusters of
individuals with overlapping core home ranges, as discussed in a previous study of
this population (Morgan et al. 2009). It seems the difference in selection was not
specific for males or females, or for clusters of rhino utilising the same areas (Table
3.2). At night rhino browsed more frequently along their route in certain habitats
while traversing through others (G-Test, all P < 0.001). Since we were interested in
decisions governing habitat utilisation we will not detail the specifics of the habitat

types selected here.
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Black rhino had a significant number of nocturnal locations outside of their

diurnal core range (Gg = -34.67, P < 0.001) and home range (Gg = -28.32, P < 0.001)
(Table 3.1). The rhino also had a significant number of nocturnal browse locations
outside of their diurnal browse ranges (Gg = -31.59, P < 0.001) (Table 3.1).

The entire population was released four months prior to the study period and it

could be argued that the variation shown in the circadian patterns of these rhino was

due to the rhino still settling into the reserve. We, however, believe that the

differences noted here are biologically significant because:

1.
being

3.5.

Black rhino show marked decreases in displacement patterns within 15 days of

released and by day 25 are past the initial settlement phase (Linklater &
Swaisgood 2008).

Following the initial settlement phase any sporadic lengthy travels of the rhino
outside of their home range during the settling phase (Linklater & Swaisgood
2008) are accounted for by using a testing value of 95 %, thereby excluding
occasional sporadic events.

We analysed their movement patterns across the full year, not taking into
account potential range shifts (Lent & Fike 2003) or settling range shifts,
thereby maximising their diurnal ranging areas over the year, meaning any
difference we noted between the day and night would have been biologically
significant.

The daily time frames for resting and browsing (SM, unpublished data) and
the diurnal home ranges (Table 3.2) for the MGR black rhino population are
similar to those of black rhino in other areas (Ritchie 1963, Goddard 1967,
Owen-Smith 1988, Conway & Goodman 1989, Lent & Fike 2003, Van der
Heiden 2005), indicating the rhino were following similar ranging behaviour,

albeit diurnally.

Discussion

We now have an idea of black rhino movements across an entire 24 hr period and that

during the night, black rhinos often make movements out of their diurnal core and
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home ranges. This is in support of Conway and Goodman (1989), who suggested that
black rhino day and night ranges could vary, and they included known nocturnal
drinking points that were not recorded in diurnal sightings of certain individuals to
give ‘logical limits’ to the ranges (Conway & Goodman 1989). We may, therefore,
underestimate or skew home and core ranges without the inclusion of nocturnal data.
These differences would have potential management implications because wildlife
managers may use adult male home ranges as an indication of carrying capacity
(Emslie & Adcock 1994) and core ranges as indicators of habitat use patterns (Tatman
et al. 2000, Lent & Fike 2003, Reid et al. 2007).

There are a range of factors that could potentially influence an individual
animal’s circadian patterns and habitat utilisation, with some affecting diurnal
movements, and others nocturnal movements of the same animal (Metcalfe et al.
1999, Donati & Borgognini-Tarli 2006, Hill 2006, Tattersall 2006). Here we were
unable to address the various factors causing these variations due to differences in the
way we collected nocturnal and diurnal data and the limited nocturnal data we had for
individuals. We found that all black rhino selected habitats during the day (Morgan et
al. 2009). However, we expected them to all select habitats specifically for diurnal
resting or browsing (Tatman et al. 2000, Van der Heiden 2005), while in fact only
half of them did so. We believe that some black rhino were optimising their
movements, and thereby selected habitats that suited both their browsing and resting
requirements during the day, hence the lack of a specific selection within their diurnal
home range area for either of these activities. We did not take into account all factors
affecting black rhino movement, for example water points and distances to road
systems (Buk 2004, Van der Heiden 2005), which may have had an effect on their
selection. From the results in this study it is unclear why there is a variation in this
selection amongst individuals, even amongst those exposed to the same habitat types.

In contrast, and although the data were collected and analysed in different
manners, we suggest black rhino make a specific selection of habitats to browse in at
night and may exhibit a degree of variation in diurnal and nocturnal browse areas. The
individuals in the MGR black rhino population had long rest periods during the day
(SM, unpublished data), while we observed only evidence of short resting spots along
their nocturnal tracks while recording extensive browsing sessions throughout the
night. This, coupled with evidence from other studies that have shown that black rhino
browse predominantly at night (Schenkel & Schenkel 1969, Tatman et al. 2000, Rice
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& Jones 2006) and the potential variation in day and night resting requirements (for
example shade cover) means they could be more selective of habitats based on their
browsing requirements. It is likely that these factors drive the variation in their
selection of areas to browse in during the day and night. We would be able to confirm
this by being able to collect data similarly during the day and night. However,
following rhino through-out the course of the day is difficult without disturbing them
and back-tracking their entire day’s movement is not possible. We are also currently
restricted in our abilities to record behavioural data from a number of rhino in one
night. Hopefully future developments in satellite and GPS technology will allow us to
gather consistent data through the day and night.

Using only diurnal foraging browse points as an indication of specific browse
selection will yield inaccurate results of a rhino’s complete utilisation. Backtracking
techniques to collect foraging data are commonplace (Ganga et al. 2005, van
Lieverloo et al. 2009), and the usual technique of tracking from the early morning
would mean most studies include portions of crepuscular and possibly nocturnal
activities. We encourage the continued use of this technique, recommending
researchers to incorporate and acknowledge the inclusion of nocturnal browsing.
Black rhino browsing assessments not using backtracking techniques (Oloo et al.
1994, Muya & Oguge 2000) would benefit largely by setting transects randomly
(Emslie & Adcock 1994), rather than in ‘known’ rhinos areas based on diurnal
sightings (Muya & Oguge 2000). This would enable researchers to encompass
nocturnal and diurnal browse events indiscriminately.

In the past many wildlife management decisions have been implemented only
once a species’ has shown declines in distribution and population sizes and growth
rates (Morris 2003b). However a better method is to rather follow a pre-emptive
adaptive approach using habitat utilisation and behavioural cues as indicators of
population stability (Morris 2003b). Wildlife conservation managers therefore have a
vital task evaluating and monitoring habitat use, which is essential for understanding
limitations that the environment can impose on these animals (Adcock et al. 2001).
Previously, these evaluations have largely been done using diurnal sightings as an
indication of habitat utilisation. However, different factors may affect day and night
decisions made by the same animal (Hill 2006, Tattersall 2006) and we need to be
aware of resultant circadian variations on an animal’s movement and habitat selection.

Variations in movements and selection are not restricted to only day/night differences,
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but may occur throughout the day or night due to a variety of selection forces
(Kronfeld-Schor & Dayan 2003), including predation (Druce et al. 2006), competition
(Wasserberg et al. 2006) and ambient temperature (Kinahan et al. 2007). To
encompass these differences managers and researchers will need to develop

innovative techniques to monitor and study these species more effectively.
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Table 3.1 The extent of black rhino nocturnal movements overlapping with diurnal

ranging areas. The size (mean + standard error for totals) of black rhino diurnal core

(50 % probability kernel) and home ranges (95 % probability kernel) and the number

of nocturnal tracks falling completely within these ranges on the Mun-ya-wana Game

Reserve. The number of nocturnal tracks which had all its browse points falling

completely within each individual’s 95 % diurnal browse range is shown. We

calculated expected values based on the relevant kernel’s probability of occurrence.

Nocturnal
browse points
Core  Nocturnal points  Home Nocturnal points in browse
range in core range range __in home range range
Rhinos® n® (km? Expected Actual (km?) Expected Actual Actual
F1 16 22 8 3 18.4 15.2 12 13
F2° 3 2.1 - - 19.5 - - -
F3° 5 1.2 - - 12.3 - - -
F4 0 4.6 - - 28 - - -
F5 1 28 55 1 18.8 10.5 6 7
F6 0 1.3 - - 15.9 - - -
F7 8 1.7 4 1 10.8 7.6 8 4
Faverage 43 2.27 17.5 5 17.67 33.3 26.0 24.0
M1 8 55 4 1 20.7 7.6 8 3
M2 9 4.5 45 2 24.8 8.6 6 5
M3 11 49 55 1 16.4 10.5 7 9
M4 13 3 6.5 3 19 12.4 12 12
Maverage 41 4.48 20.5 7 20.23 39.0 33.0 29.0
SM1 0 1.4 - - 10.5 - - -
SM2 13 31 6.5 3 25.2 12.4 10 11
SM3 0 6.7 - - 31.6 - - -
SM4 10 25 5 2 11.6 9.5 9 10
SM
average 23 343 115 5 19.73 21.9 19.0 21.0
Population
average 107 3.2 49.5 17 18.9 94.1 78.0 74.0

8 F = female, M = adult male and SM = sub-adult male, the number identifies individual rhino.
® Number of nocturnal backtracks recorded

¢ Both these females data were not analysed due to small sample sizes. No calculations were made for

these rhino.
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Table 3.2 Black rhino diurnal browsing and resting habitat selection on the Mun-ya-

Wana Game Reserve. We grouped rhino with overlapping core ranges into clusters. A

significant Pearson correlation (r), between the total number of a black rhino’s

locations in a habitat and the number of browsing or resting locations in the same

habitat (bold P values), is an indication of non-selection of habitats for these

behaviours.

Browsing locations

Resting locations

Cluster Rhino nt n r P n r P
1 F1 7 29 0.988 <0.001 20 0.989 <0.001
F2 7 20 0.939 0.002 15 0.777 0.04
F5 6 16 -0.308 0.552 23 0.366 0.476
F7 5 7 0.835 0.079 22 0.993 0.001
2 F6 5 24 0.9 0.037 14 0.181 0.771
M1 7 14 0.911 0.004 25 0.928 0.003
SM1* 7 39 - - 21 - -
3 F4 6 23  0.677 0.139 38 0.848 0.033
M4 6 19 0.546 0.263 28 0.811 0.05
SM3 7 19 0.855 0.014 26 0.936 0.002
4 M3 9 28 -0.331 0.385 19 0.132 0.735
SM?2 9 61 0.981 <0.001 30 0.933 <0.001
SM4 7 31 -0.14 0.764 13 -0.23 0.62
5 M2 6 18 -0.047 0.93 15 -0.375 0.463

2The number of habitats each rhino utilised.

® Removed from analyses due to a biased number of unknown sightings in certain habitats.
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Figure 3.1 Location of the Mun-ya-Wana Game Reserve in South Africa.
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CHAPTER 4

Interindividual niche variation in black rhino Diceros bicornis

4.1.  Summary

Conclusions about resource use at a population level do not necessarily translate to
behaviour at an individual level, and often the degree of interindividual niche variation
among conspecifics is not tested or considered. However, conclusions about utilisation at
a population level do not necessarily translate to behaviour at an individual level. We
investigated the degree of interindividual niche variation of a selective forager, the black
rhino (Diceros bicornis). Clusters of black rhinos had a significant degree of niche
variation among individuals, which increased from one cluster to the next as the total
niche width increased. Within a cluster, black rhinos did not show a change in the degree
of habitat variation among individuals as the total niche width changed, but at a diet level,
the niche variation increased noticeably as the total niche width increased. There was a
significant increase in the degree of interindividual habitat and dietary niche variation
between clusters of black rhinos as the total niche width increased from one cluster to the
next. The majority of the dietary niche variation is due to large variations in the use of
ancillary browse species among individuals, especially during the dry season.
Consequently, pooling habitat location data and diet selection data for individuals within
a population will average out patterns of utilisation, however, this average does not
reflect the actual selection by any, or many, individuals. We suggest a re-assessment of
methods for evaluating use of habitat and browse by black rhinos, especially in regions

with highly heterogeneous resources.
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4.2. Introduction

Habitat use and selection by animals is an extensively studied subject (e.g. Aebischer et
al. 1993, Morris 2003b, Carter et al. 2006) due to the importance it plays in wildlife
conservation and management decisions (Luck 2002, Morris 2003a). The diet
composition within different habitats determines the quantity and quality of food intake,
and therefore, the nutritional status of individual animals, their physiological condition,
and hence, potential fitness (Hanley 1997). However, conclusions about use at a
population level do not necessarily translate to behaviour at an individual level (Bolnick
et al. 2003). The potential for interindividual niche variation requires us to first study
species at an individual level, or for social species at the functional group level, so that
we can understand population level patterns (Aebischer et al. 1993, Bolnick et al. 2003,
Osko et al. 2004). Niche variation among individuals, whether based on age, sex or
morphology, is generally the result of a trade-off between various resources (Bolnick et
al. 2003, Svanback & Bolnick 2005) and has been documented within different species;
however, the degree of variation among conspecifics is often not considered (Bolnick et
al. 2003).

The niche variation hypothesis (NVH) suggests that populations with greater
niche widths exhibit greater niche variation among individuals (Van Valen 1965). For
example a decrease in resource abundance, possibly driven by an increase in population
density may drive individuals to include alternative resources, increasing the population’s
total niche width (TNW) and the level of variation among individuals (Svanback &
Bolnick 2007). The NVH has been empirically tested and has been exhibited in a range of
generalist species, including three-spine stickleback Gasterosteus aculeatus, Eurasian
perch Perca fluviatilis, Anolis lizards, Nucella snails, a number of Brazilian leptodactylid
frog species (Bolnick et al. 2007) and recently in grey wolves Canis lupus (Darimont et
al. 2009).

In the case of the grey wolves a sub-population with a comparatively larger TNW
was comprised of individuals which were making use of ‘vacant niches’ and under-

utilised resources differently to one another (Darimont et al. 2009). Identifying the
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importance of these different resources used by individuals makes us aware of the
conservation implications associated with increased niche variation among individuals as
the population’s niche width expands. Specifically, the management of an ‘average’
resource base may lead to mismanagement of resources that are significantly important to
certain individuals (Bolnick et al. 2003, Darimont et al. 2009). This would be particularly
risky for small populations, or if use is sex or age based, as a change in demographics
could result in unfavourable population effects (Durell 2000).

Previously we noted variation in the selection of habitats by black rhinoceros
(Diceros bicornis) at three different scales of selection on the Mun-ya-Wana Game
Reserve (MGR) in South Africa (Morgan et al. 2009). Current management and research
strategies for black rhino are aimed at the population level, as niche variation among
individuals at a habitat and diet level has never been addressed in detail. Specifically,
many studies for black rhino have pooled information, averaging results across
individuals and making deductions at the population level for this ‘selective’ forager
(Muya & Oguge 2000, e.g. Ganga et al. 2005). Considering the potential variation in
resource abundance across seasons and the array of habitats which black rhino can
occupy (Emslie & Brooks 1999) it would be important to identify whether the NVH
applies to this endangered species (IUCN 2008) and to what extent. This may have
previously been ignored, as we would expect a selective forager to have a narrow TNW
and therefore limited options for individuals to diverge into separate niches.

Our aim, therefore, is to determine whether any interindividual variation in diet
and habitat niches exists within populations of black rhino and to empirically test the
NVH on this ecologically important species. For the context of this study, a niche is
defined within specific categories, such that a population can have numerous niche
categories (i.e., fine and broad scale diet and habitat niches). Our objectives in this study
were to: (1) establish the degree of interindividual habitat and diet niche variation for two
geographically separated populations of black rhino; (2) investigate the degree of
variation among individual’s subsidiary diets for each of these two populations; and (3)

interpret the results in terms of conservation management.
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4.3. Materials and methods

The Mun-ya-Wana Game Reserve (MGR; S 27° 40‘— 27° 55° and E 32° 12’ — 32° 26°)
encompasses an area of 180 km? in the northeastern section of South Africa, at the
southern end of the East African coastal plain. The local climate is typified by dry and
warm winters (April - September) and hot and wet summers (October - March). During
the study period the annual rainfall was 840 mm, which falls within the ten year mean (+
standard error) annual rainfall of 758 + 65 mm. The broad scale vegetation types
identified in the region are Southern Lebombo Bushveld, Zululand Lowveld, Maputaland
Coastal Belt, Makatini Clay Thicket, Sand Forest and Western Maputaland Clay
Bushveld (Mucina et al. 2005). A total of sixteen habitat types have been identified
across MGR; this high number in such a small area is due to high variability in the
geological formations across the reserve (Anon 1988). The elevation of MGR ranges
from 50 m in the northeastern region of the reserve to 340 m in the southwestern corner.
Tswalu Kalahari (Tswalu; S 27°04' - 27°44" and E 22°10' - 22°36") encompasses
an area of 1,080 km?in the northwestern section of South Africa. The climate is semi-arid
with a warm and dry season (April - September) and a hot and wetter season (October -
March). The rainfall is seasonal but highly variable among years, with a mean (z standard
error) annual rainfall of 280 £ 28 mm for the last 30 years. During the study period, the
rainfall was 235 mm for the first wet season of 2003 — 2004, 400 mm for the following
wet season of 2004 — 2005, and 510 mm for the wet season of 2005 —2006. The
predominant vegetation types have been classified as Gordonia Plains shrubveld and
Gordonia duneveld (Mucina et al. 2005), which have a relatively open structure. For the
purposes of this study, we identified five habitat types at a smaller scale from a
vegetation map of the reserve (van Rooyen 1999). The elevation of Tswalu ranges from

1,020 m in the west to 1586 m in the southeastern corner (van Rooyen 1999).

4.1.1. Data collection

In October 2004, 15 black rhinos were translocated to the MGR, and the population
comprised seven adult females and eight males (4 adult and 4 sub-adult males). These
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rhinos originated from game reserves in the surrounding Maputaland region. From
January through December of 2005, we used radio transmitters implanted in the horns to
locate all 15 rhinos at least once every 4 days (see Linklater et al., 2006 for details on
horn implant methods). The rhino all showed site fidelity within 6 days of release
(Linklater et al. 2006) and an analysis of their response to various ecogeographical
variables, including habitat and browse availability, indicate the acclimatisation phase to
be over and the majority of their changes to variables to have occurred within 25 days of
release (SM, unpublished results). We used an indirect track-based method to collect
foraging information for 10 individuals. This was done by back-tracking their spoor
(footprints) and recording information from each feeding station where the rhino stopped
to browse (Oloo et al. 1994, Ganga et al. 2005). The characteristic “pruning” of plants by
black rhino, which occurs when the prehensile upper lip is used to pull branches into the
mouth and the twigs are then cut off by the proximal molars, leaves a distinctive diagonal
cut (Joubert & Eloff 1971); this evidence was used to identify browse utilisation by black
rhinos. We defined a separate browse event as any fresh browse identified more than a
rhino length away from the previous browse event. In the majority of cases, this
constituted a single plant species; in cases in which the rhino targeted more than one
species, we recorded the species that exhibited the greatest estimated biomass removed.
This method relied on a single observer documenting all events and ensuring consistency
throughout the study. From this method, we were able to estimate the proportional
contribution that a species made to a rhino’s decision to stop and browse (see Morgan et
al., 2009 for detailed track data collection methods).

Eight black rhinos were translocated to a 450 km? fenced section of Tswalu from
Etosha National Park in Namibia in June 1995. The population had increased to 22 by the
end of 2005, which suggests that this population was well settled and productive. The
focal animals for this study were the five adult females from the original founder
population,. There were 392 sightings of the focal animals (range = 71 to 86 per
individual) throughout the data collection period of January — December 2004 and 2005;
192 sightings were made during the wet seasons (October-March) and 200 during the dry
seasons (April-September). We identified individual rhinos using unique ear-notch

patterns and gathered data on their diets by using the same back-tracking methods
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described above. A more detailed diet study was conducted at this study site, and at each
feeding station the plant species, number of new bites, leaf phenology (immature, mature,
yellow and dry), and total leaf retention using a five point scale (Dekker & Smit 1996)
was recorded. A bite was scored for any isolated severed shoot or branch, or where
numbers of contiguous shoots or branches were bitten off at the same level, all severed
shoots < 5 mm thick occurring within a circle of 5 cm in diameter were recorded as one
bite (following (Hall-Martin et al. 1982). For five days during each season in both years
we measured and categorized the diameter of all shoots within a bite into three size
classes, 0<1 mm, 1<3 mm and 3<6 mm (Helary et al. 2009). The greatest diameter of
twig recorded as utilised at this site was 6mm. We collected twenty twigs of Acacia
haematoxylon, Acacia mellifera, Grewia flava, Rhigozum trichotomum, Monechma
incanum, Lycium cinerum and Lycium hirsutum in each of the 3 diameter size classes
(0<1 mm, 1<3 mm, 3<6 mm) during the wet season when mature leaf retention was
greatest. Twigs and leaves were stored in paper bags and air-dried before the mass was
obtained on an Ohaus Precision Plus TP4000D scale calibrated to an accuracy of 3
decimal places. The relationships between stem and leaf dry weight and twig diameter
value for each sample of each species were determined using regression equations (Basile
& Hutchings 1966). The total dry mass contribution of leaves and stems of a given
species was calculated by applying the appropriate regression equation to the standard
mean diameter for each twig diameter class, and then multiplying this value by the total
number of twigs recorded in that same diameter class for that species. The total dry mass
contribution for a plant species each month was the sum in each diameter class of the dry
mass of stems and proportion of leaves retained (Helary et al., 2009). We recorded 150
feeding tracks during the study period, totalling 33,218 rhino bites.

4.1.2. Data analyses

For analysis we grouped all rhinos into clusters (Tatman et al. 2000, Lent & Fike 2003,
Morgan et al. 2009). This method groups rhinos that have overlapping core home ranges,
deemed as a 50 % kernel home range of the years’ locations (see Morgan et al., 2009 for

details on kernel development and cluster selection). For purposes of this paper we
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assumed that all rhinos in a designated cluster had unrestricted access to the same
resources, thereby eliminating potential differences in use due to varying availabilities of
resources (Osko et al. 2004). This was based on repeated observations of cluster
‘buddies’ browsing and socialising alongside one another (SM, unpublished data).

In total, we identified five clusters on MGR (Table 4.1). Four females had
overlapping core ranges with more than one adult male and we therefore assigned them to
a female-only cluster and to a cluster with both the adult males. We acknowledge the
assumption of equal availabilities may not strictly apply in this cluster (Cluster 3, n = 8),
as the adult males did not traverse each other’s core ranges and we could therefore expect
this cluster to have a greater TNW and potentially greater variation amongst its members.
We analyzed the Tswalu data as a single cluster (Table 4.1), as the five focal rhinos on
Tswalu all had overlapping core home ranges (JS, unpublished data). For analyses we did
not separate the sexes in the clusters, due to small sample sizes; however, cluster four (n
= 4) and cluster five (n = 3) on MGR were made up of only females and males,
respectively and the Tswalu rhino were all female.

There are various methods to measure the degree of niche variation among
individuals, each with pros and cons and all highly correlated with one another (see
Bolnick et al., 2002 for a review). We used a program devised by Bolnick et al. (2002),
IndSpecl, to calculate the different indices of niche variation. Firstly, we calculated an
index of total niche width (TNW) for each of the clusters, which uses the Shannon
diversity index as a measure of the variation in resource use within a population
(Roughgarden 1979). We then used IndSpecl to measure the overlap between an
individual’s and the cluster’s diet. IndSpecl uses an adaptation of the proportional

similarity index (Schoener 1968b) as an index of niche variation among individuals,
Ps, =105 [p, 0,
j

in which pj; represents the proportion of category j in individual i’s diet and q; is the
proportion of category j in the cluster’s diet. For an individual that utilises resources in
direct proportion to the cluster and therefore shows complete niche overlap, PS; = 1,
while for maximal individual variation PS; = 0. To make PS; more intuitive, we followed

(Bolnick et al. 2002) and expressed the niche variation among individuals as V; = 1 — PS;;

63



therefore, V; ranges from 0 to 1. The mean V; of a cluster (V) is an indication of the
average individual variation within the cluster. IndSpecl runs a nonparametric Monte
Carlo procedure for each individual of 1,000 replicates drawn from the cluster’s niche
distribution. This procedure generates a replicate null distribution model from which we
can calculate P-values for the cluster.

To determine which habitats individual rhinos used, we imported all GPS location
data into ArcGIS 9.2 © (ESRI, California, USA) and calculated the number of locations
for individual rhino in each of the habitat types across MGR and Tswalu. We assigned a
value of 0 to those habitats in which a rhino never occurred. Black rhino potentially shift
their ranges from one season to the next and from one year to the next (Lent & Fike
2003). We therefore split the habitat data into wet and dry seasons for both reserves, and
on Tswalu we analysed each year’s data separately.

On MGR, we used the total number of browse events per plant species as an
indication of an individual’s diet composition. We analysed browse use within the 3
clusters we had gathered this information on, with 10 individuals across the clusters. We
pooled the browse data across the year, due to a small sample size of foraging tracks
completed per individual seasonally, which might enhance interindividual variation on
MGR. On Tswalu, we used the mass of estimated off-take per species as the indicator of
browse use among individuals. We compared data from the wet and dry seasons across
the two years (average number of 100 m sections completed per rhino in the wet season N
=266 £57 and dry season N = 281 £78).

To determine whether diet variation among individuals was related to all the plant
species in the diet, or only to those species making up the larger proportion of a rhino’s
diet, we also identified subsidiary diets for the clusters of rhino. We removed the
dominant species from their diet in the dry season, using an arbitrary cut-off value of 20
% contribution to a cluster’s seasonal diet to identify dominant species. We defined the
remaining plant species as the subsidiary diet of the cluster, as identified during the
period of resource scarcity in the case of the Tswalu rhino. Any difference observed in
the diet variation among individuals between the entire and the subsidiary diets will be

due to those dominant species we removed from the cluster’s diet.
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We eliminated those habitat types or browse species that were poorly represented
in a cluster (Krebs 1989). We removed any category representing < 5 % of the cluster’s
use, unless it made up more than 10 % of any individual’s use. This decreased the
variability among the individuals in the dataset (Burke 2001), making this method
conservative; any detected differences will be biologically relevant. Each cluster’s data
were then entered into IndSpecl to determine the TNW of the cluster, each individual’s
Vi and then each cluster’s V. We ran nonparametric Monte Carlo procedures to calculate
P-values of the observed results against a null-model of 1,000 simulations.

We tested for a change in V; from the wet to the dry season and we tested for a
difference between the primary and subsidiary diet V for each cluster using paired sample
t-tests in To test for an effect of TNW on the observed interindividual variation within a
cluster, we conducted linear regressions of TNW against V; or the corresponding V. We
used an alpha of 0.05 for statistical significance, and statistical analyses were conducted
in SPSS 15.0 (SPSS Inc., Illinois, USA).

4.2. Results

There was evidence of niche variation among black rhino on MGR, with levels of
variation significantly higher than would be expected by a random null model (Table 4.1,
Fig. 4.1a and b). As expected Cluster 3, which had potentially unequal availabilities
amongst its individuals, had the largest TNW and the highest levels of variation amongst
individuals for all the tests. Individual black rhinos did not change their degree of
variation of habitat use with the rest of their cluster from one season to the next (Table
4.1). We therefore conducted a linear regression of TNW against the average
interindividual variation (V) in use of habitat types for the clusters. In support of the NVH
there was a significant positive relationship between TNW and V from one cluster of
rhinos to the next (F1 g = 54.44; P < 0.001; Fig. 4.1a and b).

The small degree of dietary interindividual variation (V;) for black rhinos on MGR
(Fig. 4.1c) was significantly higher than would have been expected from a random null

model (Monte Carlo procedure of 1,000 simulations: P < 0.01 for each of the three
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clusters of rhinos). There is a significant effect of TNW on the resulting degree of V; from
one rhino cluster to the next (Fy11 = 5.37; P = 0.041), which is in support of the NVH,
with an increase in variation among individuals as the population’s TNW increased (Fig.
4.1c).

On Tswalu, during the two wet seasons and the first dry season, there was
evidence of a degree of habitat V that was significantly higher than that generated by a
random null model, while during the dry season of 2005, the variation was markedly
lower and showed no difference to the null model (Table 4.1; Fig. 4.2a). Individual black
rhinos did not change the degree of habitat niche overlap with the rest of the cluster from
one season to the next, in either 2004 or 2005 (Table 4.1). The regression analysis did not
indicate an effect of TNW on the V across the seasons and years (F1, = 0.003; P = 0.946).

We plotted the V and TNW for each of the clusters on MGR and Tswalu to
establish whether the rhino showed similar trends across geographically varied areas (Fig.
4.3). We ran a linear regression of TNW against V and found a significant effect of TNW
on V at both the habitat level (F;1, = 15.08; P = 0.002) and the diet level (F13 = 60.19; P
= 0.004), again in support of the NVH.

Black rhinos on Tswalu exhibited less of a degree of V at the diet level than at the
habitat level, but the degree of niche variation was still significantly higher than would be
expected from a random null model (Table 4.1; Fig. 4.2). There was a significant increase
in each individual’s V; from the dry to the wet season for mass of browse offtake (Table
4.1). As the TNW increased, there was a corresponding significant increase in
individual’s V; based on the browse off-take in the diet (Fig = 7.17; P = 0.028),
highlighting how the NVH can apply to individuals within a population exposed to
changing resources.

MGR - We removed the top two species, Dichrostachys cinerea (minimum of 35
% and maximum of 43 % contribution) and Spirostachys africana (minimum of 20 % and
a maximum of 27 % contribution), from each of the 3 cluster’s diets. Two clusters of
black rhinos on MGR had a significantly higher degree of V; in their subsidiary diet
choice than that noted across their entire diet (Paired T-Test cluster three: ts = -6.65, P =
0.001; cluster four: t, = -4.88, P = 0.039), while a third cluster showed a similar trend, but
to a lesser degree (Paired T-Test cluster five: t, = -3.32, P = 0.080) (Fig. 4.4).
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Tswalu - We removed one species (Acacia haematoxylon) from this cluster’s dry
season diet, which comprised 71% contribution to the off-take. To determine if there was
a seasonal effect, we removed only this one species during the wet season (49% of off-
take). Black rhino on Tswalu had a significantly higher degree of V; in their subsidiary
diet species than that noted across their entire diet during the dry season (Paired T-Test: t4
= -5.41, P = 0.006), but not during the wet season (Paired T-Test: t; = 0.34, P = 0.749)
(Fig. 4.4b).

4.3. Discussion

Here, we investigated whether the niche variation hypothesis (NVH) applies to
individual’s and clusters of black rhino use of both habitat and diet resources. In support
of the NVH there was an increase in the level of variation among individual black rhino’s
use of resources as the total niche width (TNW) increased from one cluster to the next. In
areas with a high heterogeneity of habitats or available browse and a resultant high
population TNW, we would expect individual black rhino to have lower levels of niche
overlap with other members of the population. Niche variation among individuals has
been noted in a wide range of mammals, including snowshoe hares Lepus americanus
(Pietz & Tester 1983), grizzly bears Ursus arctos (Nielsen et al. 2002) and moose Alces
alces (Osko et al. 2004), and at a habitat level this has been attributed to differences in
availabilities (Nielsen et al. 2002, Osko et al. 2004). However, black rhinos with similar
availabilities of resources have significant degrees of variation in their strategies of
habitat and browse species utilisation. It is important to note that the levels of niche
variation among individuals here may not be as large as those recorded in other species
(Bolnick et al. 2003, Svanback & Persson 2004, Araujo et al. 2007, Svanbéck & Bolnick
2007), but are significantly higher than expected from a null model. Regardless, pooling
data among black rhino individuals in a population may cause errors (Aebischer et al.
1993, Osko et al. 2004), as it would average out unrelated patterns of use (Schooley
1994, Osko et al. 2004, Bowyer & Kie 2006) and provide biases (Nielsen et al. 2002,
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Osko et al. 2004), whereby the average does not reflect the actual use of any, or many,
individuals.

We did not have large enough sample sizes to evaluate differences among the
sexes. Since there has been limited studies on the variation in the use of resources
between and or among the sexes of black rhino, it is difficult for us to make assumptions
on the influence this may have. We could assume that females and males or even females
at different stages of the reproductive cycle have different foraging needs and constraints.
A more detailed study would be able to establish whether we could attribute differences
we noted here to these factors, although the detailed diet data from the similar aged, all
female Tswalu clusters’ data indicates that differences do occur among adult females.

No studies have specifically investigated the degree of diet variation among
individual black rhino, with the majority of foraging studies not discerning diets among
individuals (Muya & Oguge 2000, Brown et al. 2003, Ganga et al. 2005, Ganga &
Scogings 2007). A single report of diet variation among individuals within a cluster was
mentioned from a project on the Lewa Wildlife Conservancy in Kenya, where individuals
showed a clear difference in their preference of some diet species, but an overall
similarity in their selection (von Holdt 1999). Black rhinos on MGR and Tswalu showed
similar trends to those on Lewa with clusters of rhino having low but significant degrees
of diet variation among individuals. What is important to note here is the scale of diet
utilisation we are looking at. The diet niche we identified here represents the use
individuals make within the cluster’s range, within which we noted unrestricted
movement. Black rhinos, therefore, may bias their diet composition by deciding to use
areas within their range which have different availabilities of browse species to other
rhinos (noted in the degree of habitat variation for the clusters), this still represents a
difference among individuals choices to use a different area of their common range. We
have, however, not tested whether rhinos presented with the same availabilities of plants
in a foraging patch make a different selection or not. Indeed, initial indications are that
black rhinos show similar levels of selection when presented with key resources at a
foraging patch (JS, unpublished results). These apparently contradictory results
emphasise the need to incorporate and clarify the scale of investigation when drawing

conclusions (sensu Cumming et al. 2006).
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The majority of variation among black rhino’s browse use is within the subsidiary
composition of their browse species. During the dry season on Tswalu, the majority of
plant species are lower in quality due to leaf loss, black rhino therefore make extensive
use of A. haematoxylon (71 % of the browse offtake), which is semi-evergreen and
retains leaves throughout the year (JS, unpublished data). This species heavily influences
the low levels of diet variation among individuals in the dry season. This supports the
NVH, with an increase in diet variation among individuals as the population increase its
niche width during the wet season. The information we have from MGR is limited from a
seasonal perspective, but still indicated a difference in utilisation strategies of primary
and subsidiary diet species by black rhinos, with more variation among individuals use of
subsidiary species. We would need to study the seasonal effects of this phenomenon to
infer whether the seasonal trends noted on the species poor Tswalu reserve apply to more
heterogeneous environments, such as that on MGR. Black rhinos are not faced with the
same tradeoffs that exist during dry season browse selection (Robinson & Wilson 1998),
as during the wet season most plant species nutrient availabilities increase (Ganga et al.
2005). Most studies of interindividual diet variation changes are based on density shifts in
populations (Svanback & Bolnick 2005) and have only been hypothesised about on a
seasonal scale (Bolnick et al. 2007); here we confirm that this variation can occur at a
smaller scale due to fluctuations in resource abundance across seasons.

Interestingly, black rhinos within clusters responded differently to changes in
TNW at a habitat level than what we would expect according to the NVH. Individual
black rhinos did not change their degree of niche variation from one season to the next on
either reserve, and the female cluster on Tswalu did not increase its average variation
among individuals as the TNW increased. Therefore, within clusters, black rhinos
increased their respective habitat niche widths similarly to one another irrespective of the
degree of variation already existing (i.e., an increase of the with-in individual component
as the TNW increases, while the between individual component remains constant). Black
rhinos within the same cluster would be affected by similar variables, which influence an
increased habitat niche width, for example the presence of new water points in the wet

season. A detailed study on the way rhinos increase their habitat niche width would give
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insight as to how rhinos within clusters take a similar approach to habitat niche
expansion.

Management strategies and studies of black rhino are primarily aimed at a
population level (Brown et al. 2003, Ganga et al. 2005, Adcock 2006, Ganga & Scogings
2007); we suggest future research should try and incorporate the individual and that
variation among individual selection is explored, particularly in those populations with
high TNW. Management habitat strategies based at the population level could benefit
from being defined at a cluster level, while management and studies of forage use by
black rhino should try and incorporate individuals, especially if it concerns those plant
species which make up the subsidiary diet of black rhino. Further, we must clarify the
scale at which individual variation occurs, specifically investigating the finer level of
plant species or plant part selection. We need to be cautious in assuming that
interindividual variation only occurs at high-density levels, especially in heterogeneous
landscapes, and that due to changes in environment it is good to be aware of and to

preserve variation among individuals as a conservation strategy (Bolnick et al. 2003).
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Table 4.1 The degree of niche variation among individuals (V) for black rhinos on the

Mun-ya-Wana Game Reserve (MGR) and Tswalu Kalahari (Tswalu) during the dry and

wet seasons (V ranges from 0 to 1; 0 = no niche variation among individuals and 1 =

maximum niche variation among individuals). P-values were calculated by Monte Carlo

procedures based on 1,000 simulations.

Test for change in Vi

Dry Season Wet Season from Dry to Wet season
MGR Cluster N V N P Vv N P P°
Habitat 1 3 0161 4 0.026 0.113 3 0.018 0.411
2 4 0242 6 0.016 0.275 6 <0.001 0.280
3 8 0.367 7 <0.001 0357 6 <0.001 0.827
4 4 0237 5 <0.001 0257 5 <0.001 0.778
5 3 0.165 4 0.005 0.208 4 <0.001 0.418
Tswalu Year
Habitat 2004 5 0295 4 <0.001 0300 5 <0.001 0.959
2005 5 0191 4 0.117 0.280 3 <0.001 0.215
Diet 2004-2005 5 0.031 3 <0.001 0.157 5 <0.001 0.032

 The number of habitats or plant species tested within each niche, represented by only those with
a > 5 % contribution to the clusters use, or a > 10 % contribution to any one individual’s use.

® Determined using paired T-tests.
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Figure 4.1 The correlation between the degree of interindividual variation (V) and the
total niche width (TNW) for clusters of black rhino on the Mun-ya-Wana Game Reserve.
This is shown at a habitat level in (a) the dry season and (b) the wet season and at a diet
level (c) across both seasons. Filled in circles represent empirical results while the open
circles represent a null model, with the random re-sampling of a 1 000 permutations from

the population. The regression lines are drawn to help illustrate the effect of TNW on V.
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Figure 4.2 The correlation between the degree of interindividual variation (V) and the
total niche width (TNW) for black rhino on Tswalu Kalahari at (a) a habitat level and (b)
a diet level. Squares represent empirical results and the circles represent a null model,
with shaded symbols representing the dry season and open symbol the wet season. The
regression lines are drawn to help distinguish the seasons and the effect of TNW on V.
The null model was calculated from the random re-sampling of a 1 000 permutations

from the population.
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Figure 4.3 The increasing degree of niche variation among individuals (V) of black rhino
clusters with an increasing total niche width (TNW) for two geographically separated
populations. Tswalu Kalahari is represented by a square symbol and Mun-ya-Wana Game
Reserve (MGR) is represented by a triangle at (a) a habitat level and (b) a diet level. In
(@) the shaded symbol represents the dry season and open symbol the wet season and in
(b) MGR results were calculated from year round data, while Tswalu’s shaded square

represents the dry season and open square the wet season.
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Figure 4.4 The difference between black rhino primary (shaded box plots) and subsidiary

(open box plots) diets’ degree of interindividual diet niche variation (V;) across the Mun-

ya-Wana Game Reserve (MGR) and Tswalu Kalahari (see section 3 for details). (a) We

divided the black rhino on MGR into three clusters. (b) Black rhino on Tswalu comprised

of one cluster, but the more detailed diet data, determined by the mass of off-take of each

species, was separated by season. Data are box plots: thick line within box is the median;

box represents the 25" and 75™ percentiles; and the whiskers indicate the 5™ and 95"

percentiles. Outliers are designated by an open circle.
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CHAPTER 5

The importance of incorporating individual variation in modelling

habitat suitability

5.1.  Summary

User-friendly habitat suitability models rely on the assumption that averaging the
response of individuals to ecogeographical variables (EGVs) is suitable to deduce
population level responses. However, this may blur differences between the utilisation of
specific EGVs by individuals, resulting in the potential mismanagement of resources to
the disadvantage of certain individuals, resulting in a loss of population productivity. We
therefore tested a Maximum entropy (Maxent) model, which incorporated inter-
individual niche variation, in a population of black rhino Diceros bicornis. We did this by
developing a Maxent model for each member of the population (n = 15) and merged the
outputs to produce two individual models, one which allocated the highest individual
suitability value to a grid cell (Individual Max model), and a second model (Corrected
Individual model) which added a measure of population deviation to the Individual Max
model, and compared their outputs and predictive capabilities to a pooled location model
(Pooled model). The Pooled model blurred black rhino responses to EGVSs, providing
incorrect indications of how the population was responding to EGVs. The Individual Max
model out-performed the Corrected Individual model, while all the models had accepted
levels of predictive omission. During resource limiting periods (dry season), the
Individual Max model was able to predict the occurrence of non-modelled individuals,
and of future occurrences of the modelled population, as effectively as the Pooled model.
By modelling and analysing each individual’s responses to EGVs across the landscape,
we were able to understand individual black rhino decisions and discuss the results in the
context of black rhino conservation management. By incorporating individual responses
conservation mangers are able to answer the question “What ecogeographical variables

influence a population’s movements?” and to model future occurrences of the population
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using a select number of individuals. We suggest that model development should have
the ability to compensate for differences in individual sample sizes and inter-individual
niche variation. This would allow user-friendly models to compete with more complex

analytical approaches, such as eigenanalyses and generalised additive mixed models.

5.2. Introduction

Conservationists and land managers use habitat suitability models (HSM) to define
landscape properties, map the distribution of suitable wildlife habitat and to produce
probability maps depicting the likelihood of species occurrence and their response to
environmental change (Guisan & Thuiller 2005). HSM are therefore vital in conservation
planning strategies (Store & Kangas 2001, Wintle et al. 2005) and answering the question
“What ecogeographical variables influence a population’s movements?”(Basille et al.
2008). Presently we design models to answer this question by measuring a population’s
association, through occurrence and sometimes absence, with selected indirect-, direct-
and resource-gradient variables (Austin 1985), and produce a numerical representation of
their potential distribution throughout a landscape (see Elith and Graham, 2009 for a
discussion on a number of different HSM and how they function). Current modelling
techniques rely on the assumption that averaging the response of individuals to these
ecogeographical variables (EGVs) is suitable to deduce population level responses
(Manly et al. 2002). However, using pooled location data may blur differences between
strong and weak selection of specific EGVs by individuals (Calenge & Dufour 2006,
Aarts et al. 2008). This is particularly risky for small populations (Durell 2000) due to the
mismanagement of resources which are significantly important to specific individuals
(Bolnick et al. 2003, Darimont et al. 2009).

As a result of rapid increases in technology (Moll et al. 2007, Kozak et al. 2008),
researchers are increasingly presented with accurate occurrence data of individuals within
a population, but lose this detail by pooling the location data for modelling purposes
(Calenge & Dufour 2006, Monterroso et al. 2009) and averaging out individual selection

(Manly et al. 2002). The importance of recognising the individual within a population is
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not new (Johnson 1980, Judson 1994) and is used extensively in the modelling of home
range and population dynamics (Grimm & Railsback 2005, Wang & Grimm 2007).
Developments in eigenanalyses (K-select analysis, Calenge et al. 2005a) and generalised
additive mixed models (Aarts et al. 2008) acknowledge the importance of individual
variation, and ensure that biases in sample sizes (Thomas & Taylor 2006) and individual
selection (Calenge et al. 2005a, Aarts et al. 2008) do not influence the data. However,
these techniques often require expertise and an in-depth understanding of statistical
analysis.

Species distribution models which are more user friendly, and only require an
understanding of GIS analysis, include BIOMAPPER (Hirzel et al. 2006), which
computes an ecological niche factor analysis, and Maxent (Phillips et al. 2006), a
maximum entropy model. To understand how individual variation may affect these
distribution model outputs we decided to use Maxent which performed consistently well
in a number of comparative studies (Elith et al. 2006, Phillips et al. 2006, Pearson et al.
2007, Wisz et al. 2008, Elith & Graham 2009). Maxent is a machine learning HSM using
presence-only location data and continuous or categorical EGVs to model species
distribution. It is robust in its inclusion of unnecessary EGVs as it uses regularisation
techniques to avoid over-parameterisation and ignores non-informative EGVs (Phillips et
al. 2006), which alleviates the need for further statistical procedures such as an
information theoretic approach to model building (Burnham & Anderson 2002). Maxent
performs well at small sample sizes (Pearson et al. 2007, Wisz et al. 2008), but still
follows the trend of other models by performing better with increased sample sizes (Wisz
et al. 2008). Therefore, if we assume concurrence amongst a population, we would expect
a Maxent model developed with the maximum number of sample locations available to
perform better than any number of Maxent models developed with subsets of the same
locations.

During model generation Maxent repeatedly tries to improve the fit of the model
within the constraints of the EGVs and the distribution of the location data, such that a
final probability distribution of maximum entropy (closest to uniform) is achieved
(Phillips et al. 2006). It does this through a number of iterations which attempt to

maximise the average probabilities of the sample location’s assigned EGVs values by
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weighting the EGVs accordingly (Phillips et al. 2006). Model results are adversely
affected by biases towards higher sampled individuals or groups (Thomas & Taylor
2006) and large variations around the average EGVs values, for example due to changes
in animal responses to EGVs across seasons (Suarez-Seoane et al. 2008) or
geographically distinct areas (Calenge et al. 2005a). Present methods to deal with these
two issues are to partition the data accordingly (Osborne & Suarez-Seoane 2002), for
example spatially (Murphy & Lovett-Doust 2007) or temporally (Suarez-Seoane et al.
2008). This ultimately leaves the researcher with a number of models depicting different
distributions, which can be more informative than a pooled model (Murphy & Lovett-
Doust 2007, Estrada-Pefia & Thuiller 2008). We propose to similarly partition data by
individuals, and produce a number of more informative outputs which we can merge into
one output. We will combine the maximum suitability values of all the individuals,
meaning the model will incorporate all areas deemed important by any one individual.
Our aim is to therefore to establish whether a habitat suitability model based on
individual data will provide conservation managers with a better understanding of
population responses. We have chosen a known population of 15 black rhinoceros
Diceros bicornis within a fenced game reserve in South Africa to test our premise. Black

rhino are critically endangered (http://www.iucnredlist.org) and the conservation plans

for several African countries specify the need for the establishment of new breeding
populations and increased meta-population growth rates (Emslie & Brooks 1999, Emslie
2001, Metzger et al. 2007). Consequently, we were interested in learning more about the
ecology of the black rhino for improved planning and implementation of reintroductions
and supplementations. We developed separate habitat suitability models for each member
of the population and combined these results to produce two outputs. Firstly, a merged
model of maximum suitability, and, secondly, a corrected version of the maximum
suitability model incorporating a factor of individual deviation. We compared these
models to a third model developed from pooled location data for the population, and
tested the predictive performance of each model using (1) location data of non-modelled
individuals during the same period and (2) using location data of modelled individuals
from the following year. We hypothesised that an individual based model would provide

a more accurate prediction of habitat suitability for black rhino in the study area.

79


http://www.iucnredlist.org/

5.3.  Materials and methods

The study area was restricted to the Mun-ya-Wana Game Reserve (MGR) (See Chapter 1
for full study area details). Locations of the entire MGR black rhino population (n = 15)
were collected over a three year period from the beginning of January 2006 to October
2009 (n = 966). We used radio-telemetry in the first year and conventional tracking
techniques in the last few years, once the radio transmitter’s batteries had expired (see
Chapter 2 for methods of capturing location data). We collected a larger number of
locations during the wet season (n = 558, mean = 35 per individual, SD = 12) than in the
dry season (n = 408, mean = 23 per individual, SD = 18), as it is easier to track an
animal’s spoor once it has rained than when it is dry. This artifact of conventional
tracking methods to locate animals may also have biased the areas in which we located
individual rhino, and the resultant sample size for each individual. However, since the
same locations were used for all model development and testing, the same biases would
be evident across all the models.

We downloaded all location data into ArcMap ® 9.3 (ESRI, California, USA) for
analysis and used Maxent (Version 3.3.1; Phillips et al. 2006) for development of the
habitat suitability models.

5.3.1. Ecogeographical Variables (EGVs)

The scale at which EGVs are measured will ultimately set the scale at which a study is
measured. The inclusion of indirect parameters, for example slope, aspect and habitat
type, confine the application of a model to a limited region due to changes in direct and
resource gradients responses to indirect parameters in different regions (Guisan &
Zimmerman 2000). For this study we were interested in the suitability of the habitat only
for a single reserve (200 km?), and therefore included direct, indirect and resource
gradients. There were 17 EGVs in total (Table 5.1). We used the same EGVs as
developed and selected for in Chapter 4, other than the distance to closest territorial male.

80



We excluded this variable as we wanted to use ‘conventional’ EGVs with respect to
HSM. The various habitat types and an explanation of the development of the habitat map

are included in Appendix 2.

5.3.2. Model development

Maxent evaluates the overall fit of the model using a receiver operating characteristic
(ROC) curve, where the model’s sensitivity versus (1 — specificity) is plotted (Phillips et
al. 2006). The area under the ROC curve (AUC) is then calculated, with AUC = 1 being
the best fit, and AUC = 0.5 being expected from a random model. AUC values greater
than 0.75 are considered useful (Elith et al. 2006). Maxent’s output is a predicted habitat
suitability grid of the study area, with grid cell values being a function of the relevant
EGVs, ranging from 0 — 1, with higher values corresponding to more suitable conditions
for the species (Phillips et al. 2006). Maxent also evaluates the importance of each
variable by doing a jackknife analysis of each EGV separately to determine how well the
each variable explains the observed distribution.

We developed three Maxent suitability models for each of the two seasons (i.e.
hot wet and cool dry), namely the Individual Max, Corrected Individual Max and Pooled
models. Black rhino potentially change their selection of resources from one season to the
next (Oloo et al. 1994, Ganga et al. 2005) and we wanted to ensure that this variation in
selection did not confound our model comparisons.

i) Individual Max model - We developed a Maxent model for each individual black
rhino for each season. Maxent produces a raster file, which is a grid covering the
area of the reserve, and allocates a suitability value for each grid cell; 0 being the
lowest and 1 the maximum suitability (Phillips et al. 2006). A partitioned based
HSM, for the tick species Boophilus decoloratus, which was developed from the
mean values of partitioned models did not perform as well as non-averaged
models (Estrada-Pefia & Thuiller 2008). Subsequently we overlaid all the
individual models and selected the maximum value for each grid cell for the dry
and the wet seasons. The resultant dry and wet season Individual Max models

represent the maximum predictions for the population based on individual black
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i)

rhino locations. We selected the maximum rather than the mean of the results, as
the mean would average out potentially important and non-used areas by different
black rhino.

Corrected Individual model - We might expect that by using the maximum values
of the individual models the predictions in some areas may be biased to single
individuals who are not the ‘norm’ and that these areas would have resulting low
use in the long term. We therefore decided to compensate for variation within the
population using the standard deviation (SD) incorporated in the following

correction factor:

Corrected Individual Max value = (1 — SD) x (Individual Max value)

Since suitability values were all between 0 and 1, multiplying by (1 — SD) had an
effect of decreasing the maximum value proportionally by the SD. High maxima
with low SD would retain high corrected values, whereas corrected values for
high maxima with high SD would become proportionally lower, and so on.

Pooled model - We developed a Maxent model using pooled location data of all
the black rhino separately for the dry and wet seasons, and as such we did not
recognise individuals, or variation among individuals, in the formulation of this

model.

5.3.3. Model comparisons

To assess the amount of agreement between the initial individual suitability maps, we

calculated the degree of niche overlap using the program ENMTools (Warren et al.

2008). ENMTools calculates the niche overlap using two different statistics, namely the
Schoener’s D (Schoener 1968a) and the I statistic (Warren et al. 2008). We used only the
D statistic to evaluate overlap due to the similarity in the outputs of the two statistics

(Warren et al. 2008). The higher the Schoener’s D value the greater the agreement

amongst the models. We assessed the degree of overlap between individuals within the

whole population, then within the sexes and finally within clusters of rhinos of both
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sexes. Clusters are groups of individuals with overlapping home ranges and which
associate with one another on a regular basis (sensu Lent and Fike, 2003; see Chapter 2
for more details on cluster identification).

We calculated the same Schoener’s D niche overlap statistic between the final
three models. We were also interested in how these models differed statistically in their
allocation of suitability values spatially. However, we decided to use bar graphs to
illustrate the expected distribution of black rhino (see Test 1 and 2 below), rather than
statistical tests between the models’ spatial distribution for a number of reasons. Firstly,
Warren et al. (2008) devised randomisation tests for the Schoener’s D statistics, but since
our location data were the same for each model we were unable to complete these tests.
Secondly, the models had non-normal distributions (One-Sample Kolmogorov-Smirnov
Test, P < 0.05) so we could not use a pair-wise t-test (Levine et al. 2009). The effect size
of our comparisons was large (lowest Cohen’s d >1.2), which means that there was less
than a 40 % distribution overlap between samples (Cohen 1988), and with such large
sample sizes (the number of grid cells on the HSM was in excess of 1.5 million) we were
concerned with overpowering any test we did. Finally, none of these tests suitably show
the comparisons between how the models are responding to each of the EGVs.

In order to evaluate how the individual models differed from each other and from
the Pooled model, we examined the Jackknife AUC results, which show how well each
EGV explain the observed distribution. We recorded the results of the individuals as bar
graphs and marked the respective EGV score for the Pooled model on the same graph. To
assess whether any agreement amongst individuals was a true reflection, we selected
three rhino with the most similar AUC scores to the Pooled model’s AUC score for
Habitat and again for Browse Availability (BA) in the dry season. We selected these
variables (one a categorical and one a continuous variable) as examples of the potential
variation amongst seemingly similar responses, and which managers typically use in
decision-making. We then graphed the response curves (generated automatically by
Maxent) of the individuals, and the Pooled model, to the variables.
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5.3.4. Variation in model predictive capabilities

1) Test 1 - To test how well a model would predict the occurrence of other black
rhino from the same period as model development we allocated 3 individuals (20
% of the population) location data (n = 181) as testing data and excluded them
from the first set of model generation. The test rhino included a female (PDF78),
dominant male (DM2) and subordinate male (PDMO03) from different areas
throughout the reserve (see Chapter 2 as to how we established social structure
amongst the males).

i) Test 2 - To test how well a model would predict the occurrence of the population
in the period following model development we generated models using all 15
rhinos’ location data and tested the variation in their capabilities using location
data of the same individuals from the year after model data was collected. The
proceeding data were collected so as to incorporate both seasons over the nine
month collection period, from January — October 2009 (wet season n = 67; dry
season n = 59). There were fewer locations during this period as we only used

conventional spoor tracking techniques to find the rhino.

5.3.5. Statistical analyses

We ran two extrinsic tests to test how well the models performed under our Test 1 and
Test 2 scenarios. We assigned each testing location relevant habitat suitability values
from each of the three models. We calculated the extrinsic commission index (the
proportion of grid cells predicting presence locations), using the lowest probability value
of each category as a ‘threshold’ value (Anderson et al. 2003). We therefore had 10
commission indices for each model. We plotted these against the omission error
(proportion of locations falling outside the predicted area) for the relevant categories and
connected each model’s points with a straight line. Omission/commission graphs are an
effective means of comparing the performance of predictive models, with intrinsic and
extrinsic test results closely related (Anderson et al. 2003). We were then able to read
approximate omission error values at nine commission index values (0.1; 0.2; 0.3;...0.9)

so that we could make equalised predicted area comparisons between the models (Phillips
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et al. 2006). We used a non-parametric Friedman’s test to test for differences among the
three model’s omission error values, to assess whether the three models’ performance
differed for equal areas of prediction. However, a good predictive model will identify the
most suitable areas for a population to inhabit, whether the areas are inhabited or not
(Anderson et al. 2003). This plays a role in the perceived commission index error, with
uninhabited areas having no testing locations present and therefore falsely decreasing the
performance of the model. The individual models may fall into this category of predicting
too large an area for occurrence. Anderson et al. (2003) propose that “the ideal value of
the commission index equals the true proportion of pixels that hold potential distribution
for the species”. Here, based on expert opinion, we estimate the optimal modelling area to
be between 70 — 85 % of the study area. We are therefore able to visually assess whether
the models have acceptable levels of less than 5 % omission error (Anderson et al. 2003)
in this estimated area.

For the second extrinsic comparison of the models we tested their performance
using receiver operating characteristic (ROC) curves. The area under the ROC curve
(AUC) has the advantage of being a continuous evaluation of the prediction of the models
rather than relying on categories of threshold values. Since we have only presence
locations and no source of absence locations to measure specificity, we used a random
selection of 10 000 absence points (pseudo-absences) as described by Phillips et al.
(2006). By assigning model suitability values to our test locations, and to the pseudo-
absences, we were able to calculate both the sensitivity and the specificity of the models,
and calculate AUC for each model. A random prediction would still correspond to an
AUC value of 0.5 (Phillips et al. 2006). We were then able to compare the resultant AUC
values statistically to determine whether the models differed significantly in their
performance using Analyse-it for Microsoft Excel (version 2.20, Analyse-it Software,
Ltd. http://www.analyse-it.com/; 2009). The software uses the non-parametric Delong,
Delong, Clarke-Pearson method (DeLong et al. 1988) to compare the resultant AUC
values, and reports a P value for the test.

All other statistical analyses were performed in SPSS 15.0 (SPSS Inc., Hllinois,

USA). Significance was tested at a level of 0.05 unless stated otherwise.
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5.4. Results

We designed and tested predictive habitat models to assess whether pooling location data
for black rhino was meaningful, or whether developing a model based on individual
predictions was more informative. The Pooled dry and wet season models for Test 1, had
an AUC of 0.875 and 0.885 respectively. For Test 2 the Pooled dry and wet season
models, had an AUC of 0.871 and 0.851. The individual black rhinos’ dry and wet season
models had, on average, higher AUC values, with an average of 0.938 (SD = 0.044; min
= 0.865) and 0.922 (SD = 0.067; min = 0.769), with the lowest AUC > 0.75, and
therefore still considered useful (Elith et al. 2006).

For easier viewing we increased the raster cell size using a nearest neighbourhood
analysis and categorised the map outputs into five categories (Fig. 5.1). There was little
inter-individual niche overlap of the predicted suitable habitats for the rhinos, for either
the dry or the wet season, with a higher degree of overlap between individuals within the
same clusters (Table 5.2), although this overlap was still low. The overlap between the
Test 2 Pooled model’s distribution map and the Corrected and Individual Max maps was
slightly higher in the wet season (Schoener’s D of 0.69 and 0.70 respectively) than in the
dry season (Schoener’s D of 0.65 and 0.67 respectively; Fig. 5.1). The Corrected
Individual and Individual Max models overlapped completely (Schoener’s D of 0.96 for
both seasons; Fig. 5.1).

The Pooled model (Test 2 model) restricted higher suitability values to smaller
areas than the more even allocation of suitability scores of the two individually generated
maps (Fig.5.1). Across all the models, there was an increased area and more even
distribution of suitable habitat for the rhino during the wet season than during the dry
season.

We inspected the Maxent jackknife AUC outputs for each EGV, which is run
independent of all the other EGVs, to determine the importance of the individual data
(Fig. 5.2). At this fine scale we can now see the variation amongst individual black rhino
responses to EGVs. During the cold dry season, when resource limitation would occur,
there was individual variation in the rhinos’ response to water and the presence of herbs

and agreement among individuals’ responses towards the important habitat, elevation and
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shading variables. Interestingly, there was a large amount of variation in the individual
and the pooled model outputs for these same important variables, meaning the pooled
model was unable to quantify an ‘average’ response for these important variables. This is
largely because the rhino were not necessarily responding to EGVs in the same manner
(Fig. 5.3), although they are ranking their importance similarly to one another (Fig. 5.2).

We therefore need to analyse each individual’s response curves to better
understand the increase of suitable areas in the wet season (Fig. 5.1). For example, habitat
types explain the seasonal response of PDF79 better during the dry season (AUC = 0.88)
than in the wet season (AUC = 0.76). She used habitat types 4 (Spirostachys africana
woodlands), 6 (Combretum apiculatum-Lebombo open woodlands) and 13 (Floodplain
grasslands) in the wet season (Fig. 5.3), while in the dry season her response changed to
an increased use of habitat type 4 (Spirostachys africana woodlands), 5 (Acacia luderitzii
thickets and woodlands) and 15 (Riparian woodlands and forests) while exhibiting less
importance to 13 (Floodplain grasslands). Her change in habitat use may be due to the
increase in grass quality and the presence of seasonally available herbs in the grasslands
during the wet season, which are both components of black rhino browse when available
(Brown et al. 2003, van Lieverloo et al. 2009), while the riparian areas, forests and
woodlands would continue to provide available forage going into the dry season. Her
response to browse availability (BA) and herbs support this notion, with browse
availability being more important during the dry (AUC = 0.90) than the wet season (AUC
= 0.54), and herbs being more important during the wet season (AUC = 0.76) than the dry
season (AUC = 0.62). Her movements in the dry season would therefore be more limited
than in the wet season, during which time she would have an abundance of available
forage in a number of various habitats (explaining the lower habitat type AUC value in
the wet season).

The models differed significantly in their performance based on the equalised area
comparison of their omission errors (Friedman’s »° P < 0.05 for all tests), other than for
Test 1 in the dry season (Friedman’s y* = 1.64, P = 0.441). The Pooled model had slightly
lower omission errors than the other two models, and appeared to make more accurate
predictions, specifically for low commission index values. However, all the models had

acceptable levels of less than 5 % omission error in the optimal modelling area (between
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0.70 — 0.85 commission index), other than during the dry season for Test 2 (Fig. 5.4). The
latter result may be due to small sample sizes, but further analysis would be required to
understand these results better.

Based on the extrinsic formulated ROC curves (Fig. 5.5) the Pooled and the
Individual Max models performed similarly well during the dry season, while during the
wet season the Pooled model outperformed the two individual models (Table 5.3). The
Individual Max model generally outperformed the Corrected Individual model.

The Individual Max model response to the EGVs was a more accurate prediction
of rhino habitat suitability, and it performed similarly well during the resource limiting
dry season. We therefore developed a final model to illustrate the dry season habitat
suitability for black rhino on MGR for management purposes (Fig. 5.6). We used the
Individual Max model to illustrate areas of suitability, namely low (0.00 — 0.33), medium
(0.34 — 0.66) and high (0.67 — 1.00), and graded each raster cell in relation to the level of
agreement amongst individuals. We did this by using the standard deviation map we
calculated to grade the level of population variation (min SD = 0 and max SD = 0.40) into
three equal categories of low (SD = 0 — 0.13), medium (SD = 0.14 — 0.26) and high (SD =
0.27 — 0.40). Each grid cell therefore could fall into one of nine categories relating to the
combination of suitability and individual variation categories. Interestingly, there was no

incidence of high suitability with low variation and low suitability with high variation.

5.5. Discussion

Partitioning of location data into subsets exhibiting similar responses to EGVs (in our
case individuals), provides more accurate models of population responses (this study;
Murphy & Lovett-Doust 2007, Estrada-Pefia & Thuiller 2008, Suarez-Seoane et al.
2008). During resource limiting periods, an individual Maxent model, using maximum
suitability values from each individual, was able to make predictions of occurrences of
non-modelled individuals, and of future occurrences of the modelled population, as
effectively as a model using pooled location data. Pooled black rhino responses to EGVs

were different to how individuals were actually responding. By modelling each
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individuals’ responses to EGVs across the landscape, we were better able to understand
individual black rhino decisions and the trends of the models. For example we were able
to understand why there was an increased suitable area during the wet season, by
analysing individuals’ responses to the various EGVs, and thus answer the question
“What ecogeographical variables influence a population’s movements?”’.

The EGVs included in this study were at a fine scale which we did in order to
achieve a better understanding of the population’s ecology and future habitat use in one
geographical area. At a larger ecological scale, partitioning of geographically separated
populations would be more applicable (Osborne & Suarez-Seoane 2002), as would the
inclusion of larger scale climatic variables, for example rainfall and temperature. The
results from this study and others (e.g. Calenge & Dufour 2006) do suggest, however,
that individual level responses to the proposed EGVs for model development should first
be tested before their locations are pooled.

Black rhino have low levels of agreement amongst their social clusters’ responses
to EGVs (this study; Chapter 4), however it is still higher than the variation amongst
individuals at a population level. Therefore, if data collection is to be restricted to a few
individuals from a population, then representatives from clusters of black rhino should be
selected rather than a random selection. A more detailed analysis of individuals’ niche
equivalency (Warren et al. 2008) and to which EGVs they respond similarly to, would
yield further insight into a population’s ecology, and how best to present a population
level response for management purposes. For example an assessment and comparison of
individuals’ response curves to each variable (as exemplified in Fig. 5.3) may lead to
identifying groups of similarly responding individuals (Estrada-Pefia & Thuiller 2008).

We expected a Maxent model using the maximum number of locations from a
population to perform better during model development than a number of models using a
sub-sample of locations (Wisz et al. 2008). However, due to the variation in individuals’
niche selection, Maxent struggled to achieve higher levels of entropy than the partitioned
models representing the individuals. This is ultimately an artefact of the individuals
having narrower niche ranges (i.e. more agreement amongst their locations) relative to
the area described by the environmental data (Phillips et al. 2006). By identifying each

individual’s niches accurately the predicted Maxent model, and hence the EGVs deemed
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important, was more accurate. By analysing the individual we also eliminated problems
of sample size bias (Thomas & Taylor 2006) evident between individuals in the study

population.

5.5.1. Black rhino management

Black rhino responses to EGVs varied amongst individuals. However, there was more
agreement among black rhino responses during the dry season, which will make
management decisions during these important periods of resource limitation easier. Since
black rhino agree more on the areas which they avoid, we needed to understand how
individuals are responding to EGVs to get a picture of population responses. For
example, since habitat types and shading were important to black rhino during the dry
season, then management decisions, i.e. burning and bush clearing, in those habitats

which individuals considered important, should be managed accordingly.

5.5.2. Conclusion

The utility of Maxent and other similar machine learning habitat suitability models make
them attractive choices for conservation planners and land managers. The adaptation of
these models to incorporate an error structure which has the ability to compensate for
intrapopulation variation in sample sizes and habitat preferences would allow it to
compete with more advanced methods in this regard (K-select analysis, Calenge et al.
20054, e.g. generalised additive mixed models, Aarts et al. 2008). A single output would
provide a more user-friendly model for conservation managers, rather than a number of
individual responses which the researcher needs to manipulate. This is particularly
relevant for endangered species, for which intensive management is essential. Ultimately,
prediction models based on relevant partitions within a population perform better than
those models which attempts to average out variation.
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Table 5.1 List of ecogeographical variables used for measuring habitat suitability for

black rhino on the Mun-ya-Wana Game Reserve in South Africa.

Code Ecogeographical variable

BA Browse Availability - measured for each habitat using the browse availability method as
outlined by Adcock (2004).

CC Carrying capacity - calculated for each habitat using the index of black rhino browse
availability, soil fertility, annual rainfall and minimum July temperature (Adcock 2006)

Grass Grass abundance, calculated as a percentage of grass ground cover for each habitat, as
outlined by Adcock (2004).

Herbs Herb abundance, calculated as a percentage of herbaceous ground cover for each habitat,
as outlined by Adcock (2004).

Dist_water  Distance to the closest permanent water source.

Habitat Habitat types - as determined by van Rooyen and Morgan (2007), see Appendix 2 for
full details.

Habitat_ric  Habitat richness - a measure of the diversity of habitats surrounding a grid cell on the

h map, equated as the number of different habitat types present in a 500m diameter
surrounding a grid cell.

Shading Shading was the average of the shading site index recorded at the browse assessments
sites across the reserve for each habitat type. Shading index ranges from 1= Deep shade
to 13 = No shade.

DEM A 50-m resolution digital elevation model, also used for the calculation of slope and
aspect. Elevation is measured in meters above sea level, to the maximum height of the
study site at 305m.

Aspect Aspect as calculated from the digital elevation map, measured in degrees.

Slope Slope as calculated from the digital elevation map, measured in degrees.

Rd_density =~ We calculated road density using a line density calculation in ArcMap, using all the
roads on the reserve. It was calculated as the kilometres of road per square kilometre area
(km/km?).

Dist_rds For the road distance variable we included only main access routes to the lodges, due to
the large amount of traffic that they receive on a daily basis, and the two public roads
that run through the length of the reserve. The rest of the road system on the reserve is
extensive but was not included, because of relatively infrequent use. This is thus a
measure of potential disturbance from human activity as opposed to the ecological
influence of roads per se which is captured in road density above.

Dist fence  Distance to the boundary fence.

Sand Percentage ground cover of sand, such that cover between sand, stones and rocks equals
100%. The cover was estimated for each browse assessment site across the reserve and
the mean was calculated for each habitat type.

Stone Percentage ground cover of stones (< 20cm in diameter), such that cover between stones,
sand and rocks equals 100%. The cover was estimated for each browse assessment site
across the reserve and the mean was calculated for each habitat type.

Rocks Percentage ground cover of rocks (> 20cm in diameter), such that cover between rocks,

stones and sand equals 100%. The cover was estimated for each browse assessment site
across the reserve and the mean was calculated for each habitat type.
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Table 5.2 The overlap between 15 individual black rhino Maxent models with one
another, quantified by the mean of the Schoener’s D statistic across overlaps. The higher
the D value the greater the overlap, and hence agreement, amongst the models. The
overlap was initially calculated for all individuals within the population, then within the
sexes and finally within each identified cluster of rhino for each season (see Chapter 3 for

details on cluster identification).

Dry season Wet season

N MeanD SD MeanD SD
All Individuals 105 0.30 0.16 0.27 0.21
Females 21  0.26 0.15 0.23 0.20
Males 28 0.30 0.17 0.28 0.21
Cluster 1 3 0.67 0.01 0.73 0.03
Cluster 2 6 0.42 0.13 0.39 0.18
Cluster 3 6 0.52 0.07 0.59 0.07
Cluster 4 6 0.43 0.09 0.47 0.19
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Table 5.3 Results of extrinsic receiver operating characteristic (ROC) analyses for

Maxent derived black rhino habitat suitability models for the Mun-ya-Wana Game

Reserve (see text for details on development of the different models) and the difference

between the models’ performances. A significant P value implies that the model with the

highest AUC is significantly better than the other. The models were built and tested with

location data spanning three years and six seasons. Test 1 was conducted with location

data of three individuals removed from model development. Test 2 was conducted with

location data of the modelled population from the following year.

Individual Max Pooled
Season Model AUC Difference P Difference P
Testl Dry Corrected 0.847 0 0.740 0 0.854
Individual Max 0.848 0.01 0.806
Pooled 0.843
Wet Corrected 0.750 0.01 <0.001 0.07 <0.001
Individual Max 0.755 0.06 <0.001
Pooled 0.763
Test2 Dry Corrected 0.700 0.02 0.003 0.08 0.004
Individual Max 0.717 0.06 0.021
Pooled 0.778
Wet Corrected 0.750 0.01 0.070 0.08 <0.001
Individual Max 0.750 0.07 <0.001
Pooled 0.824

For each model the area under the ROC curve (AUC) is given. All model’s AUC values were

significantly better than a random model (all models P < 0.0001; model P values not shown). The

difference between model AUC scores for each test is cross tabulated, with significant differences

noted in bold (Bonferroni corrected significance level of P = 0.004).
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Figure 5.1 Maximum entropy (Maxent) distribution models for black rhino on the Mun-ya-Wana
Game Reserve, in the dry and the wet seasons. Darker areas represent more suitable habitat for
black rhino. The Individual Max model was developed using maximum predictive values from
models generated for each individual. The Corrected Max model is a result of applying a
correction factor, based on the standard deviation of the individual’s results, to the Individual
Max model (see text). The Pooled model pools the location data of all the individuals to generate

one map, thereby not accounting for inter-individual niche variation.
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Figure 5.2 The variation of ecogeographical variables (EGVs; see Table 1 for details) importance

for individual black rhino, as calculated by individual Maxent habitat suitability models. A
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pooled location model’s predictions are also shown for each season (filled triangles). Bar graph
represents the variation among the individual models’ (n = 15) importance for each EGV. The
importance is measured using area under the receiver operating curve (AUC) statistics calculated
on Jackknife tests for each EGV. The line across the box is the median; box represents the 25"
and 75" percentiles; and the whiskers indicate the 5" and 95" percentiles. Outliers and extreme
outliers are designated by open circles and asterisks. Variables most affected by pooling are those
where the median is furthest from the triangle and those where the ranges are large.
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Figure 5.3 Response of black rhino to browse availability (BA) and habitat types in the wet season. BA is measured as the
percentage volume of suitable browse available for black rhino within 2 m of the ground. Habitats are numbered according to
the list in Appendix 2. BA response curves (a) PDM81 (AUC = 85), (b) PDF01 (AUC = 82), (c) PDF85 (AUC = 83) and (d)
Pooled model (AUC = 83). Habitat response curves (¢) DM4 (AUC = 78), (f) DM3 (AUC = 78), (g) PDF79 (AUC = 77) and
(h) Pooled model (AUC =79).
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Figure 5.4 The performance of three habitat suitability models for black rhino on the
Mun-ya-Wana Game Reserve (see text for details on model development). The
commission index is the proportional area where the model predicts occurrences of black
rhino, while the omission error is the proportion of testing locations falling outside of the
predicted area. The areas were calculated for each of 10 predictive value thresholds,
spread equally by a value of 0.1 between the Maxent logistic output suitability values of 0
and 1. Test 1 was conducted with location data of three individuals removed from model
development. Test 2 was conducted with location data of the modelled population from
the following year. Dotted reference lines (y-axis 0.05; x-axis 0.70 and 0.85) represent
optimal modelling areas and accepted 5 % omission error levels. Models falling into this

region would be considered useful.
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Test 1

Test 2

Figure 5.5 Extrinsic receiver operating characteristic (ROC) curves for three black rhino
habitat suitability models generated by Maxent, for the Mun-ya-Wana Game Reserve (see
text for details on the different models). The models were built and tested with location
data spanning three years and six seasons and specificity was calculated using 10 000

pseudo-absence points. Each test was conducted using location data from the cool dry
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season and warm wet season data. Test 1 was conducted with location data of three
individuals removed from model development. Test 2 was conducted with location data

of the modelled population from the year following model development.
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Figure 5.6 A habitat suitability model for black rhino on the Mun-ya-Wana Game
Reserve during the dry season. The map illustrates the suitability of each grid cell
according to the suitability value of the individual in the population which ranked that
cell the highest and the degree of inter-individual variation amongst the population. Low
variation indicates agreement amongst the populations predicted suitability values for a

cell, while high variation indicates disagreement.
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CHAPTER 6
Evaluating the settling response of reintroduced black rhinoceros to

ecogeographical variables

6.1. Summary

Understanding how ecogeographical variables (EGVs) affect the settling response of a
population of reintroduced animals could enhance future reintroduction efforts. Using a
machine learning maximum entropy model (Maxent), we assessed the response of
individuals in a population of reintroduced black rhino Diceros bicornis to various EGVs
over a 12 month period divided into 7 phases based on known black rhino ecology. Based
on these responses, we could delineate three phases: the acclimation phase (first 25 days),
the establishment phase (26 — 281 days) and the settlement phase (282+ days). The most
important settling variable for all demographic groups was the social response of rhino to
dominant males, which occurred during the acclimation phase. The adult males
established themselves into the new area more quickly than either females or sub-adult
males, and made fewer changes from the establishment to the settlement phase. By the
settlement phase, the rhino had settled into a fixed area relative to their release sites, were
using specific habitat types and, although there were differences amongst the
demographic groups, they had settled into responses to most of the EGVs. Following the
responses of the rhino towards different EGVs we make a number of management
suggestions for future release strategies for black rhino, including (1) black rhino are free
released onto reserves with no conspecifics, (2) black rhino release periods should be as
short as possible and span no longer than the acclimation phase of 25 days, (3) adult
males should be released in spatially distinct areas (the size of an estimated home range
for the region) such that they have access to a water resource which is distant (>1 km)
from a fence. Here we have shown that understanding the response of reintroduced
animals to EGVs provides us with valuable insights into the ecology of the species, and
allows us to develop management interventions which may help improve the settling rate

of reintroduced populations.
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6.2 Introduction

A large majority of reintroductions are conducted for conservation purposes to either
establish new breeding populations or to supplement existing populations of endangered
species (Fischer & Lindenmayer 2000). The aim of such translocations is to increase the
growth and breeding success of the meta-population. However, reintroductions may be
unsuccessful, either due to animals trying to ‘home’ after translocation (Miller & Ballard
1982, Linnell et al. 1997), competition at the release site (Linklater & Swaisgood 2008),
environmental factors encountered at the release site which are different to the source site
(Fischer & Lindenmayer 2000, Stamps & Swaisgood 2007) or through stress induced
from the translocation (Letty et al. 2007). Presently reintroduction studies focus on the
afore mentioned factors in combination with the age and sex of individuals
(Moehrenschlager & Macdonald 2003, Wear et al. 2005, Hardman & Moro 2006),
behavioural ecology (Bremner-Harrison et al. 2004, Watters & Meehan 2007) and release
techniques (Eastridge & Clark 2001, Hardman & Moro 2006) as the factors affecting the
settling rate and subsequent success of reintroductions.

Ecogeographical variables (EGVs) are often ignored (Eastridge & Clark 2001) or
assumptions are made about their influence on the post-release movement patterns of
animals (Vandel et al. 2006, Spinola et al. 2008). However, a number of environmental
factors influence the ranging patterns of animals, including habitat availability (Arthur et
al. 1996), habitat suitability (Winnie Jr. et al. 2008), seasonality (Schooley 1994) and
social dynamics (Fretwell & Lucas Jr. 1970). The success of an introduction and the
future breeding potential of a population may be dependant on the EGVs influencing
settling patterns of the population (Jean-Baptiste et al. 2009). For example water vole
Arvicola terrestris post-release settlement and future survival rates are influenced by
vegetation abundance (Moorhouse et al. 2009), while the Eurasian badger Meles meles
are negatively affected by human disturbances during their settling phase (Balestrieri et
al. 2006, Gusset et al. 2008). We therefore suggest another important indicator and aspect
of the settling phases is how individuals’ responses to EGVs change after their release.
Conservation managers reintroducing animals would be better equipped to implement

measures to decrease search efforts and the associated stress, mortality risks and deferred
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costs associated with finding and settling into a new range, by understanding the various
factors being selected for, or influencing, an animal’s settling process.

Three phases of post-release movement have been identified (Moehrenschlager &
Macdonald 2003). First, the acclimation phase describes initial movements after release
that are highly variable in distance and direction. Daily displacements can be unusually
large (e.g. flight response, or individuals extremely sedentary and hiding). The
acclimation phase has also been referred to as the dispersal phase and ends when an
individual moves into its future home range for the first time (Richard-Hansen et al.
2000). Second, the establishment phase encompasses the period when an individual’s
distance from the release site stabilizes, but its movement patterns are dissimilar to those
of established animals, for example higher daily displacements. Lastly, during the final
settlement phase an individual’s daily movement and ranging patterns are similar to those
of established animals (Moehrenschlager & Macdonald 2003).

Armstrong and Seddon (2008) outline the need for us to understand which habitat
conditions a population requires to persist. Within this context they note that we need to
ensure that the data captured on EGVs is relevant to the species. Presently our
understanding of these variables in relation to black rhino Diceros bicornis with regard to
reintroductions is lacking. Reintroductions are an important management tool for the
future conservation of this endangered species (http://www.iucnredlist.org; Emslie 2001,
Metzger et al. 2007), but there are high mortality rates amongst reintroduced black rhino
(Brett 1998, Linklater & Swaisgood 2008). Here we propose the novel application of
Maxent (Phillips et al. 2006), a maximum entropy model used for the prediction of
presence-only species occurrences (Phillips et al. 2006), to better understand black rhino
post-release settlement phases with regard to EGVs. Previous work indicate the
acclimation phase to take about 5 days and the establishment phase to last up to 25 or
over 100 days (Linklater & Swaisgood 2008), with no clear indication of a settlement
phase due to a lack of comparable settled black rhino data. No longer-term study has been
conducted to establish at what stage black rhino enter the settlement phase, or what
factors affect the settlement rate.

We aimed to define the influence of EGVs on black rhino settlement and

establishment, and to propose potential management interventions to increase the settling
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rate. Our objectives were therefore to (1) establish provisional post-release phases based
on prior knowledge of black rhino ecology and ranging patterns; (2) use Maxent to
calculate the importance of the different EGVs and how they influenced the distribution
of black rhino for each of the provisional post-release phases; (3) determine which of the
provisional phases could be grouped together to form the different post-release settlement
phases, namely the acclimation, establishment and settlement phases; (4) discuss the
implications of these findings for developing a better understanding of reintroduction

biology.

6.3. Materials and methods

6.3.1. Capture, translocation and release
The capture, translocation and release procedures for the 15 black rhino released on the
Mun-ya-Wana Game Reserve (MGR) is described in Linklater et al. (2006). All rhino
received horn-implant transmitters, either a MOD-80 or the larger MOD-125 (Telonics,
Inc., Mesa, USA; www.telonics.com). Seven females (six adults and one sub-adult) and
eight males (four adult and four sub-adults) originated from four different reserves in
KwaZulu-Natal Province, South Africa. Linklater et al. (2006) describe the details of the
initial post-release monitoring efforts and Morgan et al. (2009) describe the details of
monitoring efforts during the first year after release. We located the rhino daily for the
first three weeks following release and then at least once every three days thereafter, with
a final average of 2.1 £0.1 days between locations for the first 60 locations. In total, 1 857
locations were recorded during the first 14 months following release of the rhino (Table
1). Over the course of the study we identified the four adult males to be dominant,
because they had established non-overlapping territories with one another, but allowing
one or two sub-adult males to range within their territories (Adcock 1994). We therefore
divided our analysis into females, dominant males and subordinate males.

A detailed scent-broadcasting and social interaction study during the acclimation
phase of the MGR black rhino is being completed and for this reason we will largely
concentrate on the establishment and settlement phases of these populations. The

preliminary analyses indicated that black rhino move away from their own dung which
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was spread at their release site, but settled in to areas adjacent to where other released
rhinos’ dung has been spread (Linklater et al. 2006). This suggests that conspecific cues
may play a role in the settling behaviour of back rhino (Linklater et al. 2006). Within
three days, the black rhino from the study entered the area of their future home ranges
and decreased their daily movement rates considerably after six days (Linklater et al.
2006). We do not believe that this scent broadcasting study will confound the effects of

the rhino’s responses towards EGVs following this six day period.

6.3.2. Maximum entropy program (Maxent)
There are a number of resource selection analyses which are capable of using presence-
only location data, including commonly used weighted (Millspaugh et al. 2006) and
unweighted (Aebischer et al. 1993) compositional analyses, and eigenanalyses such as K-
select analysis (Calenge et al. 2005a). These analyses need a measure of availability to be
calculated, which assumes an animal has some concept and knowledge of its surrounding
environment. However, when released into a new area an animal still needs to acquire
that knowledge, and we could expect selection to rather be based on its immediate
surrounds, conspecific cues (Linklater et al. 2006) or conspicuous environmental cues
based on previous experiences from their natal environment (Stamps & Swaisgood 2007).
Therefore the analysis we chose needed to exclude resource availabilities in its
calculations. We also needed to use a method which could analyse small numbers of
locations, due to potentially short settling phases (Moehrenschlager & Macdonald 2003,
Linklater & Swaisgood 2008). The resource selection analyses mentioned above need an
absolute minimum of 30 locations (Kernohan et al. 2001, Millspaugh et al. 2006), which
would be too large a sample size for a phase lasting only 6 days (Linklater & Swaisgood
2008). Maxent suits a post-release study as it does not use a measure of availability to
determine the influence of variables on locations, it can use less than ten locations to infer
suitability (Pearson et al. 2007, Wisz et al. 2008), it uses presence-only location data in
conjunction with continuous or categorical EGVs, and performs well with respect to other
suitability models (Wisz et al. 2008, Elith & Graham 2009).

Maxent evaluates the overall fit of the model using a receiver operating

characteristic (ROC) curve, where the model’s sensitivity versus (1 — specificity) is
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plotted (Phillips et al. 2006). The area under the ROC curve (AUC) is then calculated,
with AUC = 1 being the best fit, AUC = 0.5 being expected from a random model and
values greater than 0.75 being considered useful (Elith et al. 2006). Maxent’s output is a
predicted habitat suitability grid of the study area, with grid cell values being a function
of the relevant EGVs, ranging from 0 — 1, with higher values corresponding to more
suitable conditions for the species (Phillips et al. 2006). Maxent produces two outputs
based on each EGV. The first is a response curve developed from a Maxent model run
using only the selected EGV. These response curves reflect how the dependence of
predicted suitability is based on the selected variable and conversely on any other
variable correlated with it. We will analyse these curves to determine how individual
rhino respond to the various EGVs and how this response changes with increasing time
after their release. The second output evaluates the importance of each variable by doing
a jackknife analysis of each EGV separately to determine how well the variable explains
the observed distribution (Phillips et al. 2006). We will use these results to illustrate the
relative importance of each EGV for each of the different post-release phases.

6.3.3. Post-release phases

We divided the first 14 months since the release date into seven provisional phases based
on the three post-release settlement phases as described by Moehrenschlager and
Macdonald (2003).

Acclimation phase - This phase has previously been identified using daily
displacements and the distances of animals relative to their release sites
(Moehrenschlager & Macdonald 2003). Black rhino daily displacements are highest over
the first five to six days post-release and they decrease their minimum daily displacement
within 25 days of being released (unpublished data; Linklater & Swaisgood 2008). We
could not analyse the first five days response to the EGVs, as approximately ten locations
are needed for accurate results from Maxent (Pearson et al. 2007, Wisz et al. 2008). We
therefore split the first 25 days into two phases, the first ten locations as Phase 1, then
until the end of 25 days as Phase 2. To determine whether there was variation in their
movements relative to their release sites we calculated the straight line distances for each

location back to the relative release site for each of the phases described below. We made
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boxplots of the distances and then ran an ANOVA or, if the assumptions of the ANOVA
were not met a Kruskal-Wallis test, across the phases for each rhino to determine how
they established themselves relative to their release sites.

Establishment and settlement phases - Since there was no existing population on
the reserve we investigated whether their changes in response to different EGVs over
time would enable us to identify these two phases, and then explain factors influencing
them. We divided the time since their release into different sub-phases based on black
rhino ecology and previous studies of black rhino post-release movements. In Southern
Africa black rhino establish and utilise home ranges (Conway & Goodman 1989, Adcock
et al. 1998, Lent & Fike 2003, Reid et al. 2007), although home range spatial and size
shifts may occur across seasons (Lent & Fike 2003, Reid et al. 2007). We therefore
decided to analyse the first 26 -100 days since their release, for comparison to other black
rhino post-release movement studies (Linklater & Swaisgood 2008), and then to split the
rest of their year, until the end of October 2005, into seasonal phases. By using seasonal
phases we would be able to assess whether any changes could be attributed to seasonal
responses to the EGVs. To be able to make direct comparisons between the rhinos’
responses during the first 100 days since their release we ensured Phase 7 encapsulated
the same months a year later (November — December 2005). Based on the results from
these phases we are hoping to be able to group these 5 phases into establishment and
settlement phases.

6.3.4. Ecogeographical Variables (EGVSs)

Three types of ecological gradients can be identified to classify EGVs, specifically
resource-, direct- and indirect-gradients (Austin 1980, Austin & Smith 1989). Resource-
gradients deal with those variables that are consumed by the relevant species (e.g. water
and food), direct-gradients are non-consumed environmental constraints (e.g. shade and
the different habitat types), while indirect-gradients have no direct physiological
relevance to the species’ functioning (e.g. topographical features, distance to roads and
fences). We would expect these gradients to influence animals differently during the

various phases they go through after being released. For example the distribution of
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resource gradients would be largely unknown to a recently released animal while direct
gradients could play a role in animal’s movements at the release site.

There is little peer reviewed literature available on factors thought to influence the
post-release settling rate of black rhino or any other large mammal, so we drew on our
previous experience and information from unpublished literature to identify a
combination of selected variables. One source was from habitat suitability models
developed for black rhino in Augrabies National Park (ANP), South Africa (Buk 2004),
and Liwonde National Park (LNP), Malawi (Van der Heiden 2005). In ANP the EGVs
which had the greatest influence on black rhino distribution were slope, distance to water
and roads, and a measure of habitat heterogeneity, available forage and rockiness (Buk
2004). Shade cover and distance to fences were significant in some of the models, but
were left out in the final model (Buk 2004). In LNP road, river and water hole densities,
distance to permanent water holes and plant species diversity were all significant in the
utilisation distribution of black rhino (Van der Heiden 2005). We included a number of
similar measures for the EGVs in these two studies and included a number of other
variables which could potentially affect the settling rate or help explain the movement
patterns of black rhino (Table 2). We calculated all the EGVs at a grid cell size of 20 x 20
m across the study area.

An advantage of Maxent is that it is robust in its inclusion of unnecessary and
correlated EGVs, as it uses regularisation techniques (i.e. penalises features with strong
weights, 1) to avoid over-parameterisation and ignores non-informative EGVs (Phillips
et al. 2006), which alleviates the need for further statistical procedures such as an
information theoretic approach to model building (Burnham & Anderson 2002). We
included a number of variables which may not seem informative initially, but which may
lead to responses that we had not considered (Aarts et al. 2008). We investigated how
EGVs were related by selecting 20 000 random points and allocating them values for
each of the EGVs across the study area. We then ran a regression analysis between the
values of potentially similar EGVs to ascertain which of them were related.

An important aspect of the settling process are the rhinos’ social interactions with
one another, as evident from the sent broadcasting study (Linklater et al. 2006) and the

problems encountered due to negative social interactions between recently released black
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rhino (Linklater & Swaisgood 2008). Generally, a number of black rhino ranges will
appear to overlap on the landscape forming social groups or ‘clusters’ (sensu Lent & Fike
2003) that reflects intra- and inter-sexual relationships amongst same- and opposite-sexed
neighbours (Conway & Goodman 1989, Tatman et al. 2000, Lent & Fike 2003).
Territorial males do not overlap their ranges with one another (Adcock 1994), and accept
subordinate males into their ranges, which normally range exclusively within this single
territorial males range, while females may bridge across male territories (Estes 1993,
Adcock et al. 1998, Lent and Fike 2003). For this reason we decided that a measure of
how the subordinate males and females associated with the territorial males resident
within their ranges would provide us with an understanding of the formation of the
clusters and social bonds. We therefore calculated the central point of each dominant
male’s location for each phase. We did this in ArcMap using the Central Feature tool,
which calculates a point in space associated with the smallest accumulated distance to all
the selected locations. The distance to the central point of each dominant male was
calculated as separate variables and inputted into the relevant models. We excluded a

dominant male’s own central location from its models.

6.3.5. Analysis of Maxent outputs
Maxent’s final output is a habitat suitability map based on the inputted locations. This
would be an indication of the areas we could expect an individual to occupy had it not
changed its response to the inputted EGVs. We could therefore assess the degree of
change in an individual’s response to the EGVs by analysing the overlap of consecutive
phase’s suitability maps. We calculated the degree of niche overlap using the program
ENMTools (Warren et al. 2008). ENMTools calculates the niche overlap using two
different statistics, namely the Schoener’s D (Schoener 1968a) and the | statistic (Warren
et al. 2008). We used only the D statistic to evaluate overlap due to the similarity in the
outputs of the two statistics (Warren et al. 2008). We did this between consecutive phases
for each rhino, and plotted how the predicted Maxent distributions of the population
changed since their release.

Maxent runs a jackknife test on each EGV separately, building a model with it to

see how well it can describe the locations (Phillips et al. 2006). Maxent calculates the fit
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of this model using the AUC statistic based on the locations it set aside for model testing.
The EGV AUC values are not directly comparable from one phase to the next, due to the
effect that sample sizes may have on the accuracy of the statistic (Wisz et al. 2008),
however the order of their importance is comparable. We therefore ran a Kruskal-Wallis
test on the ranks of the EGVs within each phase to assess the change in their importance
since the rhino were released. This will only tell us about potential changes in the
importance of the EGVs, but will not tell us how an individual’s response to a variable
changes, or whether responses between individuals is similar.

Maxent produces response curves for each EGV based on a model built using
only that variable, which produces a measure of how the model’s predicted suitability is
dependent on the selected variable, and those variables correlated with it. To help us
understand the effect of the EGVs across the phases we assessed the changes in the
response of the rhino to those EGVs which were either ranked highly, or for which the
mean rank of importance changed noticeably from one phase to the next for the
population. For example, suitability may decrease with distance from water. We also
assessed those indirect gradients which could be manipulated by conservation managers
to see how black rhino might respond to their manipulation during different phases. To do
these assessments for each rhino we aligned each EGVs phases’ response curves below
one another in tables. We recorded a change point between phases if there was a change
from a positive to a negative response to a variable or whether a response curve changed
notably in its shape. We then recorded whether the rhino made a number of changes in
their responses to EGVs and across which phases the changes were occurring more
frequently.

For some of continuous variables we could assess whether a rhino’s response was
negative or positive in relation to the variable for a phase. For example the suitability
score for distance to water may increase closer to water (a positive/attracted response) or
farther from water (a negative/avoidance response). This could be a strong response (an
exponential response curve) or a gradual response (a linear response curve). Based on
these assessments we rated the response of the rhino to each EGVs for the different
phases as either a weak (1) or a strong (2) positive (+) or negative (-) response or

alternatively as no response (Schmitz). It is important to note here that a strong response
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as defined here does not mean that an individual considered the variable more or less
important for a phase (the AUC values from the jackknife tests tell us that), but rather
how the rhino responded to the relevant variable. Due to small sample sizes we relied on
box-plots to assess the agreement amongst the rhino for the different phases, and to
identify differences between the phases.

There is an extensive game-viewing road network on MGR, with 28 % of the
reserve having road densities above 5 km/km? and only 20 % of the reserve with densities
less than 2.5 km/km?. The majority of the low density areas occur in very mountainous
terrain or in the unsuitable habitat barrier mentioned earlier. We therefore assessed
whether the rhino had a negative response to road densities only above a 5 km/km?
threshold.

Rhino PDF73 VHF transmitter failed before Phase 6, so we were not able to
analyse her movements during the last two phases. We performed all statistical tests
using SPSS 15.0 (SPSS Inc., Illinois, USA) and used a significance level of 0.05, unless
stated.

6.4. Results

Although the sample sizes were small for each group, there was sufficient agreement
amongst individuals’ responses for us to make deductions about settling phases from the
results, and to postulate reasons for the rhinos’ responses. All the predictive models for
each individual and each phase had an AUC > 0.75, meaning the models were useful
(Elith et al. 2006). None of the EGVs used for model development were able to explain
related EGVs with an r?> > 0.50, so we assumed the jackknife and response curves
developed for each EGV were largely a direct response without dependencies induced by
other variables (Phillips et al. 2006).

In many cases the rhino changed their responses to EGVs (noted by a low overlap
of the Maxent predicted distributions) across those phases for which they had a notable
change in their distance from their release site (Fig. 1). A good example is between
Phases 2 and 3 for rhinos DM4, PDF73, PDF98 and PDM81. However, in some
incidences a change in response to EGVs did not correspond to a change in distances
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from their release site. The majority of black rhino had significant changes in the distance
they were from their release sites over the 7 phases (all p < 0.05), with the exceptions
being DM1 (p = 0.947), PDF79 (p = 0.239) and PDMO03 (p = 0.059). These three rhino all
settled immediately into a set distance relative to their release site, yet they continued to
show changes in the way they were reacting to EGVs (Fig. 1). If a rhino has a similar
ranging distance from the release site from one phase to the next it does not necessarily
indicate it is exhibiting site loyalty, as it is possible for an animal to move in an arc
relative to a release site. However, there were no major arc movements by any of the
black rhino in this study. The only two phases with consecutively similar ranging
distances from the release site are the last two phases, suggesting that these two phases
could represent a separate settling phase to the previous phases.

Based on the Maxent predicted distributions, although not statistically strong, the
rhino had the least amount of change between Phase 1 and 2 and again between Phase 6
and 7, the most change between Phases 2 to 5 and a decreasing change towards the last
phases (Fig. 1). At this stage we could potentially delineate these three periods as the
acclimation (Phase 1 and 2), establishment (Phases 2 — 5) and settlement (Phase 6 and 7)
phases. Nonetheless, without understanding how the rhino were responding to specific
EGVs it is difficult to ascertain whether any of these ranging patterns noted here are due

to seasonal or settling processes.

6.4.1 Ecogeographical variables importance
The only EGV for which importance changed noticeably over the phases was habitat
richness (Kuskal-Wallis »* = 31.8, p < 0.001; all other EGVs p > 0.07), however it was
unimportant in Phase 1 (mean rank of 12) and got progressively less important. The most
important EGVs to the rhino, across all the phases, were habitat type, elevation and the
distance to the closest dominant male. We therefore analysed these response curves and
included distance to fence, distance to busy roads, road density and distance to water
which we felt would be informative for conservation managers, and have been noted as
important factors in past black rhino release studies (Linklater & Swaisgood 2008).

All rhino made the first, and the majority, of their changes in response to the

EGVs between Phase 2 and 3 (Table 3; Fig.2), which supports our previous delineation of
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phases. The dominant males had one major settling change by Phase 3, while the females
and sub-adult males had two settling changes, one by Phase 3 and the second by Phase 6.
There are, however, variations amongst the individuals as to whether the second settling
phase occurs or not. The dominant males settled more similarly to one another than the
other two groups of rhino.

All the rhino changed their responses to elevation, distance to water and the
distance to the nearest dominant male by Phase 3 (Table 3). The response to elevation
would suggest that each rhino had selected specific environments of the reserve to settle
in by Phase 3. We can interpret the responses to the dominant males as avoidance or
association responses (Fig. 3). By Phase 3 the dominant males had already started
avoiding one another, and we can regard this as the starting point of their territorial
exclusivity. By Phase 3 all but one female were associating with dominant males, which
was during the same phase we saw three female rhino mating with dominant males. We
attribute this to a ‘getting-to-know-you’ response by the adult male, as none of these
matings resulted in known births. Interestingly, PDF79’s avoidance response in Phase 5
coincided with her giving birth, while PDF71’s negative response coincided with her
shifting her range into the neighbouring dominant male’s territory in Phase 7.

PDF85, DM1 and PDMO3 all formed one cluster, and were the only rhino to
consistently respond negatively towards water. Either there was an unknown water point
within their range which was not included in the model development, or an unseen factor.
We have therefore removed them from the response to water to gain an understanding of
how the rest of the population responded (Fig. 4a). The other black rhinos’ response to
water gained strength by Phase 3 for the females and dominant males, while the
subordinate males took longer. The subordinate males’ delayed response to water in
Phase 6 and 7 may have been a seasonal response, as these phases were during the dry
season; however this is not evident from the female and dominant male responses.

The population ranked the distance to fence as slightly more important during
Phase 1 than the other phases (although not significantly) and responded either neutrally
or negatively to the fence during this same phase (Fig. 4b). This response is unexpected,
as tracks of black rhino are commonly found along the fence boundary during the initial

days after their release (personal observation at five different release sites, totalling 40
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black rhinos; Morkel & Kennedy-Benson 2007). It is possible that the rhino were
avoiding the fences during the day when they mostly rest (Schenkel and Schenkel 1969,
Tatman et al. 2000, Rice and Jones 2006) and made exploratory trips along the fences at
night only. It is unclear why the dominant males would take longer than the females and
subordinate males to habituate themselves to the fence.

The black rhino did not avoid busy roads or regions with high road densities (Fig.
5) during the first two phases, which may have been due to their use of roads to explore a
new area (personal observation at five different release sites, totalling 40 black rhinos),
their habituation to vehicle noise during their time in the bomas (from between 31 — 61
days) or due to distress caused by an extended period in the bomas (Linklater et al. 2010).
Following Phase 1 and 2, the rhino avoided regions with road densities > 5 km/km?,
which could be because of the large edge effects on the habitat (Andrews 1990, Forman
& Alexander 1998). The females generally avoided busy roads following Phase 2, as they
may seek out areas of fewer disturbances for their young in the future, while the male’s
responses varied and they were seemingly indifferent to the busy roads.

In summary black rhino post-release phases can be delineated into the three
phases proposed by Moehrenschlager and Macdonald (2003); the acclimation phase (first
25 days), the establishment phase (26 — 281 days) and the settlement phase (282+ days),
although this may be later for the dominant males. During the acclimation phase black
rhino have large daily displacements, potentially move large distances from their release
sites, avoid fences during the day, yet are not adverse to busy roads or areas with high
road densities and have yet to associate themselves with a water source. During the
establishment phase the rhino have established themselves relative to the dominant males
(meaning the dominant males have identified themselves), they have selected broad-scale
environments and areas with road densities < 5 km/km? to settle in, have varied responses
to most EGVs during the phase, but the adults associate themselves with water sources.
The dominant males make fewer changes from this phase to the settlement phase than the
females and subordinate males. By the settlement phase the rhino have settled into a fixed
area relative to their release sites, use specific habitat types and, although there are

differences amongst the demographic groups, have settled responses to all the EGVs.
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6.5. Discussion

This exploration of the effect of EGVs on the settling process of black rhino reveals the
importance of social structure, and how responses of demographic groups differ and
change differently during settlement. Some of the responses to variables in this study did
not correspond to previous suitability models developed for black rhino (Buk 2004, Van
der Heiden 2005), however this study was done at an individual level, allowing for more
in depth responses to be assessed, rather than averaged population level responses. Black
rhino movements and responses to the selected variables indicate that there is a clear
distinction between the acclimatisation (Phase 1 and 2) and the establishment phase,
while the division between the establishment and settlement phase, specifically for the
adult males, was less distinct.

The adult males, later identified as dominant individuals, were more cohesive in
their settling responses and established territorial boundaries within 25 days, settling
quicker than the subordinate males and females. This supports the theory proposed by
Linklater et al. (2006) that reproductively ready males are quicker to respond to an
opportunity to defend a territory and females. They are presented with a unique position
to do so in an area devoid of resident conspecifics, and possibly grab the opportunity,
organising themselves into spatially distinct areas relative to one another by the end of
the acclimatisation phase. Being older, they may also be able to respond quicker to
conspicuous cues based on previous experiences from their natal environment (Stamps &
Swaisgood 2007). The role which natal environments play in the settling response of
animals to EGVs warrants further investigation.

Here the population had organised itself socially within the first 100 days since
their release, frequently socialising with one another (unpublished data), especially after
Phase 2 when females were even recorded mating with males. However, on 6 other large
reserves (i.e. reserves > 18 000 ha) with similarly low densities (< 0.1 rhino/km?) there
were no recorded associations between black rhino during the first 100 days since
release, other than a single breeding relationship between a resident male and an
introduced female (Linklater & Swaisgood 2008). Interestingly all these rhino were

released one-by-one from holding enclosures, rather than being free-released across the
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reserve, like they were on the MGR, and all but one of these reserves had resident
conspecifics. This would suggest that either one of these factors could have facilitated a
quicker settling response by the rhino on the MGR. Since the black rhino on MGR were
all having to establish themselves at the same time, they may have been more apt to
socialise since none of their conspecifics were protecting well known resources, and they
did not have to get accepted into an existing social group, but rather to form their own. It
is also possible that the scent broadcasting study (Linklater et al. 2006) had an increased
settling response on the rhino.

Even though the rhino were regularly associating with one another in their
clusters, it would seem that the social bonds may take longer than we perceive to develop.
This is evident from the length of time it took the subordinate males to associate with
water points within a dominant male’s territory and that the first conception in this
population happened after 15 months (unpublished data). It is hard to decipher whether
the female’s conception was delayed by stress factors due to the translocation and the
new area or the time it took for social bonds to form between the rhino. We saw females
mating soon after the acclimation phase and attribute this mating as an initial ‘getting-to-
know-you’ response, since none of these recorded mating events resulted in known births
(unpublished data) or a dominance act by a dominant male, as black rhino adult males do
attempt to mate immediately with females supplemented into existing populations (SM,
WL personal observations). To reduce the delay in the formation of social bonds it may
be prevalent to capture and reintroduce established clusters of black rhino into new areas.

While the adult rhino found and associated positively with water resources
quickly, they took longer to identify with specific habitats. Water is largely a stationary
resource which can be easily learnt once found, while assessing the suitability of the
surrounding habitat would take longer. It is likely that we measured the resource
gradients at an incorrect scale, as the rhino ranked habitats as more important than the
resource gradients they had to offer. Animals possibly select for specific combinations of
variables within habitats, rather than any single averaged estimate of a resource gradient
measured across a habitat. This is in accordance with black rhino not selecting identified
habitat units based on the availability of suitable browse or the perceived importance of

the habitat based on carrying capacity estimates (Morgan et al. 2009).
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6.5.1. Black rhino management

Following the results here we suggest that, where possible, black rhino are free released
onto reserves with no resident conspecifics and those regions with road densities > 5
km/km? are excluded from estimates of available area for black rhino. Releases should
occur as soon after one another as possible, ideally within 6 days, as previously suggested
by Linklater et al. (2006). No black rhino should be released into a population after the
acclimation phase of 25 days, as we can assume adult males will respond to any
newcomers aggressively, like they would in an established population (Brett 1998,
Linklater & Swaisgood 2008), thereby delaying the settling process. Adult males should
be released in spatially distinct areas (the size of an estimated home range for the region)
such that they have access to a water resource which is distant (>1 km) from a fence and
which they do not need to share with other adult males. Females should not be released in
areas close to busy roads. This study was potentially affected by the small sample size
and by the diurnal nature of the location records. We suggest continued investigations
into future black rhino releases and that researchers endeavour to include some form of
nocturnal movement information to enhance our understanding of the responses we have

noted here.

6.5.2. Conclusion

Understanding the response of reintroduced animals to EGVs gives us an insight into
how we can manage reintroductions better, and teaches us valuable lessons about the
ecology of animals. Previously those studies which have taken EGVs into account were
constrained by small sample sizes (Larkin et al. 2004, Rittenhouse et al. 2008) and were
unable to analyse the data statistically (Larkin et al. 2004) or across different settling
phases (Rittenhouse et al. 2008). Here we have shown that Maxent is a useful tool in the
investigation of post-release animal responses to EGVs even when sample sizes are low,
and or when a dominance hierarchy potentially confounds our understanding of settling

processes.
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Table 6.1 The number of locations recorded for individual black rhino for the first year
since their release on the Mun-ya-Wana Game Reserve. The movements of the rhino
were studied across seven phases and the number of locations recorded per phase is
shown (see text for details on phase descriptions).

Phase Phase 1and 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7
Season Early wet Early Late wet Earlydry Latedry Early wet
wet
Days since 1-25 25-100 101-182 183-281 282-380 380-440 Total
release
PDF0O1* 22 36 31 29 32 20 150
PDF71 21 30 22 24 27 20 124
PDF73 20 23 21 17 - - 81
PDF78 19 27 27 26 25 18 124
PDF79 16 23 17 28 23 20 107
PDF85 21 27 23 22 22 17 115
PDF98 21 26 20 23 27 21 117
DM1 20 28 23 24 27 20 122
DM2 19 25 20 22 28 20 114
DM3 22 37 28 27 28 20 142
DM4 23 29 27 28 26 17 133
PDMO3 21 31 23 22 26 19 123
PDM57 20 33 24 33 32 20 142
PDM59 20 24 27 26 24 17 121
PDM81 23 36 30 27 26 20 142
Total 308 435 363 378 373 279 1857

*PDF = Female; DM = Dominant male; PDM = Subordinate male
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Table 6.2 Ecogeographical variables used for measuring responses of black rhino during

different post-release phases on the Mun-ya-Wana Game Reserve.

Code Ecogeographical variable

BA Browse Availability - measured for each habitat using the browse availability method as
outlined by Adcock (2004).

CC Carrying capacity - calculated for each habitat using the index of black rhino browse
availability, soil fertility, annual rainfall and minimum July temperature (Adcock 2006)

Grass Grass abundance, calculated as a percentage of grass ground cover for each habitat, as
outlined by Adcock (2004).

Herbs Herb abundance, calculated as a percentage of herbaceous ground cover for each habitat,
as outlined by Adcock (2004).

Dist_water  Distance to the closest permanent water source.

Habitat Habitat types - as determined by van Rooyen and Morgan (2007), see Appendix 2for full
details.

Habitat_ric  Habitat richness - a measure of the diversity of habitats surrounding a grid cell on the

h map, equated as the number of different habitat types present in a 500m diameter
surrounding a grid cell.

Shading Shading was the average of the shading site index recorded at the browse assessments
sites across the reserve for each habitat type. Shading index ranges from 1= Deep shade
to 13 = No shade.

DEM A 50-m resolution digital elevation model, also used for the calculation of slope and
aspect. Elevation is measured in meters above sea level, to the maximum height of the
study site at 305m.

Aspect Aspect as calculated from the digital elevation map, measured in degrees.

Slope Slope as calculated from the digital elevation map, measured in degrees.

Rd_density ~ We calculated road density using a line density calculation in ArcMap, using all the
roads on the reserve. It was calculated as the kilometres of road per square kilometre
area (km/km?).

Dist_rds For the road distance variable we included only main access routes to the lodges, due to
the large amount of traffic that they receive on a daily basis, and the two public roads
that run through the length of the reserve. The rest of the road system on the reserve is
extensive but was not included, because of relatively infrequent use. This is thus a
measure of potential disturbance from human activity as opposed to the ecological
influence of roads per se which is captured in road density above.

Dist_fence  Distance to the boundary fence.

Sand Percentage ground cover of sand, such that cover between sand, stones and rocks equals
100%. The cover was estimated for each browse assessment site across the reserve and
the mean was calculated for each habitat type.

Stone Percentage ground cover of stones (< 20cm in diameter), such that cover between
stones, sand and rocks equals 100%. The cover was estimated for each browse
assessment site across the reserve and the mean was calculated for each habitat type.

Rocks Percentage ground cover of rocks (> 20cm in diameter), such that cover between rocks,

stones and sand equals 100%. The cover was estimated for each browse assessment site
across the reserve and the mean was calculated for each habitat type.
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Table 6.3 The occurrence of changes in the response of black rhino to ecogeographical
variables (EGVs) since their release. Changes are indicated as the proportion of changes
to an EGV made by a demographic group (F = female, n = 7; DM = dominant male, n =
4; SM = subordinate male, n = 4) across the different post-release phases.

Habitats Elevation (DEM)  Distance to water Road density
F DM SM F DM SM F DM SM F DM SM
1-2 - - - 0.20 0.20 - - 0.60 0.07 0.40 0.40
2-3 040 - 0.29 0.70 0.60 080 0.70 040 050 0.36 0.40 0.40
3-4 020 0.67 043 - - - 0.10 - - 0.36 0.20 0.20
4-5 020 0.33 0.14 0.10 - - 0.10 - 0.33 0.14 - -
5-6
6-7

0.20 - 0.14 - - - 0.10 - 0.17 - - -
- - - - 0.20 0.20 - - - 0.07 - -
Distance to roads  Distance to fence Distance to DM Total EGV

F DM SM F DM SM F DM SM F DM SM
1-2 0.08 - - 0.23 - 0.33 0.08 0.11 - 0.10 0.18 0.10
2-3 038 050 038 031 050 0.33 033 0.78 060 0.44 0.51 0.45
3-4 0.08 - 0.13 0.08 0.17 0.17 0.25 - 0.20 0.16 0.11 0.17
4-5 015 0.17 0.25 0.15 - - 0.17 0.11 - 0.14 0.08 0.12
5-6

6-7

0.15 0.17 0.13 0.15 - 0.17 0.08 - 0.20 0.10 0.03 0.12
- 0.15 0.17 0.13 0.08 0.33 - 0.08 - - 0.06 0.11 0.05
*See text for details on phase descriptions
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Figure 6.1 The settling process of individual black rhino in relation to their distance
moved from their release sites (boxplots) and the overlap in the way they responded to
different ecogeographical variables (lines) from one post-release phase to the next (see
text for details on phase descriptions). The distance to the release site is calculated as
straight line distances from recorded locations during each of the phases. The overlap
between successive phases is calculated using Schoener’s D statistic, with 0 = no overlap
and 1 = maximum overlap. The line across the box is the median; box represents the 25"
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Figure 6.2 The incidence of black rhino responses to EGVs for seven different post-
release phases. The bars represent the total proportion of changes made by a demographic
group in response to the EGVs for (a) the first and (b) the second time changes were
made during the different post-release phases. The incidences of a third change in

response to an EGV were negligible and are not graphed.
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Figure 6.3 The variation in the response of individual black rhino to dominant
males for different post-release phases on the Mun-ya-Wana Game Reserve. The
response of the females and subordinate males is to the dominant male closest to
them during the first three phases, while the response of the dominant males is their
response to the closest two other dominant males. Responses are gauged as either a
weak (1) or strong (2) response, as association (+) or avoidance (-) or alternatively
as no response (Schmitz). The response of the rhino were assessed across seven
different post-release phases (see text for details on phase descriptions). The line
across the box is the median; box represents the 25" and 75" percentiles; and the
whiskers indicate the 5™ and 95™ percentiles. Open circles and asterisks respectively

designate outliers and extremes.
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Figure 6.4 The variation in the response of individual black rhino to water points and the
fence for different post-release phases on the Mun-ya-Wana game Reserve. (a) Response
to the permanent water sources in the study area. (b) Response to the distance to fence.

Responses are gauged as either a weak (1) or strong (2) response, as positive (+) or
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negative (-) or alternatively as no response (Schmitz). The response of the rhino were
assessed across seven different post-release phases (see text for details on phase
descriptions) and during the dry and wet seasons once the population had settled. The line
across the box is the median; box represents the 25" and 75" percentiles; and the
whiskers indicate the 5™ and 95™ percentiles. Open circles and asterisks respectively

designate outliers and extremes.
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Figure 6.5 The variation in the response of individual black rhino to the density and

distance to roads for different post-release phases on the Mun-ya-Wana game Reserve.

(@) Response to the density of roads in the study area. (b) Response to the distance to
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busy roads in the study area. Responses are gauged as either a weak (1) or strong (2)
response, as positive (+) or negative (-) or alternatively as no response (Schmitz). The
response of the rhino were assessed across seven different post-release phases (see text
for details on phase descriptions) and during the dry and wet seasons once the population
had settled. The line across the box is the median; box represents the 25" and 75"
percentiles; and the whiskers indicate the 5" and 95" percentiles. Open circles and

asterisks respectively designate outliers and extremes.
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CHAPTER 7

Summary and conclusions

The aim of this study was to address variance in our current perspective of habitat value
from that of the focal animals themselves. This was interrogated at a range of spatial,
temporal and behavioural scales, allowing us to better recognise ecological-species
interactions at the appropriate level or scale. In addition | focussed on the concept of the
individual and whether our previous assumptions of average population responses are
correct when studying and planning conservation measures. | did this by exploring
variation among individual black rhino Diceros bicornis ecology while testing and
developing a number of modelling and statistical techniques. Such techniques will further
enhance our understanding and conservation management of wildlife. My approach was
to use alternative methods, based on different assumptions, and pose the results against
each other in order to assess which performed best, and which would be the most prudent
approach in the applied context of conservation of threatened species. In this chapter |
summarise my findings, and discuss further those which have broad scale implications

and conservation application. Finally, I highlight gaps in our knowledge.

7.1. A priori valuation of land use for conservation purposes

In Chapter 2 | questioned the appropriateness of using carrying capacity (CC) estimates
to indicate habitat utilisation for a particular species, and thus as a tool for conservation
planning. This is an approach which has been used by conservation managers in the past
(Bothma et al. 2004, Hayward et al. 2007), but, at various scales, does not necessarily
correlate with individuals’ selection within a population (Chapter 2). The current BrCC-
Model v2_1, designed by Adcock (2006), and which is used as a basis of conservation
management decisions, would not be able to predict habitat utilisation of black rhino,
especially in low density populations. I was not able to study the process driving this
variation in this Chapter 2, but suggested a number of plausible reasons (density-

dependence, environmental variables, scale of selection, individual variation and intra-
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and inter-specific dynamics) why we got these results. In some of the following chapters |
was able to further unravel some of the reasons behind these results.

By studying how individuals responded not only to habitats in Chapter 6, but a
myriad of ecogeographical variables, we can see how the concept of basing a predictive
model primarily on the available habitats and the abundance of browse is flawed. This is
also supported by my study of individual niche variation in Chapter 4, which highlighted
how important the individual can be in a population, and that using a predictive model
based on the population rather than the individual may be flawed. If CC estimates
developed in this manner were unable to help us understand individual utilisation of
habitats, then we must query the use of such methods to manage population numbers in a
demarcated area. Perhaps a more integrated CC model taking into account home range
sizes, social dynamics (which play a large role in the rhino’s spatial utilisation, see
Chapter 6) and combined with established resource selection functions (Manly et al.,
2002) or predictive distribution models (for example the maximum habitat suitability
model developed in Chapter 5, Figure 5.6) could provide conservation managers with a
better understanding of the CC of an area.

7.2.  Circadian variation in spatial and behavioural habitat utilisation

I questioned whether current methods of analysing diurnal location data of animals
provide accurate ecological or conservation conclusions and in Chapter 3 found, in the
case of the black rhino, that it did not. I mentioned in the previous paragraph that black
rhino movement patterns and social dynamics should be included in CC estimates, but by
using only their diurnal range, i.e. a smaller than actual ranging area, we would
underestimate areas of utilisation and overestimate CC estimates.

The limitation in my study was the variation in the means of data collection
between the diurnal and nocturnal data. This limited the conclusions I could make about
the factors driving the circadian variation and the ecogeographical variables influencing
the rhino during the different periods. A study using point location data of black rhino
during the night and day is difficult due to the nature of the rhino and the environment the

data needs to be collected in. Many other mammal species’ body shape allow them to be
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fitted with GPS collars, which has allowed researchers a greater understanding of
circadian variations in habitat selection and movement patterns, for example the African
elephant (Kinahan et al. 2007). Unfortunately the technology of GPS horn implants for
black rhino are still in their infancy, with no measured success to date. However, | was
still able to show that browsing areas for black rhino differed during the day and night,
and believe that the continued use of backtracking techniques to understand the nocturnal
ranging and browsing habits of black rhino is an important management and research
tool.

Variations in a mammal’s ecology can make interpretations using pooled data
largely inaccurate. Although seemingly obvious, before researchers pool data they should
establish whether there may be variations across different periods of the day and night
(Chapter 3; Kronfeld-Schor & Dayan 2003), for different behaviours (Chapter 3; Schmitz
1991), amongst conspecifics (Chapter 4; Bolnick et al. 2003), or between seasons
(Schooley 1994). Unfortunately pooling data is often the result of a trade-off between
quality and quantity of data available for analysis based on the constraints of data
collection. For example, in Chapter 5 and 6 | did not differentiate between the behaviours
of the black rhino for modelling purposes as | was limited in the number of locations and
behaviours | could record in one day. Ideally being able to model the settling response of
the rhino for both foraging and resting behaviours across the day and night would have
yielded a greater insight into their settling response. With the increase in modern
technologies, for example GPS movement and behaviour recording collars, researchers
are able to gather both good quality and quantities of data allowing them to analyse the

collected data as suggested above.

7.3. Interindividual niche variation

After noting a variation amongst individual animal’s responses in Chapter 3, I explored
the degree of this variation at various scales, exploring various individual’s habitat and
diet niches in Chapter 4. My study is the first to use IndSpecl1.0 (Bolnick et al. 2003) to
understand variations among individuals from a habitat perspective rather than just a

dietary point of view, although interindividual variations in habitat use have been noted
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using K-select analysis (Calenge et al. 2005a) and compositional analysis (Aebischer et
al. 1993). | found significant, although not large, niche variation among black rhino, at
both a dietary and habitat level. The variation was higher in those clusters with greater
niche widths, which supports the Niche Variation Hypothesis (NVH), which suggests that
populations with greater niche widths exhibit greater niche variation among individuals
(Van Valen 1965).

By using IndSpec 1.0 to analyse habitat and dietary niches | was able to show that
black rhino interindividual variation is not limited to just a single scale of utilisation, but
that it permeates through various levels of niche use. It is difficult to understand which
level of niche use is driving the variation in a species for which we cannot manipulate
field conditions to test hypotheses. In this low density population, clusters of rhino, which
appear to have equal access to the same habitats as one another, still showed variation
amongst themselves in habitat and dietary choices. Were black rhino utilising different
habitats to one another based on individually preferred patches of known browse,
meaning the variation is driven at the diet level (Searle et al. 2006)? Or is variation in
habitat utilisation driven by a number of ecogeographical variables (Calenge et al.
2005a), meaning individuals are ultimately presented with different dietary choices? As
more habitats were used by a cluster, the variation amongst individuals did not increase
as we would have expected it to; however, it did at a diet level. The variation at a diet
level was driven by the subsidiary diet choices of individuals, with an increase in the
interindividual niche variation of these species during times when resources were limited.
This suggests that the variations at the habitat level are driven by individual diet
preferences, specifically of plants in their subsidiary diets, rather than any other
ecogeographical variable. This highlights the importance of subsidiary diets, as | noted
here with black rhino, and that wildlife managers need to be aware of the importance
these food species play during periods of resource scarcity or in high density populations.
By pooling diet information researchers may well underestimate the importance of
subsidiary resources to specific individuals, resulting in the mismanagement of these

resources.
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7.4.  The importance of incorporating individual variation in modelling habitat

suitability

Following the results in Chapter 4 | wanted to establish what effect inter-individual
variation had on the outcomes of modelling suitable habitats for a population. I did this in
Chapter 5 using a machine learning modelling technique, a Maximum Entropy (Maxent)
model (Phillips et al. 2006), and a number of relevant ecogeographical variables (EGVSs).

Developing a number of Maxent outputs allowed us to understand individual
responses to EGVs, but the population outputs were limited to a manually merged output.
The current abilities of machine learning models, like Maxent, are limited with regards to
incorporating individual based data into the population level model, which weakens their
applicability for wildlife research and management (this study; Baldwin 2009).
Automation of incorporation of individual level data into interpretations would greatly
enhance the value of such tools to managers. However, modelling a population using
individual responses to EGVs is useful, as we can understand the forces driving
individual’s decisions, as in the case of black rhino. I therefore suggest the collection and

analysis of individual specific movement data when the resources are available.

7.5.  Understanding individual changes in response to ecogeographical variables

over time

In Chapter 6 | used a novel individual based modeling approach, as explored in Chapter
5, to analyse how individual black rhino settled into a new area. The population of black
rhino | studied were reintroduced into the MGR and | was interested to understand what
ecogeographical variables (EGVs) affected their settling responses in a new environment.
Interestingly the Maxent models highlighted how much more important social dynamics
in the population were than any other resource or variable used in the modeling
procedure. The dominant males appeared to settle fairly quickly, and made fewer changes
in their responses to EGVs, than the females and sub-adult males. The results indicate
that all the rhino’ acclimation phase lasted no longer than 25 days and that to minimize

disturbance to the settling process, all individuals in a newly released cohort should be
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released within this period. It was also during this period that the dominant males and
females showed an affiliation with a water point, suggesting that releasing animals near
permanent water sources to minimize searching would improve the settling rate.
Previously, Maxent has largely been used to query where we could expect animals
to move, and to a degree what EGVs animals were influenced by. Here | have managed
to extend the use of Maxent for a temporal analysis of EGV influences on their
movements. This will allow us to understand how EGV influence animals over time
using only a small number of presence-only locations from different periods. We can
apply this to not only reintroduction biology, but also seasonal or density changes that a
population may experience over time, establishing how these factors influence animal’s
responses to EGVs. Incorporating a temporal functionality into a machine learning model
like Maxent, which has the ability to construct useful models with few presence locations,

would greatly strengthen the value of the model to wildlife researchers and managers.

7.6.  Black rhino ecology, conservation and gaps in our knowledge

I have discovered and confirmed a number of aspects of black rhino ecology through the
course of the study. Notably, black rhino
i.  do not select habitats based on the availability of relevant browse species or on
our estimates of habitat quality,
ii.  do not select habitats to browse in during the day, yet they do at night,
iii. use different areas to browse in during the day than the night,
iv. move outside of their diurnal ranges at night,
v.  have a variation amongst individuals in their response to and the selection and use
of ecogeographical variables, which is less pronounced, although still significant,
a. among individuals with similar availabilities of variables,
b. among their use of primary browse species and more so in their use of
subsidiary browse species,
c. during the dry season,

vi.  share home ranges and form social clusters, often spending short periods together,
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Vii.

viil.

adult males exhibit territorial behaviour, using exclusive ranges relative to other
adult males, in the KwaZulu-Natal province,

use social cues to settle and establish home ranges once released into a new area,
demographic groups have different post-release settling strategies and respond to
ecogeographical variables differently,

dominant males settle quicker than other males and females once released into a

new area.

The main points which | discovered or confirmed about black rhino conservation

management and research are:

Vi.

Vii.

The use of existing black rhino carrying capacity and browse assessments to
determine areas used by black rhino is flawed. | rather suggest the use of
individual based habitat suitability models to estimate these areas.

| caution the use of carrying capacity models which fail to take into account the
social and many other ecogeographical variables which influence the use of the
landscape by black rhino.

Recording and understanding the nocturnal movements of black rhino will
provide researchers and managers with a more complete view of black rhino
movements, their use of the landscape and their foraging ecology.

Pooling location or foraging data of black rhino individuals in a population will
cause errors, whereby the average does not reflect the actual use of any, or many,
individuals.

One aspect which is evident from all the research | completed was the importance
of monitoring not only the population, but specific individuals within the
population too. Understanding the individual and specific decisions made by
different members of a population will allow managers to predict individual and
population level responses (e.g. fitness of individuals ultimately drives mortality
and birth rates).

Regions with road densities > 5 km/km? should be excluded from estimates of
available area for black rhino.

Black rhino reintroductions:
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a. Should occur as quickly as possible, ideally within 6 days, but never over
more than 25 days.

b. Adult males should be released in spatially distinct areas (the size of an
estimated home range for the region) such that they have access to a water
resource which is distant (>1 km) from a fence and which they do not need
to share with other adult males.

c. Females should not be released in areas close to busy roads.

d. To accelerate the formation of social bonds it may be relevant to capture

and reintroduce established clusters of black rhino into new areas.

I have identified a number of gaps in our understanding of black rhino ecology and

conservation. Namely:

We need to develop new technologies to enable researchers to understand the
nocturnal movements of rhino better. Understanding the extent to which rhino
move from their diurnal ranges would allow managers to better understand the
capacity of their reserves to support rhino, and those specific parts of the reserve
that are important to rhino. Currently there are trials on GPS devices which can be
fitted in the horn of a rhino (TramirLoc Pty. Ltd, Stellenbosch). If successful, this
will greatly advance our understanding of general and post-release rhino ecology.
Here | have shown that black rhino individuals can vary in their decisions, and
that conclusions about use at a population level do not necessarily translate to
behaviour at an individual level (Bolnick et al. 2003; this study). We are yet to
fully understand decisions made by the individual, as focus has been at the
population level (Brown et al. 2003, Ganga et al. 2005, Adcock 2006, Ganga &
Scogings 2007). Future research and management should strive to incorporate and
understand the individual, not only the population.

I was unable to evaluate interindividual niche variation differences between the
sexes of black rhino. The initial indications are that the sexes still exhibit
differences amongst themselves, meaning that the variation is not driven by sex.

A more detailed study with larger sample sizes would allow us to confirm this.
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This will hopefully provide more of indication of what is driving the variation
amongst individuals.

iv. | could not determine how rhino within a cluster all increased their habitat niche
width similarly to one another. A more detailed study on niche expansion would
give us an insight into what is driving the expansion, and how this would
influence their conservation in different areas.

v.  Throughout the study and during observations in the field, | noted very few
occurrences of black rhino and African elephant Loxodonta africana at the same
time. It could be possible that black rhino avoid elephant (Slotow et al. 2001),
which would further influence their movements across the landscape. This
warrants further research, as high densities of elephant may be negatively
influencing black rhino populations, not only from a resource perspective, but also

due to stress.

7.7. Conclusion

I have queried a number of previously accepted methodologies in the management and
study of large mammal ecology in general, with lessons I learnt about black rhino being
applicable to the conservation management of many other species. In this study I have
discovered a number of new aspects to add to our understanding of black rhino ecology.
This will require us to re-evaluate our current research methodologies, the management
of species and the scale at which we do this. This includes changing the way we perceive
and apply carrying capacity models, which are extensively used in the management of
this and many other endangered species. | was able to develop novel applications of
machine learning models to answer questions related to the ecology of black rhino and
any other species. | have shown the importance of understanding what EGVs influence an
individual’s niche use, to what degree individuals vary in this use and whether they
display temporal variations in niche use over a 24 hour period and during different
seasons. | managed to investigate post-release animal responses to EGVs, regardless of
low sample sizes and potentially confounding social factors. | was then able to add to our

understanding of settling rates of black rhino, potentially improving the reintroduction
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success of the endangered species. | identified that the amalgamation of carrying
capacity, habitat suitability and individual variation models with an added temporal
functionality would be best suited to the future conservation and management of species.
An important message from this study is that of understanding individuals within
populations and how they respond to the environment rather than averaged responses of
the population. This gives us greater insight into the biology of species, specifically the
nature of social interactions of social species and how this influences the behaviour of
individuals, and thus of populations. This information allows conservation managers to
consider social implications of interventions and management practices (Wittemyer et al.
2007). To obtain this level of understanding researchers and managers need to initiate and
maintain long-term monitoring programs to record individual behaviours and movements,
providing an insight into unique environments and the effect they have on local

populations.
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CHAPTER 1

INTRODUCTION

The identification and description of vegetation units across the landscape forms the basis
of scientifically based environmental and veld management plans and are critical first
steps in building a framework for ecosystem management planning. It provides a

structure to gain information on:
the origin and geographic distribution of vegetation communities;
the relative importance of individual communities;
the overall species composition and variability within communities; and

the relationship of vegetation units to environmental and ecological processes.

Ideally an area should be managed to be self-sustaining, while the quality and diversity of
the resources should not be allowed to decrease, as this would inevitably lead to
ecosystem degradation and lower productivity. The primary purpose of vegetation
management should be to maintain genetic diversity, and ensuring that this diversity does

not compromise the continued capacity of the area to support life.

Information on the spatial, temporal and ecological properties of the vegetation units can
lead to improved understanding, protection and management of natural resources. These
management goals can be achieved by following a policy whereby sensitive communities
are protected and existing plant species composition in the natural vegetation is
maintained. The invasion of natural vegetation by alien invader plant species should be
prevented and attempts should be made to systematically remove existing infestations.
Acceptable levels of ungulate-induced change to the vegetation should be established and
the collection of plant products should be controlled. Research should be encouraged to
determine the dynamics of the plant communities and management strategies (e.g. fire)

needed for their long term survival.
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The aim of this report is therefore to classify, describe and map the different plant
assemblages on Phinda Game Reserve, which could be used for vegetation management

as well as for studying plant-animal interactions.
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CHAPTER 2

STUDY AREA

Location

Phinda Game Reserve is situated south of the Mkhuze Game Reserve in northern
KwaZulu-Natal, at the southern foothills of the Lebombo Mountains. It is located
approximately between 27° 40’ S and 27° 55°S latitudes, and 32° 13” East and 32° 26’
East longitudes on the western coastal plains of Maputaland and covers approximately 21
402 ha (Figures 1 & 6). The grid references for the reserve are 2732 CA, 2732 CB, 2732
CC and 2732 CD. The reserve consists of the following farms or portions of these farms:
Harrowgate, Sutton, Ufumba, Iseme, Ntabankosi, Zuka, Tebelwane, Fagolweni, Bube,
Monte Rosa, Indabana, 1zwelihle, Umgotsha, Golweni, Humseni, Shotton and part of the

Katema Settlement and Mngobokazi area.

Climate

Rainfall

The Maputaland region forms the southerly tip of the Tropical Climate Region, which is
characterised by the coldest month (July) having a mean temperature of above 18°C.
Phinda Game Reserve lies just south of the 18°C isotherm and hence coincides roughly
with the southern boundary of Koppen's Tropical Savanna climatic type. The reserve has
a warm to hot, humid, tropical to subtropical climate with hot summers and cool to warm
winters. Tropical cyclones occur infrequently along the coast, generally from January to
March, and are often accompanied by high wind speeds and are regarded as a significant

disturbance factor in the coastal areas and hinterland. As a result of these tropical
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cyclones moving down the Mozambique Channel episodic large-scale river floods

occasionally occur.

Phinda Game Reserve lies in the summer rainfall region. The mean monthly and annual
rainfall recorded at weather stations in the area are summarised in Table 1. In general, the
mean annual rainfall varies from about 600 mm in Mkhuze Game Reserve to as high as 1
044 mm at St Lucia to the southeast and near the coast, and up to 1128 mm against the
escarpment to the west at Hlabisa. The mean annual rainfall measured at False Bay is 667
mm. This rainfall gradient significantly influences the plant assemblages within the area.
In general, the highest rainfall occurs from October to April, when more than 75% of the
annual rainfall occurs, and the lowest from June to August (Figure 2). Along the coast
there is no pronounced dry season, and the driest months still receive a fair amount of
rain. The absolute maximum annual and absolute minimum annual rainfall measured at
Makatini were 1 144 mm in 1984 and 433 mm in 1968 respectively. The absolute
maximum and minimum annual rainfall measured at St Lucia were 1987 mm in 1984 and
576 mm in 1979.

Temperature

The mean annual temperature for Mkhuze is 21.8°C (Table 2) with the mean monthly
temperature for January 25.5°C and for July 16.4°C. The absolute maximum and
minimum temperatures measured at Makatini were 44.2 and 0.1°C respectively (Table 3)
while the absolute minimum measured at Hlabisa is 3.3°C. Frost is therefore a rare

occurrence in the area.

Wind, humidity, dew and evapotranspiration
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Northeasterly and southwesterly winds predominate in the coastal plain, with the rain-
bearing winds coming from the southwest. Gale-force winds are most frequent from
September to December, and wind speeds of 26 to 40 km per hour and gusts of up to 140
km per hour have been recorded. Wind speeds greater than 50 km per hour occur on

average on 12 days per year.

The air humidity is relatively high throughout the area for most of the year. The monthly
relative air humidity ranges between 79% and 88% at 08:00 and between 68% and 74%
at 14:00. The high relative air humidity coupled with high summer temperatures result in
a high discomfort index during the summer months. Dew is experienced throughout the
year on calm, windless nights and is particularly heavy during winter. The mean annual

evaporation rate is approximately 1660 mm in the interior region.

Terrain morphology

The Phinda Game Reserve lies at the southwestern end of the extensive Mozambican
coastal plains. The altitude of Phinda ranges from 50 m in the north-eastern to 340 m in
the south-western corner. To the north in the Mkhuze Game Reserve, the height above

sea level rises to 474 m at Khombe peak in the Lebombo Mountains.

Hydrology

Phinda Game Reserve is drained by a number of drainage lines towards the Mkhuze and
Mzunduzi Rivers in the north (outside the reserve); the Mhlosinga River in the south and
tributaries of the Mhlosinga River such as the Munywane and Mungwana Rivers (Figure
1). The Mhlosinga River and its tributaries cover the major portion of the catchment in
the reserve. The rivers are seasonal, flowing during the wet summer months, and are

reduced to isolated pools and subterranean seepage through bed sediments in winter.
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Geology

The geology of Phinda Game Reserve consists of the following (see Figure 3):

Rhyodacite, rhyolite and flow breccia of the Jozini Formation, Lebombo Group;
Rhyolitic lava and pyroclastic rocks of the Fenda Formation;

Rhyolitic tuff and perlite of the Nxwala Formation; rhyolite of the Ntabankosi

Suite;

Amygdaloidal trachybasalt and trachyandesite of the Mpilo Formation, Lebombo
Group;

Conglomerate, siltstone and sandstone of the Makatini Formation, Zululand

Group;

Marine glauconitic siltstone with shelly and concretionary horizons from the
Mzinene Formation, Zululand Group;

Siltstone and sandstone of the St Lucia Formation, Zululand Group;
Syenite and microsyenite of the Bombeni Complex;

Red dune cordon sand of the Berea Formation;

Argillaceous sand of the Muzi Formation; and

Alluvium

The geological variation and the associated soils of the Phinda region, contribute a great

deal to the diversity of vegetation types in the area (see Figures 3 & 6). The Lebombo

Mountains were formed by erosion-resistant rhyolites, while weathering and erosion of

the early Cretaceous sediments at the base of the mountains resulted in a gently

undulating landform with moderate relief. The eastern coastal plain borders on the
Lebombo Mountains (continental shelf) (KZN 1999). On the coastal plain the rhyolite

and basalt are overlain by Cretaceous terrestrial and marine sediments of the Zululand

Group. These sediments comprise three formations exposed in striking north-south zones

146



parallel to the eastern foot slopes of the Lebombo Mountains. The first to be deposited
was the lower Cretaceous Makatini Formation consisting of non-marine, fluviatile coarse
sandstone and conglomerate. The overlying Mzinene Formation consists of shallow
marine silts and sands, while the St Lucia Formation near the coast is the youngest and

comprises of buff and greenish grey glaucanitic silts and fine sands.

The cretaceous sediments of the Zululand Group are overlain by the Maputaland Group
of relict sandy beach dune ridges which record a succession of depositional events related
to sea level fluctuations. The high dune cordons mark stillstands during the Mio-Pliocene
marine regressions and decrease in age from west to east. The oldest and most westerly
dune cordon occurs adjacent to the Lebombo Mountains in the Mkhuze and Phinda Game
Reserves and is probably early Pleistocene (3 million to 30 000 years ago). To the east a
younger dune ridge runs west of the Muzi Pan, east of Phinda and along the western
boundary of False Bay Park. The youngest dune ridges are probably late Pleistocene (30
000 to 10 000 years ago) and are some of the youngest formations in southern Africa
(Hobday 1976).

Land Types and soils

In contrast to the infertile soils over most of the coastal plains, weathering of rhyolite and
basalt on the Lebombo Mountains has produced relatively fertile soils with high clay
contents. Soil derived from the rhyolite and basalt to the west was deposited on the
coastal plain below as clayey but shallow lithosols. To the east there is a belt of rich clay-
loam soils formed primarily in situ on the Cretaceous strata. These vary from red loamy
to clayey soils in the higher-lying areas and black vertisols on lower-lying valley

bottoms.

Land types are areas with a uniform climate, terrain form and soil pattern (see Figure 4).

A terrain unit is any part of the land surface with homogeneous form and slope. Terrain
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unit 1 represents a crest, 2 = scarp, 3 = midslope, 4 = footslope and 5 = valley bottom.

The following land types are found in Phinda Game Reserve:
Land Types Ae, Ah and Ai;
Land Types Db and Dc;
Land Type Ea; and
Land Type Ib

Land Types Ae, Ah and Ai refer to yellow and red soils without water tables and have
one or more of the following soil forms: Inanda, Kranskop, Magwa, Hutton, Griffin and
Clovelly.

Land Type Ae is characterised by red, high base status soils more than 300 mm deep (no
dunes). A small area on the plains in the north of Phinda, and an area to the east of the
reserve fall within this land type (Figure 4).

Land Type Ah is characterised by red and yellow, high base status soils with less than
15% clay content. A small sandy area in the northwestern part of Phinda Game Reserve
falls within this Land Type (Figure 4). Terrain units 1 and 3 are the main units found in
Land Type Ah and cover 80% and 20% of the area respectively. The slopes vary from 1%
to 3% in terrain unit 1, but are up to 10% in terrain unit 3. The dominant soil forms
include Bonheim, Arcadia, Glengazi and Rensburg. The soils are deeper than 1 200 mm
and rocks are absent in this land type. The percentage clay of the soils ranges from 0 -
15% in the A- and B-horizons. These soils are classified as medium textured sand to

loamy sand.

Land Type Ai is characterised by yellow freely drained sandy soils with a high base
status. This land type occurs over most of the plains in the north and east of the reserve
(Figure 4).
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Land Types Db and Dc accommodate land where duplex soils are dominant. Upland
soils that display duplex character include Estcourt, Sterkspruit, Swartland, Valsrivier and

Kroonstad soil forms.

Land Type Db is characterised by duplex soils that cover more than 50% of the area, but
the B-horizons are not red. In the Phinda Game Reserve, this land type is particularly
prominent on the borders of sandy areas and near low-lying drainage lines. Small areas in
the northeastern, eastern and southeastern parts of Phinda Game Reserve fall within this

land type (Figure 4).

Land Type Dc is characterised by duplex soils that cover more than 50% of that land
type. In addition, one or more vertic, melanic, red-structured diagnostic horizons occur. A
small area in the southern part of the reserve along the Mhlosinga River falls within this
land type (Figure 4). Terrain units 3 and 5 are found in this land type and cover 50% each
of the landscape. The slopes vary from 1% to 3%. The soils are from 500 mm to 1 200
mm deep and rocks are mostly absent. The percentage clay in the soils ranges from 30 -
45% in the A-horizon and 40 - 65% in the B-horizon. These soils are classified as
medium textured sandy clay to clay soils. In some areas deep sandy, sandy loam and
sandy clay-loam soils occur with clay contents varying from 5% to 35%.

Land Type Ea covers land with dark coloured or red soils with a high base status,
usually clayey, more than half of which is covered by soil forms with vertic, melanic and
red structured diagnostic horizons. The basaltic plains in the southwest of the reserve fall

within this land type (Figure 4).

Terrain units 4 and 5 are found in this land type and cover approximately 80% and 20%
of the area respectively. The slopes vary from 1% to 3%. The dominant soil forms

include Bonheim, Arcadia, Glengazi and Rensburg. The soils are deeper than 600 mm
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and rocks are mostly absent. The percentage clay in the soils varies from 45 - 65% in the

A- and B-horizons. These soils are classified as medium textured sandy clay to clay soils.

Land Type Ib consists of exposed rocky areas (covering 60% to 80% of the area), with
miscellaneous soils. This land type covers the foothills of the Lebombo Mountains in the

southwest and south-central areas of Phinda Game Reserve (Figure 4).
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CHAPTER 3

METHODS

Two separate data sets, each compiled by a different researcher, were used for the
vegetation classification. Unfortunately no stratification of aerial photographs was made
prior to conducting the field surveys to ensure optimal placement of sampling plots. For
proper and efficient surveying, an ecological stratification of, for example, 1: 50 000
scale stereo aerial photographs on the basis of terrain morphology and vegetation cover
should be made beforehand. This stratification should be used to determine the position
and number of sample plots, and is the basis for identifying habitat types and compiling a

vegetation map of the area.

Only the woody stratum was sampled during the surveys. Each species was allocated an
‘importance value’ which was based on cover and/or density. An assessment of the
habitat, e.g. topography, geology, rock cover, soil texture, soil depth, slope and aspect
were made at each sampling plot of one of the two data sets (163 sample plots). No
habitat information is available for the second data set. As a result of the absence of
information on the herbaceous stratum (grasses and forbs), the classification of the
vegetation units for the Phinda Game Reserve (Table 4 — excluded from this copy due to
size of table) produced in this report is preliminary and is valid only for the woody
stratum. For a true classification of the vegetation knowledge of the herbaceous stratum is

essential.

The classification of the vegetation data was done with the TURBOVEG and
MEGATAB computer programmes (Table 4). The description of the plant communities
includes the tree and shrub layers. All plant species recorded in the sample plots are listed
in Table 4. The descriptions of the plant communities are based partially on Table 4 as
well as descriptions of other vegetation types identified physiognomically during field
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visits. The environmental description of each plant community is based on the
environmental data that was recorded when the woody vegetation was sampled by the
researchers concerned (Table 5). The table matrix consists of mean values for each of the
vegetation types.

A field visit was undertaken to finalise the vegetation map. To create a Geographical
Information System (GIS) ready map, the vegetation map will be classified into
‘intelligent’ GIS classes by a semi-automatic classification in a digital image processing
system environment. Refinement of the geo-referencing will be done by using global
positioning system (GPS) points on conspicuous localities such as fence corners, pans
and lodges. The final raster map will be vectorised and boundary smoothing applied on
the vector lines. The main roads were recorded by GIS and will be included in the final
vegetation map. Other visible roads will be digitised ‘on screen’ using maps and aerial

photographs as reference.

152



CHAPTER 4

VEGETATION

The general vegetation of the area was classified by Acocks (1953, 1988) as (1) Typical
Coast-belt Forest and Zululand Palmveld (under the Coastal Forest and Thornveld
vegetation types), and (2) Lowveld, which forms part of the Tropical Bush and Savanna
Types. According to Low & Rebelo (1998) the vegetation of Maputaland is part of both
the Savanna and Forest Biomes. Savanna vegetation types occurring in the area are Sweet
Lowveld Bushveld, Natal Lowveld Bushveld and Coastal Bushveld-Grassland. The Sand
Forest belongs to the Forest Biome. The Sand Forests that occur in the reserve are
considered endemic to Maputaland. Hunter (2000) distinguished nine vegetation types in

Phinda Game Reserve, i.e.
e Closed mixed bushveld
e Open mixed bushveld
e Closed red sand bushveld
e Open red sand bushveld
e Palmveld
e Grassland
e Sand Forest
e Dry mountain bushveld
e Riparian.

Mucina et al. (2005) distinguishes nine vegetation types in the Phinda Game Reserve

(see Figure 5), i.e.
e Zululand Lowveld

e Southern Lebombo Bushveld
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e Western Maputaland Clay Bushveld
e Maputaland Coastal Belt

e Makatini Clay Thicket

e Sand Forest

e Subtropical Salt Pan

e Lowveld Riverine Forest

e Subtropical freshwater wetlands

In the present study, the vegetation of the Phinda Game Reserve has been classified into
25 plant communities. The total area covered by the reserve is approximately 21 402 ha.
However, it should be noted that grasses and most of the non-grassy herbaceous plant
species were not included in the original surveys and were therefore not part of the data
sets used in the classification. The distribution of the main plant communities found in

the study area is depicted in the vegetation map (Figure 6).

1. Acacia nilotica open shrub savanna

This open to dense shrub savanna occurs on dark clayey soils on relatively flat terrain in
the north-eastern, central and western part of the reserve, west of the main road (Figures 6
& 7). It covers 184 ha (0.9% of the total area). Acacia nilotica is sometimes the dominant
species occurring on abandoned fields. It falls within Land Types Db113 and Ah29
(Figure 4). The sandy loam to sandy clay soils are derived from siltstone (Figure 3).
Stones and rocks are absent from the soil surface (Table 5). Rill erosion occurs locally.
Fire is a rare event and herbivory is light.

There are no diagnostic species for this community and the community is generally very
species poor (Table 4). The most common woody species is Acacia nilotica, while other

shrub species such as Dichrostachys cinerea, Gymnosporia senegalensis and Euclea

154



divinorum occur locally in low numbers. Perennial semi-woody and herbaceous species
include Solanum incanum, Sida sp. and Tephrosia sp. Grasses and forbs cover on average

63% and 9% of the area respectively.

2. Acacia nilotica-Dichrostachys cinerea open shrub savanna

This open shrubland occurs on relatively flat terrain along drainage lines and on
abandoned fields in the central and southern part of the reserve (Figures 6 & 8). It covers
1695 ha (7.9% of the total area). It falls within various land types, notably the Ea and Db
land types (Figure 4). The fine sandy loam to sandy clay soils are derived from siltstone,
rhyolite and basalt (Figure 3). Stones and rocks are mostly absent from the soil surface
(Table 5). The community has a low woody vegetation cover and is exposed to wind. Rill

erosion occurs locally. Fire is a rare event and herbivory is light.

There are no diagnostic species for this community and the community is generally
species poor (Table 4). The common species of species groups 18 and 19 (Table 4)
characterise this vegetation type. Acacia nilotica and Dichrostachys cinerea are the most
common species together with the trees Ziziphus mucronata, Berchemia zeyheri,
Spirostachys africana, Sclerocarya birrea and Dovyalis caffra. The most prominent
shrub species include Euclea divinorum, Gymnosporia senegalensis, Rhus quenzii,
Coddia rudis and Euclea racemosa. Grasses and forbs cover on average 63% and 9% of
the area respectively.

3. Acacia nilotica grasslands on clay

These grasslands occur on flat terrain in the north-east and south-west of the reserve on
dark clayey soils (Figures 6 & 9). It falls within Land Types Db113 and Ea48 (Figure 4).
It covers 448 ha (2.1% of the total area). Stones and rocks are absent from the soil surface
(Table 5). A large number of small flattish termitaria occur in this community. The sandy
clay-loam to clayey soils are derived from rhyolite in the south-west and alluvial
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sediments in the north-east. The soil substrate is occasionally moist, but mostly dry. Rill

erosion occurs locally. Fire is a rare event and herbivory is light.

There are no diagnostic species for this community and the community is generally very
species poor (Table 4). The woody layer is poorly developed with the tree layer almost
absent. The shrubs are small with Acacia nilotica the dominant species. Other shrub
species such as Hyphaene coriacea, Dichrostachys cinerea, Gymnosporia senegalensis,
Acacia nilotica, Acacia borleae and Euclea divinorum occur locally in low numbers. The
grasses cover more than 80% of the area and include species such as Themeda triandra,
Sporobolus africanus, Bothriochloa insculpta, Ischaemum afrum, Digitaria eriantha,

Eustachys paspaloides and Setaria incrassata.

4. Acacia nilotica-Hyphaene coriacea open savanna of drainage systems,

including pans, termitaria and bushclumps

This community occurs in the central and northern part of the reserve along flat open
drainage lines on the edge of the sandy plains. It is characterized by open savanna, pans
and isolated bushclumps on termitaria (Figures 6 & 10). It covers 719 ha (3.4% of the
total area). It falls within Land Types Ai9 and Db111 (Figure 4). The coarse sandy loam
to sandy clay loam soils are derived from argillaceous sand and siltstone (Figure 3). The
soil surface is lightly capped and is covered by pebbles, stones and small rocks (Table 5).
Besides the bushclumps, the community has a low woody vegetation cover and is
exposed to wind. Trampling and wash were recorded. Fire is a rare event and herbivory is

light to moderate.

The open savanna is generally species poor represented by species such as Acacia burkei,
Acacia nilotica, Ziziphus mucronata and Hyphaene coriacea, while Sclerocarya birrea,
Berchemia zeyheri, Acacia robusta and Phoenix reclinata are found locally. Other shrub
species include Coddia rudis, Dichrostachys cinerea, Euclea divinorum, Gymnosporia

buxifolia, Gymnosporia senegalensis, Croton steenkampiana, Rhus guenzii and Euclea
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racemosa (see species groups 18 and 19, Table 4). Grasses and forbs cover on average

56% and 6% of the area respectively.

The distinctive bushclumps occur mostly on old termitaria and is dominated by species
usually found along drainage lines on clayey soils and is characterized by large trees such
as Spirostachys africana, Schotia brachypetala, Balanites maughamii, Acacia robusta,
Acacia burkei, Sclerocarya birrea, Newtonia hildebrandtii, Galpinia transvaalica,
Mystroxylon aethiopicum, Sideroxylon inerme and Ziziphus mucronata. The most
common shrub species include Euclea divinorum, Schotia afra, Euclea natalensis, Euclea
racemosa, Carissa tetramera, Azima tetracantha, Rhus guenzii, Rhoicissus digitata and

Capparis tomentosa.

5. Acacia borleae open shrub savanna

This community occurs in the central and south-eastern part of the reserve on flat terrain
and gentle east facing midslopes on fine and dark sandy clay to clayey soils derived from
siltstone and rhyolitic lava (Figures 3, 6 & 11). It covers 602 ha (2.8% of the total area).
It falls within Land Types Ea48 and Db111 (Figure 4). The soils are shallow in places
and the surface is capped and covered by pebbles, stones and small rocks (Table 5). The
community has a low woody vegetation cover and is exposed to wind. Wind and gully

erosion occur locally. Fire is a rare event and herbivory is light.

Acacia borleae is the diagnostic shrub species for this vegetation type and it occurs
locally in dense stands on clayey soils (see species group 1, Table 4). This community is
generally species poor and the tree layer is poorly developed. The most prominent shrubs
include Acacia borleae, Acacia nilotica, Dichrostachys cinerea and Euclea divinorum,
while other less common shrub species such as Schotia capitata, Rhus guenzii, Acacia
karroo, Acacia luederitzii, Grewia bicolor, Hyphaene coriacea and Gymnosporia
senegalensis are locally conspicuous. The herbaceous Abutilon angulatum is found in

some localities. Grasses and forbs cover on average 65% and 2% of the area respectively.
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6. Acacia karroo open shrub savanna

This community occurs on red clayey soils in the central and south-eastern part of the
reserve on relatively flat terrain and gentle south- and east-facing midslopes (Figure 6). It
covers 795 ha (3.7% of the total area). It falls within Land Types Ea48, Db111 and
Db113 (Figure 4). The coarse sandy clay to clayey soils are derived from siltstone (Figure
4). The soil surface is strongly capped and is covered by pebbles, stones and small rocks
(Table 5). The soil substrate is mostly dry to very dry. The community has a low woody
vegetation cover and is exposed to wind erosion. Fire occurs occassionally and herbivory

is light.

This community is generally species poor and is characterised by Acacia karroo, Euclea
divinorum, Acacia nilotica, Berchemia zeyheri and Ziziphus mucronata. The shrub layer
includes prominent species such as Acacia borleae, Dichrostachys cinerea, Gymnosporia
senegalensis and Gymnosporia buxifolia. Other shrub species that occur more locally
include Euclea racemosa, Rhus guenzii, Gymnosporia buxifolia, Dovyalis caffra, Grewia
flavescens, Scutia myrtina, Kraussia floribunda and Solanum incanum. The herbaceous
Abutilon angulatum is found in some localities. Grasses and forbs cover on average 68%
and 2% of the area respectively.

7. Acacia tortilis savanna

This savanna occurs on the basaltic plains in the southwest of the reserve. It falls within
Land Type Ea56 (Figure 4). It covers 1731 ha (8.1% of the total area). The coarse sandy
clay to clayey soils are derived from basalt (Figure 4). The soil surface is capped and is
covered by pebbles, stones and small rocks (Table 5). The soil substrate is mostly dry to
very dry. The community has a low woody vegetation cover and is exposed to wind

erosion. Fire occurs occasionally and herbivory is light.
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This community is generally species poor and is dominated by the trees Acacia tortilis,
Acacia nilotica, Sclerocarya birrea and Ziziphus mucronata, while the shrub layer
includes prominent species such as Euclea divinorum, Dichrostachys cinerea and
Gymnosporia senegalensis. Other shrub species that occur more locally include Euclea
racemosa, Kraussia floribunda, Acacia karroo, Acacia borleae and Capparis tomentosa.
The alien invader Chromolaena odorata occurs locally in high densities. Grasses and

forbs cover on average 65% and 2% of the area.

8. Spirostachys africana dense woodlands on floodplains and riverbanks

This community occurs locally along the Mhlosinga River and in stands along other
drainage lines throughout the reserve (see community 23) (Figures 6 & 12). It covers
1092 ha (5.1% of the total area). It is generally found on flat, poorly drained lowlands on
clayey soils, often of alluvial origin. It falls within various land types (Figure 4). The
slopes vary from 1% to 3%. The fine- to coarse-textured sandy clay to clay soils are
derived from rhyolite, siltstone and alluvium (Figure 3). The clay content of the soils
varies from 30 - 45% in the A-horizon and 40 - 65% in the B-horizons. The soils are from
500 mm to 1200 mm deep and grit, pebbles, stones and rocks are absent (Table 5). The
community has a medium to high woody vegetation cover and is partially protected from
wind. Rill erosion is visible. Fire is mostly absent and herbivory is light to moderate.

Species group 5 is the differential species group for communities 7, 8 and 9 with
Spirostachys africana the most prominent tree species occurring in all three communities

(Table 4). Communities 7, 8 and 9 are therefore floristically closely related.

The diagnostic species for this community are Schotia brachypetala, Pappea capensis,
Ehretia rigida and Capparis tomentosa (species group 5, Table 4). The tree layer is
characterized by Spirostachys africana, Sideroxylon inerme and Berchemia zeyheri, while
Ziziphus mucronata, Acacia nilotica, Mystroxylon aethiopicum, Galpinia transvaalica,

Acacia robusta and Harpephyllum caffrum occur locally. The most prominent shrub
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species include Euclea divinorum, Rhus guenzii, Euclea racemosa, Carissa bispinosa and
Gymnosporia buxifolia, while Dovyalis longispina, Capparis tomentosa, Pyrostria
hystrix, Scutia myrtina, Cissus rotundifolius, Phyllanthus reticulatus, Acalypha glabrata,
Kraussia floribunda and Coddia rudis are less common. Grasses and forbs cover on

average 52% and 4% of the area respectively.

9. Spirostachys africana-Sideroxylon inerme woodlands

This community occurs in the southern part of the reserve (Figures 6 & 13) on flat
lowlands to gentle northeast facing footslopes (Figure 4). It covers 710 ha (3.3% of the
total area). The fine to medium-textured loamy to sandy clay soils are derived from
rhyolite and siltstone (Figure 3). The soil surface is lightly capped and is covered by
some stones and rocks (Table 5). In some areas deep sandy, sandy loam and sandy clay-
loam soils occur with clay contents ranging from 5% to 35%. The community has a
medium to high woody vegetation cover and is partially protected from wind. Gully
erosion occurs locally. Fire is a fairly rare event and herbivory is light to moderate.

The tree layer is well-developed and characterized by Spirostachys africana and
Sideroxylon inerme, while other common tree species such as Berchemia zeyheri,
Ziziphus mucronata, Acacia nilotica and Dombeya rotundifolia occur locally.
Sideroxylon inerme is locally prominent on slopes and flat bottomlands along drainage
lines in the western and south-eastern parts of the reserve. Noteworthy is the absence of
Spirostachys africana from these areas. The most prominent shrub species include Rhus
guenzii, Euclea racemosa, Euclea divinorum, Cissus rotundifolius, Phyllanthus
reticulatus, Coddia rudis, Carissa bispinosa, Kraussia floribunda, Scutia myrtina,
Pyrostria hystrix, Dovyalis longispina, Grewia flavescens, Gymnosporia buxifolia,
Gymnosporia senegalensis and Azima tetracantha. The alien invader Chromolaena
odorata occurs locally in high densities. Grasses and forbs cover on average 56% and 2%

of the area.
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10. Acacia luederitzii-Euclea divinorum thickets and dense woodlands

These thickets and woodlands occur as local stands along drainage lines in the southern
half of the reserve (Figures 6 & 12). It covers 1160 ha (5.4% of the total area). The
community is generally found on flat, poorly drained lowland on clayey soils, often of
alluvial origin and it falls within the Ea and Db land types (Figure 4). The medium to
coarse textured sandy clay to clayey soils are derived from siltstone and rhyolite (Figure
3). The soil surface is lightly capped and is covered by grit, pebbles, stones and small
rocks (Table 5). The community has a medium to high woody vegetation cover and is
partially protected from wind. Rill erosion is visible. Fire is a fairly rare event and

herbivory is moderate.

This woodland is species rich in comparison to communities 1 to 5. The diagnostic
species include Cissus rotundifolius, Rhoicissus tridentata, Phyllanthus reticulatus and
Dombeya rotundifolia. The tree layer is characterized by Acacia luederitzii, Berchemia
zeyheri, Ziziphus mucronata and Dombeya rotundifolia. The trees Acacia nilotica,
Spirostachys africana, Balanites maughamii, Euphorbia cooperi, Schotia brachypetala,
Galpinia transvaalica, Mystroxylon aethiopicum, Elaeodendron transvaalense, Olea
europaea subsp. africana, Strychnos spinosa and Sideroxylon inerme occur locally. The
most prominent shrub species is Euclea divinorum. Other shrub species include Coddia
rudis, Rhus guenzii, Euclea racemosa, Cissus rotundifolius, Carissa bispinosa, Carissa
tetramera, Kraussia floribunda, Grewia flavescens, Gymnosporia buxifolia,
Gymnosporia senegalensis, Capparis tomentosa, Ximenia americana, Phyllanthus
reticulatus, Pyrostria hystrix, Scutia myrtina, Cissus rotundifolia and Azima tetracantha.
The alien invader Chromolaena odorata occurs locally in high densities. Grasses and
forbs cover on average 51% and 2% of the area.

11. Combretum apiculatum mountain bushveld
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This woodland is found in the southwest on the rhyolitic foothills of the southern
Lebombo Mountains, which rise from the coastal plain (Figures 6 & 14). It covers 2543
ha (11.9% of the total area). This community occurs on gentle northeast-facing midslopes
and falls within Land Types Ea48 and Ib133 (Figure 4). The fine sandy clay soils are
derived from rhyodacite and rhyolite (Figure 3). The soil surface is moderately capped
and is covered by grit, pebbles, stones and rocks (Table 5). The community has a low to
moderate woody vegetation cover and is exposed to wind and gully erosion. Fire is a
fairly regular event and herbivory is light.

The diagnostic species for this vegetation type is Combretum apiculatum (Table 4). The
community is generally species poor and besides the dominant Combretum apiculatum,
other tree species include Ziziphus mucronata, Acacia burkei, Dombeya rotundifolia,
Ozoroa paniculata, Peltophorum africanum, Sclerocarya birrea, Combretum molle,
Pappea capensis, Galpinia transvaalica, Acacia nilotica and Aloe spectabilis. The shrub
layer is represented by a dense cover of Dichrostachys cinerea, while less common
species include Euclea divinorum, Euclea racemosa, Rhus guenzii, Gymnosporia
senegalensis, Gymnosporia buxifolia, Ozoroa engleri and Solanum incanum. Grasses and

forbs cover on average 89% and 1% of the area respectively.

12.  Ziziphus mucronata-Euclea divinorum dense bushveld on west, south-west

and south-facing slopes

This dense bushveld is found on rhyolite on south-west and south-facing slopes with
isolated patches of forest where local conditions are sufficiently moist (Figures 6 & 15).
It covers 305 ha (1.4% of the total area).

The most prominent species include the trees Ziziphus mucronata, Berchemia zeyheri,
Sideroxylon inerme, Ficus ingens, Ekebergia capensis, Acacia burkei, Sclerocarya

birrea, Combretum kraussii, Aloe spectabilis and the shrubs Euclea divinorum, Euclea
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racemosa, Pavetta edentula, Kraussia floribunda, Zanthoxylum capense, Diospyros
lycioides, Grewia flavescens, Catunaregam spinosa, Gymnosporia buxifolia, Rhoicissus

tridentata, Coddia rudis, Acacia kraussiana and Cissus rotundifolia.

13.  Combretum apiculatum open savanna and grasslands

This community occurs on the hills and slopes in the west and falls within Land Type
Db111 and Ea48 (Figures 4, 6 & 16). It covers 849 ha (4.0% of the total area). The fine
sandy clay soils are derived from rhyolite, rhyolitic lava and pyroclastic rocks (Figure 3).
The soil surface is moderately capped and is covered by grit, pebbles, stones and rocks
(Table 5). The community is exposed to wind and gully erosion. Fire is a fairly regular

event and herbivory is light.

This open savanna consists of a mosaic of grassland and isolated patches of woodland on
rocky outcrops. The community is generally species poor and besides Combretum
apiculatum, other tree species include Ziziphus mucronata, Acacia burkei, Pavetta
edentula, Sclerocarya birrea, Ficus stuhlmannii, Ficus abutilifolia and Acacia nilotica.
The shrub layer is represented by Dichrostachys cinerea, Euclea divinorum, Rhus
guenzii, Rhus gracillima, Gymnosporia senegalensis and Gymnosporia buxifolia. Aloe
spectabilis are locally common. The grass layer is characterized by species such as
Hyperthelia dissoluta, Themeda triandra and Bothriochloa insculpta. Grasses and forbs

cover on average 89% and 1% of the area respectively.

14. Terminalia sericea bushveld and woodlands

Communities 13, 14 and 15 are floristically related because they share species such as
Terminalia sericea, Hyphaene coriacea, Combretum molle and Strychnos
madagascariensis (Table 4). Community 14 covers 1858 ha (8.7% of the total area).
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This community occurs on pallid sands on the plains and gentle north-facing slopes in the
north (Figures 6 & 17) and falls within Land Type Ai9, which is characterised by yellow
freely drained fine sandy soils with a high base status (Figures 3 & 4). Pebbles, stones
and rocks are absent from the soil surface (Table 5). The soil substrate is mostly dry. The
community has a medium woody vegetation cover and is partially protected from wind.

Sheet erosion occurs locally. Fire is a fairly rare event and herbivory is light to moderate.

The tree layer is characterized by locally common tree species such as Terminalia
sericea, Combretum molle, Brachylaena discolor, Strychnos madagascariensis,
Strychnos spinosa, Acacia burkei, Ziziphus mucronata, Sclerocarya birrea and
Mystroxylon aethiopicum. The most prominent shrubs include Rhus guenzii, Dalbergia
obovata, Grewia monticola, Schotia capitata, Coddia rudis, Dichrostachys cinerea,
Gymnosporia senegalensis and Euclea divinorum. Grasses and forbs cover on average

52% and 3% of the area respectively.

15.  Terminalia sericea-Hyphaene coriacea bushveld

This palmveld occurs in different places on the deep whitish and fine sandy soils on the
plains in the north, north-east and east of the reserve (Figures 6 & 18). It covers 576 ha
(2.7% of the total area). It falls within Land Type Ai9 which is characterised by freely
drained sandy soils with a high base status (Figures 3 & 4). Pebbles, stones and rocks are
absent from the soil surface (Table 5). The soil substrate is mostly dry. The community
has a medium woody vegetation cover and is partially protected from wind. Sheet erosion

occurs locally. Fire is a fairly rare event and herbivory is light to moderate.

The tree layer is characterized by Terminalia sericea and dense stands of Hyphaene
coriacea. Other tree species include Combretum molle, Strychnos madagascariensis,
Trichilia emetica, Euphorbia ingens and Strychnos spinosa. The most prominent shrub
species include Catunaregam spinosa, Zanthoxylum capense, Coddia rudis, Euclea

divinorum, Euclea natalensis, Dichrostachys cinerea, Acacia nilotica and Gymnosporia
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senegalensis. The thatch grass Hyperthelia dissoluta is locally prominent.

16.  Terminalia sericea-Dichrostachys cinerea old fields and other disturbed areas
(open woodlands)

This community occurs in the northern half of the reserve (Figures 6 & 19) on old fields
and in areas where partial bush clearing occurred. It falls within Land Type Ai9, which is
characterised by deep whitish to yellow freely drained fine sandy loam soils with a high
base status (Figures 3 & 4). It covers 446 ha (2.1% of the total area). Pebbles, stones and
rocks are absent from the soil surface (Table 5). The soil substrate is mostly dry to very
dry. The community has a low to moderate woody vegetation cover and is partially
exposed to wind. Fire is an occasional event and herbivory is light to moderate.

Prominent tree species include Terminalia serice, Strychnos spinosa, Combretum molle,
Sclerocarya birrea, Acacia burkei, Brachylaena discolor, Pteleopsis myrtifolia and
Strychnos madagascariensis. The palm Hyphaene coriacea is prominent locally. The
common shrub species include Dichrostachys cinerea, Catunaregam spinosa, Euclea
divinorum, Rhus guenzii, Croton steenkampiana, Euclea natalensis, Grewia micrantha,
Euclea crispa, Schotia capitata, Mundulea sericea, Grewia caffra, Rhoicissus digitata
and Gymnosporia senegalensis. The dwarf shrub Helichrysum kraussii is a dominant
species of these areas. Grasses and forbs cover on average 47% and 1% of the area
respectively.

17. Pteleopsis myrtifolia open to dense bushveld/woodland

Communities 16 and 17 are related to Sand Forest proper (community 18) through
sharing species such as Monadenium caffra, Toddaliopsis caffra and Salacia leptophylla
(Table 4). Community 17 covers 2333 (10.9% of the total area).
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This dense woodland occurs on the sandy lowland plains in the central-northern part of
the reserve. It surrounds many of the dense stands of Sand Forest (Figure 6) and falls
within Land Type Ai9 that is characterised by yellow, freely drained coarse sandy loam
soils with a high base status (Figures 3 & 4). Pebbles, stones and rocks are absent from
the soil surface (Table 5). The soil substrate is mostly dry to very dry. The community
has a high woody vegetation cover and is partially to fully protected from wind. Rill
erosion occurs locally in this community. Fire is virtually absent from this area and

herbivory is moderate.

This woodland is species rich in comparison to the other communities found in Phinda
Game Reserve. The extensive list of diagnostic species include species such as
Hymenocardia ulmoides, Balanites maughamii, Tricalysia capensis, Landolphia Kirkii
and Tricalysia lanceolata (see species group 13, Table 4). Of note is the absence of
Terminalia sericea and Hyphaena coriacea (see communities 10, 11 and 12 and species
group 12 (Table 4).

The dominant tree species include species such as Pteleopsis myrtifolia, Strychnos
spinosa, Balanites maughamii, Combretum molle, Dialium schlechteri, Mystroxylon
aethiopicum, Commiphora neglecta, Strychnos spinosa, Brachylaena discolor, Acacia
burkei, Maerua cafra and Strychnos madagascariensis. The shrub layer is characterised
by Hymenocardia ulmoides, Salacia leptophylla, Hypericum revolutum, Tricalysia
capensis, Tricalysia lanceolata, Rhus guenzii, Landolphia kirkii, Euclea divinorum,
Uvaria caffra, Vitex ferruginea, Carissa tetramera, Ochna arborea, Dalbergia nitidula,
Canthium setiflorum, Croton steenkampiana, Zanthoxylum capense and Catunaregam

spinosa.

Sand Forest species (community 18) present in this community include Monadenium
caffra, Uvaria caffra, Salacia leptophylla, Toddaliopsis bremekampii, Rhoicissus
digitata, Strychnos henningsii, Croton pseudopulchellus, Croton steenkampianus and
Wrightia natalensis (see species group 22, Table 4). Grasses and forbs cover on average
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19% and 6% of the area respectively.

18. Dialium schlechteri woodland

This woodland is related to communities 16 and 18 through sharing species from species
group 22. It is particularly related to the Sand Forest community (community 18) (Table
4).

This community occurs locally in the north of the reserve in association with Sand Forest
patches (Figure 6). It covers 285 ha (1.3% of the total area). It falls within Land Type Ai9
which is characterised by yellow, freely drained coarse sandy loam soils with a high base
status (Figure 4). Pebbles, stones and rocks are absent (Table 5). The soil substrate is
mostly dry to very dry. The community has a high woody vegetation cover and is
partially to fully protected from wind. Rill erosion occurs locally in this community. Fire

is virtually absent from this habitat and herbivory is moderate.

The diagnostic species for this community include Erythrophleum lasiantum, Drypetes
natalensis, Croton sylvaticus and Tricalysia sonderi (see species group 20, Table 4). The
most common tree species found in this community are Dialium schlechteri, Pteleopsis
myrtifolia, Cleistanthus schlechteri, Drypetes natalensis, Erythrophleum lasiantum,
Cryptocarya woodii and Strychnos decussata. The shrub layer is characterized by Croton
sylvaticus, Tricalysia sonderiana, Toddaliopsis bremekampii, Dovyalis caffra and Cola

greenwayi. Salacia leptophylla, Grewia caffra and Blighia unijugata are locally common.

19. Drypetes arguta Sand Forest

This vegetation type is also called the Licuati Sand Forest (Mucina et al. 2005). Sand
Forest is a type of dry forest and is best developed on the north-south trending dune
cordons in the hinterland of the coastal plains of Maputaland where the water table is

deep. The soils developed in situ from the relatively homogeneous, grey, silicaceous,
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aeolian sands and are highly leached (dystrophic) and relatively acidic. Structurally this

forest is from 5 to 12 m tall and forms dense vegetation with different strata.

The Sand Forests occur as distinct stands on the sandy plains in the central, northern and
eastern parts of the reserve (Figures 5, 6 & 20). It covers 509 ha (2.4% of the total area).
They fall within Land Type Ai9 which is characterised by yellow, freely drained coarse
sandy loam soils with a high base status (Figures 3 & 4). No pebbles, stones and rocks
occur on the soil surface (Table 5). The soil substrate is occasionally moist but mostly
dry. The community has a high woody vegetation cover and is fully protected from wind.

Fire is rare in this community and herbivory is light to moderate.

The differential species include Cola greenwayi, Salacia leptophylla, Drypetes arguta,
Newtonia hildebrandtii, Toddaliopsis bremekampii and Uvaria caffra (see species groups
21 and 22, Table 4). The dominant tree species include Drypetes arguta, Newtonia
hildebrandtii, Cleistanthus schlechteri, Wrightia natalensis and Strychnos henningsii.
The shrub layer is represented by Uvaria caffra, Salacia leptophylla, Toddaliopsis
bremekampii, Cola greenwayii, Croton steenkampiana, Hyperacanthus amoenus and
Vitex ferruginea. Grasses and forbs cover on average 2% and 3% of the area respectively.

20.  Thatch grass (Hyperthelia dissoluta) old fields

This community occurs in the north of the reserve on old fields on deep sand. It is
dominated by the yellow thatch grass Hyperthelia dissoluta (Figure 6). It covers 53 ha
(0.2% of the total area). The sparse shrub layer is characterized by Sclerocarya birrea,
Dichrostachys cinerea, Acacia nilotica, Strychnos spinescens and Gymnosporia

senegalensis.

21. Palmveld (Hyphaene coriacea)

This palmveld occurs on the plains in the north-east of the reserve and is dominated by
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Hyphaene coriacea (Figures 6 & 21). Notably is the absence of Terminalia sericea in this

vegetation type. It covers 298 ha (1.4% of the total area).

22.  Floodplain grasslands

The floodplain grasslands occur in the south-east of the reserve (Figures 6 & 22). It
covers 228 ha (1.1% of the total area). Shrub species include Dichrostachys cinerea,
Azima tetracantha, Coddia rudis, Rhus guenzii and Flueggia virosa. The prominent grass
species include Panicum maximum, Echinochloa pyramidalis, Hemarthria altissima,

Echinochloa pyramidalis and Setaria incrassata.

23.  Streams (seasonal drainage lines)

The stream vegetation as mapped in Figure 6 includes the vegetation occurring on the
streambanks as well as on the floodplains next to the streams. It covers 1068 ha (5.0% of
the total area). The dominant woody species include trees such as Spirostachys africana,
Sideroxylon inerme, Acacia luederitzii, and Schotia brachypetala (see communities 4, 7,
8 and 9)

24.  Acacia xanthophloa riparian forests

These riparian forests are best developed along the Mhlosinga and Mungwana Rivers and
the lower reaches of their main tributaries (Figures 6 & 25). It covers 615 ha (2.9% of the
total area). The following description of this vegetation type is also based on description
provided by Van Rooyen (2004) for the Mkhuze and GSLWP area. Acacia xanthophloea
stands occur on floodplains that experience frequent seasonal, short-duration floods and
also on pan edges. These stands are associated with a dense cover of grasses such as
Echinochloa pyramidalis, Hemarthria altissima, Cynodon dactylon and stands of

Phragmites australis. Other prominent species include Ficus sycomorus, Rauvolfia
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caffra, Syzygium guineense, Ziziphus mucronata, Trichilia emetica and Ekebergia
capensis. Where a riverine thicket develops it is mostly composed of the shrubs Acacia
schweinfurthii, Azima tetracantha and Grewia caffra, with Ficus capreifolia and the palm
Phoenix reclinata on the river banks close to water. These species are extremely

important for stabilizing the river banks and to prevent erosion of low-lying areas.

25. Pan and dam vegetation

The vegetation on the small pans and depressions found interspersed throughout the
central and north-eastern lowlands of the reserve was not surveyed but has been mapped
(Figures 6 & 26). It covers 217 ha (1.0% of the total area). The following description of
this vegetation type is based on description provided by Van Rooyen (2004) for the
Mkhuze and GSLWP area. These wetlands differ in size and duration of standing water.
They are associated with sandy substrates or dark grey to black soils with high organic
content and with water table levels just below or at the surface. The dominant grass
species are Ischaemum fasciculatum, Leersia hexandra, Hemarthria altissima, Acroceras
macrum, Panicum meyerianum, Agrostis lachnantha, Brachiaria arrecta, Digitaria
albomarginatum and Sporobolus subtilis. Other common wetland species found in these
areas are the sedges Scirpus littoralis, Pycreus polystachyos, Fuirena obcordata, Cyperus
tenax and Eliocharis dulcis, and the forbs Centella asiatica and Hydrocotyle bonariensis.

26. Lodges, houses, airfields etc.

These areas cover approximately 84 ha (0.4% of the total area).
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Table 1 Mean monthly rainfall (mm) for different weather stations in
the vicinity of Phinda Game Reserve

St
Month Makatini Mkhuze Hlabisa Lucia Mbazwana Ndumu

Lake
January 102 64 172 153 133 151
February 112 88 142 125 140 91
March 78 30 167 124 108 70
April 42 28 61 87 76 57
May 24 31 40 60 47 22
June 14 9 16 42 40 8
July 12 16 26 41 42 19
August 15 28 28 49 40 16
September 43 50 64 69 50 54
October 59 77 120 87 83 54
November 77 80 132 114 90 93
December 83 77 160 93 86 91
Year 661 578 1128 1044 935 726
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Table 2 Mean monthly temperature ( C) for different weather stations
in the vicinity of Phinda Game Reserve

St
Month Makatini | Mkhuze | Hlabisa | Lucia | Ndumu

Lake
January 26.7 25.5 22.7 25.4 26.9
February 26 25.8 23.1 25.4 26.6
March 25.3 24.7 21.9 24.5 25.7
April 22.8 23 20.5 22.1 23.4
May 20 19.7 18.6 19.4 21.1
June 16.9 16.6 16.8 16.7 18.7
July 17.1 16.4 16.5 16.9 18.6
August 19 18.3 17.5 18.5 20.1
September 21.3 20.4 18.7 20.3 21.8
October 22.6 22.5 19.7 21.3 22.8
November 23.9 23.4 20.9 22.5 24.1
December 25.7 24.8 22.3 24.2 26
Year 22.3 21.8 19.9 21.4 23
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Table 3 Absolute maximum and minimum temperatures recorded
at different weather stations near Phinda Game Reserve

Station Maximum | Minimum
Makatini 44 .2 0.1
St Lucia 43.5 1.4
Hlabisa 40.6 3.3
Ndumu 445 6.2
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Table 5 Mean values of site characteristics for the different plant communities identified for Phinda Game Reserve

Site number 1 2 3 4.1 4.2 5 6 7 8 9 10 11* 12 13 14* 15
GPS alt 53.8 50.8 68.9 50.8 51.6 67.9 63.7 44.6 47.2 41.4 54.2 38.3 39.6 40.4
Topographic position 6.0 5.3 6.4 6.1 6.3 55 2.0 6.9 7.1 8.1 4.9 6.0 6.4 4.6
Microrelief 2.1 1.9 1.8 1.9 1.4 1.0 1.7 1.6 1.8 1.7 1.7 1.3 2.3 24
Direction (deg) 35.6 744 | 1015 | 105.6 | 167.2 | 52.4 325 80.3 69.0 | 101.1 5.2 245.0 7.0 29.0
Aspect NE E E E S NE NE E NE E N w N NE
Slope 1m drop 632.9 | 171.7 | 172.0 | 99.8 321 | 175.7 | 50.0 | 101.6 | 189.2 | 230.0 | 1177.1 41.7 | 900.0 386.7
Dom. erosion Cell pos. 2.2 1.8 2.0 1.8 1.8 1.6 2.3 1.6 1.9 1.6 2.2 2.3 1.9 1.9
Soil texture 7.2 54 6.2 5.4 5.2 6.0 7.3 55 6.1 54 6.1 6.3 4.1 4.7
Grasses canopy cover 62.8 55.6 64.6 64.7 68.3 89.4 51.7 50.9 56.2 52.9 51.8 46.7 18.9 1.6
Forbs canopy cover 8.7 6.2 4.8 1.7 2.2 11 3.7 2.0 2.1 9.0 2.8 0.7 5.9 3.0
Boulders 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Large rocks 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Small rocks 0.0 0.1 0.4 0.1 0.0 1.6 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0
Large stones 0.0 0.6 1.2 0.3 0.8 1.6 0.0 0.2 1.2 0.0 0.0 0.0 0.0 0.0
Small stones 0.0 1.4 0.2 0.3 0.8 3.6 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0
Large pebbles 0.0 14 15 0.3 0.4 3.1 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0
Small pebbles 0.0 0.6 3.2 2.2 0.0 3.1 0.0 0.4 0.0 0.7 0.0 0.0 0.0 0.0
Grit 0.0 0.3 2.3 0.6 0.0 3.1 0.0 0.9 0.0 0.7 0.0 0.0 0.0 0.0
Coarse sand 4.4 2.5 3.1 2.2 5.8 25 0.0 7.4 10.8 7.1 0.0 30.0 12.9 0.0
Fine sand 77.8 16.9 15.0 18.1 12.9 5.6 0.0 35.6 31.2 50.0 90.0 70.0 72.9 85.7
Sandy clay 17.8 59.1 24.6 30.0 21.7 51.9 | 100.0 | 26.3 48.5 271 5.0 0.0 14.3 14.3
Broken clay 0.0 0.0 15 0.0 0.0 0.0 0.0 7.4 0.0 0.0 5.0 0.0 0.0 0.0
Capped clay 0.0 17.2 46.2 45.9 57.5 25.6 0.0 13.7 7.7 14.3 0.0 0.0 0.0 0.0
Moisture status 54 5.7 5.4 6.3 6.1 5.3 5.7 5.6 5.2 5.3 6.0 6.3 5.9 5.6
Shading 11.9 11.6 12.3 11.8 12.3 12.4 10.7 9.1 8.8 7.6 9.5 7.7 4.0 2.3
Protection from wind 2.9 2.4 2.9 2.6 2.9 3.0 2.7 2.3 2.2 2.0 2.3 1.7 1.6 1.0
Erosion type 21 7.3 4.6 4.9 6.0 3.8 0.0 6.0 3.6 4.6 1.0 5.7 1.9 0.9
Erosion intensity 0.2 0.7 0.9 0.8 0.9 0.5 0.0 1.0 0.5 1.1 0.2 0.7 0.3 0.0
Deposition type 0.7 1.7 2.0 2.4 3.0 1.9 0.3 1.4 1.1 1.9 0.5 2.3 0.6 0.6
Deposition intensity 0.4 0.8 0.9 0.7 0.8 0.6 0.3 0.6 0.4 0.6 0.2 1.0 0.1 0.3
Indications of fire 0.4 0.7 0.7 1.2 1.3 0.8 0.0 0.5 0.5 0.6 0.3 1.3 0.0 0.0
Intensity of herbivory 1.3 1.7 1.3 1.4 1.2 1.0 1.3 1.9 1.5 1.4 1.1 1.3 1.6 1.1

*Community 11 - related to communities 10 and 12

*Community 14 related to community 15
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Figure 1 Location map of Phinda Game Reserve
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Figure 3 Geology map of Phinda Game Reserve
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Figure 4 Land Types of Phinda Game Reserve
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Figure 5 Vegetation of Phinda Game Reserve according to Mucina et al. (2005)
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Figure 6 Final vegetation types on Phinda Game Reserve.
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Figure 7 Acacia nilotica shrub savanna (community 1)

Figure 8 Acacia nilotica-Dichrostachys cinerea open shrub savanna (community 2)
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Figure 9 Acacia nilotica grasslands on clayey soils (community 3)

Figure 10 Acacia nilotica-Hyphaene coriacea pan systems and bushclumps on
termitaria (community 4)
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Figure 11 Acacia borleae open shrub savanna (community 5)

Figure 12 Spirostachys africana dense woodlands (community 8) along the drainage
line with Acacia luederitzii-Euclea divinorum dense thickets and woodland
(community 10) on the floodplains
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Figure 13 Spirostachys africana-Sideroxylon inerme woodlands (community 9)

Figure 14 Combretum apiculatum mountain bushveld (community 11)
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Figure 15 Ziziphus mucronata-Euclea divinorum dense bushveld on SW-facing
slopes (on left of picture) (community 12)

Figure 16 Combretum apiculatum open savanna and grasslands on the right
(community 13)
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Figure 17 Terminalia sericea bushveld and woodlands (community 14)

Figure 18 Terminalia sericea-Hyphaene coriacea bushveld (community 15)
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Figure 19 Terminalia sericea-Dichrostachys cinerea old fields and other disturbed
areas (community 16)

Figure 20 Drypetes arguta sand forest (community 19)
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Figure 21 Palmveld (Hyphaene coriacea) (community 21)

Figure 22 Floodplain grasslands (community 22)
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Figure 23 Floodplain grasslands with Acacia xanthophloea riparian forests in the
background (communities 22 and 24)

Figure 24 One of the pans in the area
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INTRODUCTION

A report has been compiled detailing the classification, description and mapping of the vegetation
types of Phinda Game Reserve (Van Rooyen & Morgan 2007). However, a need has been
expressed for a more simplified habitat/landscape map of the reserve. The identification and
description of vegetation units across the landscape forms the basis of scientifically based
environmental and veld management plans and are critical first steps in building a framework for
ecosystem management planning as well as for studying plant-animal interactions.

Phinda Game Reserve is situated south of the Mkhuze Game Reserve in northern KwaZulu-
Natal, on the western coastal plains of Maputaland and southern foothills of the Lebombo

Mountains. It is located approximately between 27° 40’ S and 27° 55'S latitudes, and 32° 13’

East and 32° 26’ East longitudes and covers approximately 21 402 ha (Figure 1). The grid
references for the reserve are 2732 CA, 2732 CB, 2732 CC and 2732 CD. The reserve consists
of the following farms or portions of these farms: Harrowgate, Sutton, Ufumba, Iseme,
Ntabankosi, Zuka, Tebelwane, Fagolweni, Bube, Monte Rosa, Indabana, Izwelihle, Umgotsha,
Golweni, Humseni, Shotton and part of the Katema Settlement and Mnqobokazi area.

The aim of this second report is therefore to produce a simplified habitat map by merging
vegetation types that are closely related in terms of plant species composition and habitat
characteristics.

VEGETATION

The vegetation of the Phinda Game Reserve has originally been classified into 25 plant
communities. Based on floristic affinities and by merging related plant communities, the
vegetation of the area was then simplified into 16 habitats/landscapes, which could be used as
management units (Figure 1). The total area covered by the reserve is approximately 21 402 ha.
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Figure 1 Habitat/Landscapes Phinda Game Reserve

[ ] Acacia tortilis woodlands

[ ] Mixed Acacia broad-leaved shrubland & woodlands
[ ] Acaciaborlea shrubland

Il Srirostachys africana woodlands

[ ] Acacia luderitzii thickets & woodlands

[ ] Combretum apiculatum Lebombo open woodlands
[ ] Ziziphus mucronata bushland on slopes

[ ] Terminalia sericea woodland on pallid sands

[ ] Pteleopsis myrtifolia closed woodland

[ ] Sand forest

Il Paim veld
[ ] Old fields

[ ] Grasslands on clay soils
[ ] Floodplain grasslands
Il Riparian woodlands and forests

[ ] Wetlands
Il Buildings & airfields

4 0 4 8 Kilometers
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I. Acacia tortilis (umbrella thorn) woodlands

This savanna occurs on the plains in the southwest of the reserve and covers
approximately 3 200 ha (15 % of the total area). The coarse sandy clay to clayey soils are
derived from basalt. The soil surface is capped and is covered by pebbles, stones and
small rocks.

This community is generally species poor and is dominated by the trees Acacia tortilis,
Acacia nilotica, Sclerocarya birrea and Ziziphus mucronata, while the shrub layer
includes prominent species such as Euclea divinorum, Dichrostachys cinerea and
Gymnosporia senegalensis. Other shrub species that occur more locally include Euclea
racemosa, Kraussia floribunda, Acacia karroo, Acacia borleae and Capparis tomentosa.
The alien invader Chromolaena odorata occurs locally in high densities. Grasses and

forbs cover on average 65 % and 2 % of the area.

ii. Mixed Acacia/broad-leaved shrubland and woodland

This woodland occurs on the plains, around pans and along flat open drainage lines on
the edge of the sandy plains, on old fields and termitaria. The coarse to fine sandy loam to
dark clayey soils are derived from alluvium sediments, argillaceous sand, siltstone,
rhyolite and basalt. This shrubland and woodland covers 1 113 ha (5 % of the total area).
A large number of small flattish termitaria occur in some areas. Stones and rocks are
mostly absent from the soil surface although pebbles, stones and small rocks occur in
places.

There are no diagnostic species for this community and the community is generally very

species poor. The most common tree species are Acacia nilotica, Acacia tortilis, Acacia
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burkei, Acacia nilotica, Ziziphus mucronata, Sclerocarya birrea, Ziziphus mucronata,
Berchemia zeyheri, Spirostachys africana and Acacia robusta. The palms Hyphaene
coriacea and Phoenix reclinata are found locally. The prominent shrub species include
Dichrostachys cinerea, Gymnosporia senegalensis, Acacia borleae, Acacia karroo,
Euclea divinorum, Euclea natalensis, Rhus quenzii, Coddia rudis, Euclea divinorum,
Gymnosporia buxifolia, Croton steenkampianus, Kraussia floribunda and Euclea
racemosa. Grasses cover from 50 % to more than 80 % of the area and include species
such as Themeda triandra, Sporobolus africanus, Bothriochloa insculpta, Ischaemum
afrum, Digitaria eriantha, Eustachys paspaloides and Setaria incrassata. Forbs cover

less than 10 % of the area.

Distinctive bushclumps occur mostly on old termitaria and are dominated by species
usually found along drainage lines on clayey soils. The most common large tree species
are Spirostachys africana, Schotia brachypetala, Balanites maughamii, Acacia robusta,
Acacia burkei, Sclerocarya birrea, Newtonia hildebrandtii, Galpinia transvaalica,
Mystroxylon aethiopicum, Sideroxylon inerme and Ziziphus mucronata. The most
common shrub species include Euclea divinorum, Schotia afra, Carissa tetramera, Azima
tetracantha, Rhus guenzii, Rhoicissus digitata and Capparis tomentosa. The alien invader

Chromolaena odorata occurs locally in high densities.

iii. Acacia borleae (sticky thorn) open shrub savanna

This community occurs in the central and south-eastern part of the reserve on flat terrain

and gentle south and east facing midslopes on fine and red to dark sandy clay to clayey

197



soils derived from siltstone and rhyolitic lava. It covers 1 397 ha (6 % of the total area).
The dry soils are shallow in places and the surface is capped and covered by pebbles,
stones and small rocks.

Acacia borleae and Acacia karroo are the diagnostic shrub species for this species-poor
vegetation type and they occur locally in dense stands on clayey soils. Other woody
species of note are Euclea divinorum, Acacia nilotica, Berchemia zeyheri and Ziziphus
mucronata. The most prominent shrubs are Acacia borleae, Acacia nilotica,
Dichrostachys cinerea and Euclea divinorum. The herbaceous Abutilon angulatum is
found in some localities. Grasses and forbs cover on average 66 % and 2 % of the area

respectively.

Iv. Spirostachys africana (tamboti) woodlands

This community occurs locally on flat lowlands and along the rivers and other drainage
lines throughout the reserve. It covers 1 802 ha (8 % of the total area). It is generally
found on flat, poorly drained lowlands on fine to medium-textured loamy to clayey soils
derived from rhyolite and siltstone, often of alluvial origin. In some areas deep sandy,
sandy loam and sandy clay-loam soils occur and are locally covered by grit, pebbles,
stones and rocks.

The diagnostic species for this community are Schotia brachypetala, Pappea capensis,
Ehretia rigida, Capparis tomentosa, Cissus rotundifolia, Rhoicissus tridentata and
Phyllanthus reticulatus. The tree layer is well-developed and characterized by
Spirostachys africana, Sideroxylon inerme and Berchemia zeyheri. Sideroxylon inerme is

prominent on slopes and flat bottomlands along drainage lines in the western and south-
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eastern parts of the reserve. Noteworthy is the absence of Spirostachys africana from
these areas. The most prominent shrub species are Euclea divinorum, Rhus guenzii,
Euclea racemosa, Carissa bispinosa and Gymnosporia buxifolia. The alien invader
Chromolaena odorata occurs locally in high densities. Grasses and forbs cover on

average 54 % and 3 % of the area respectively.

V. Acacia luederitzii (false umbrella-thorn) thickets and woodlands

These thickets and woodlands occur as local stands along drainage lines in the southern
half of the reserve. It covers 1 160 ha (5.4 % of the total area). The community is
generally found on flat, poorly drained lowland on clayey soils, often of alluvial origin.
The medium to coarse textured sandy clay to clayey soils are derived from siltstone and
rhyolite. The soil surface is lightly capped and is covered by grit, pebbles, stones and
small rocks.

The tree layer is characterized by Acacia luederitzii, Berchemia zeyheri, Ziziphus
mucronata and Dombeya rotundifolia. The most prominent shrub species is Euclea
divinorum. The characteristic shrub species include Coddia rudis, Rhus guenzii, Euclea
racemosa, Cissus rotundifolia, Carissa bispinosa, Carissa tetramera, Kraussia
floribunda, Grewia flavescens, Gymnosporia buxifolia, Gymnosporia senegalensis,
Capparis tomentosa, Ximenia americana, Phyllanthus reticulatus, Pyrostria hystrix,
Scutia myrtina and Azima tetracantha. The alien invader Chromolaena odorata occurs

locally in high densities. Grasses and forbs cover on average 51 % and 2 % of the area.

Vi. Combretum apiculatum (red bushwillow) Lebombo open woodland
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This rocky open woodland is found in the southwest on the rhyolitic foothills and slopes
of the southern Lebombo Mountains, which rise from the coastal plain. It covers 3 392 ha
(16 % of the total area). The fine sandy loam to clay soils are derived from rhyolitic lava,
pyroclastic rocks, rhyodacite and rhyolite. The soil surface is moderately capped and is

covered by grit, pebbles, stones and rocks.

The diagnostic species for this vegetation type is Combretum apiculatum. This open
woodland consists of a mosaic of grassland and patches of woodland on rocky outcrops.
The community is generally species-poor and besides the dominant Combretum
apiculatum, other tree species include Ziziphus mucronata, Acacia burkei, Dombeya
rotundifolia, Ozoroa paniculosa, Peltophorum africanum, Sclerocarya birrea,
Combretum molle, Pappea capensis, Galpinia transvaalica, Acacia nilotica, Pavetta
edentula, Ficus stuhlmannii, Ficus abutilifolia and Aloe spectabilis. The shrub layer is
represented by a dense cover of Dichrostachys cinerea, while less common species are
Euclea divinorum, Euclea racemosa, Rhus guenzii, Gymnosporia senegalensis,
Gymnosporia buxifolia, Ozoroa engleri and Rhus gracillima. The grass layer is
characterized by species such as Hyperthelia dissoluta, Themeda triandra and
Bothriochloa insculpta. Grasses and forbs cover on average 89 % and 1 % of the area

respectively.

vii.  Ziziphus mucronata (buffalo thorn) bushland on slopes

This dense bushland is found on rhyolite on south-west and south-facing slopes with
isolated patches of forest where local conditions are sufficiently moist. It covers 305 ha

(1.4 % of the total area). The most prominent species include the trees Ziziphus
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mucronata, Berchemia zeyheri, Sideroxylon inerme, Ficus ingens, Ekebergia capensis,
Acacia burkei, Sclerocarya birrea, Combretum kraussii, Aloe spectabilis and the shrubs
Euclea divinorum, Euclea racemosa, Pavetta edentula, Kraussia floribunda,
Zanthoxylum capense, Diospyros lycioides, Grewia flavescens, Catunaregam spinosa,
Gymnosporia buxifolia, Rhoicissus tridentata, Coddia rudis, Acacia kraussiana and

Cissus rotundifolia.

viii.  Terminalia sericea (silver cluster-leaf) woodland on pallid sand

The characteristic species for this community are Terminalia sericea, Hyphaene
coriacea, Combretum molle and Strychnos madagascariensis. This community covers 2
880 ha (14 % of the total area). This community occurs on deep and fine pallid sands on
the plains and gentle north-facing slopes in the north. It is also found on old fields and in
areas where partial bush clearing occurred. This community is characterised by yellow
freely drained fine argillaceous sandy soils with a high base status. Pebbles, stones and

rocks are absent from the soil surface.

The diagnostic species include Terminalia sericea, Canthium spinosum, Hyphaene
coriacea, Sclerocroton integerrimum, Dalbergia obovata, Grewia monticola, Rawsonia
lucida, Psydrax obovata and Grewia caffra. The tree layer is characterized by locally
common tree species such as Terminalia sericea, Combretum molle, Brachylaena
discolor, Strychnos madagascariensis, Strychnos spinosa, Acacia burkei, Ziziphus

mucronata, Trichilia emetica, Euphorbia ingens and Sclerocarya birrea.

The most prominent shrubs are Rhus guenzii, Coddia rudis, Dichrostachys cinerea,

Croton steenkampianus, Gymnosporia senegalensis, Euclea divinorum, Euclea crispa,
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Canthium spinosum, Sclerocroton integerrimum, Schotia capitata, Mundulea sericea,
Grewia micrantha, Dovyalis caffra, Catunaregam obovata, Zanthoxylum capense,
Grewia monticola, Euclea natalensis, Acacia nilotica, Gymnosporia senegalensis and
Grewia caffra. The thatch grass Hyperthelia dissoluta is locally prominent. The dwarf
shrub Helichrysum kraussii is a dominant species of these areas. Grasses and forbs cover

on average 50 % and 2 % of the area respectively.

IX. Pteleopsis myrtifolia (stink-bushwillow) closed woodland

This closed woodland occurs on the sandy lowland plains in the central-northern part of
the reserve. It surrounds many of the dense stands of Sand Forest (community x.) and is
characterised by yellow, freely drained coarse sandy loam soils with a high base status. It
covers 2 333 (11 % of the total area). Pebbles, stones and rocks are absent from the soil

surface.

This woodland is species rich in comparison to the other communities found in Phinda
Game Reserve. The extensive list of diagnostic species includes species such as
Hymenocardia ulmoides, Balanites maughamii, Tricalysia capensis, Landolphia kirkii
and Tricalysia lanceolata. Of note is the absence of Terminalia sericea and Hyphaena
coriacea. The dominant tree species include Pteleopsis myrtifolia, Strychnos spinosa,
Balanites maughamii, Combretum molle, Dialium schlechteri, Mystroxylon aethiopicum,
Commiphora neglecta, Strychnos spinosa, Brachylaena discolor, Acacia burkei, Maerua
cafra and Strychnos madagascariensis. The shrub layer is characterised by
Hymenocardia ulmoides, Salacia leptoclada, Hypericum revolutum, Tricalysia capensis,

Tricalysia lanceolata, Rhus guenzii, Landolphia kirkii, Euclea divinorum, Uvaria caffra,
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Vitex ferruginea, Carissa tetramera, Ochna arborea, Dalbergia nitidula, Canthium

setiflorum, Croton steenkampianus, Zanthoxylum capense and Catunaregam obovata.

Sand Forest species (community x.) present in this community include Monadenium
caffra, Uvaria caffra, Salacia leptoclada, Toddaliopsis bremekampii, Rhoicissus digitata,
Strychnos henningsii, Croton pseudopulchellus, Croton steenkampianus and Wrightia

natalensis. Grasses and forbs cover on average 19 % and 6 % of the area respectively.

X. Sand forest

The Sand Forests occur as distinct stands on the sandy plains in the central, northern and
eastern parts of the reserve. It covers less than 3 % of the reserve. Sand Forest is a type of
dry forest and is best developed on the north-south trending dune cordons where the
water table is deep. The soils developed in situ from the relatively homogeneous, grey,
silicaceous, aeolian sands and are highly leached (dystrophic) and relatively acidic.
Structurally this forest is from 5 to 12 m tall and forms dense vegetation with different
strata. Open to dense woodlands occur in close association with Sand Forest patches.
These dense woodlands and sand forests cover 794 ha (4 % of the total area). It is
characterised by yellow, freely drained coarse sandy loam soils with a high base status.
Pebbles, stones and rocks are absent.

The diagnostic species for this community include Cola greenwayi, Salacia leptoclada,
Drypetes arguta, Newtonia hildebrandtii, Toddaliopsis bremekampii, Uvaria caffra,
Erythrophleum lasianthum, Drypetes natalensis, Croton sylvaticus and Tricalysia
sonderiana. The most common tree species found in this community are Drypetes arguta,

Newtonia hildebrandtii, Cleistanthus schlechteri, Wrightia natalensis, Strychnos
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henningsii, Dialium schlechteri, Pteleopsis myrtifolia, Drypetes natalensis,
Erythrophleum lasianthum, Cryptocarya woodii and Strychnos decussata. The shrub
layer is characterized by Croton sylvaticus, Tricalysia sonderiana, Toddaliopsis
bremekampii, Dovyalis caffra, Uvaria caffra, Salacia leptoclada, Cola greenwayii,
Croton steenkampianus, Hyperacanthus amoenus, Vitex ferruginea, Grewia caffra and

Blighia unijugata.

Xi. Palm veld

The ilala palm Hyphaene coriacea is prominent locally and a stand of palms is
particularly well-developed on the plains in the north-east of the reserve. Notable is the

absence of Terminalia sericea in this area. It covers 298 ha (1.4 % of the total area).

xii.  Old fields

The old fields occur locally but widespread throughout the reserve. This community is on
deep sands and are dominated by the yellow thatch grass Hyperthelia dissolute. It covers
73 ha (< 1 % of the total area). The sparse shrub layer is characterized by Sclerocarya
birrea, Dichrostachys cinerea, Acacia nilotica, Strychnos spinescens and Gymnosporia

senegalensis.

xiii.  Floodplain grasslands

The floodplain grasslands occur in the south-east of the reserve on the Mzinene-
Munywana floodplains. It covers 228 ha (1 % of the total area). Shrub species include

Dichrostachys cinerea, Azima tetracantha, Coddia rudis, Rhus guenzii and Flueggia
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virosa. The prominent grass species include Panicum maximum, Echinochloa

pyramidalis, Hemarthria altissima, Echinochloa pyramidalis and Setaria incrassata.

xiv.  Grassland on clay soils

These grasslands occur on flat terrain in the north-east of the reserve on dark sandy clay-
loam to clayey soils. It covers 443 ha (2 % of the total area). A large number of small
flattish termitaria occur in this community. Stones and rocks are absent from the soil
surface.

There are no diagnostic species for this community and the community is generally very
species poor. The woody layer is poorly developed with the tree layer almost absent. The
shrubs are small with Acacia nilotica the dominant species. Other shrub species such as
Hyphaene coriacea, Dichrostachys cinerea, Gymnosporia senegalensis, Acacia nilotica,
Acacia borleae and Euclea divinorum occur locally in low numbers. The grasses cover
more than 80% of the area and include species such as Themeda triandra, Sporobolus
africanus, Bothriochloa insculpta, Ischaemum afrum, Digitaria eriantha, Eustachys

paspaloides and Setaria incrassata.

XV. Riparian woodlands and forests

The woodlands of seasonal and perennial streams and rivers include the vegetation
occurring on the streambanks as well as on the floodplains next to the streams. The
woodlands and forests cover 1 682 ha (8 % of the total area). The dominant woody
species include Spirostachys africana, Sideroxylon inerme, Acacia luederitzii and Schotia

brachypetala. The riparian forests are best developed along the rivers and the lower
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reaches of their main tributaries. Acacia xanthophloea stands occur on floodplains that
experience frequent seasonal, short-duration floods and also on pan edges. These stands
are associated with a dense cover of grasses such as Echinochloa pyramidalis,
Hemarthria altissima, Cynodon dactylon and stands of Phragmites australis. Other
prominent species include Ficus sycomorus, Rauvolfia caffra, Syzygium guineense,
Ziziphus mucronata, Trichilia emetica and Ekebergia capensis. Where a riverine thicket
develops it is mostly composed of the shrubs Acacia schweinfurthii, Azima tetracantha
and Grewia caffra, with Ficus capreifolia and the palm Phoenix reclinata on the river
banks close to water. These species are extremely important for stabilizing the river

banks and to prevent erosion of low-lying areas.

xvi.  Wetlands

The vegetation of the dams, small pans and depressions found interspersed throughout the
central and north-eastern lowlands of the reserve was not surveyed but has been mapped.
It covers 218 ha (1 % of the total area). These wetlands differ in size and duration of
standing water. They are associated with sandy substrates or dark grey to black soils with
high organic contents and with water table levels just below or at the surface. The
dominant grass species are Ischaemum fasciculatum, Leersia hexandra, Hemarthria
altissima, Acroceras macrum, Panicum meyerianum, Agrostis lachnantha, Brachiaria
arrecta, Digitaria diversinervis and Sporobolus subtilis. Other common wetland species
found in these areas are the sedges Scirpus littoralis, Pycreus polystachyos, Fuirena
obcordata, Cyperus tenax and Eliocharis dulcis, and the forbs Centella asiatica and

Hydrocotyle bonariensis.
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