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Palaeobiogeographic reconstructions are underpinned by phylogenies, divergence times and ances-
tral area reconstructions, which together yield ancestral area chronograms that provide a basis for
proposing and testing hypotheses of dispersal and vicariance. Methods for area coding include
multi-state coding with a single character, binary coding with multiple characters and string
coding. Ancestral reconstruction methods are divided into parsimony versus Bayesian/likelihood
approaches. We compared nine methods for reconstructing ancestral areas for placental mammals.
Ambiguous reconstructions were a problem for all methods. Important differences resulted from
coding areas based on the geographical ranges of extant species versus the geographical provenance
of the oldest fossil for each lineage. Africa and South America were reconstructed as the ancestral
areas for Afrotheria and Xenarthra, respectively. Most methods reconstructed Eurasia as the ances-
tral area for Boreoeutheria, Euarchontoglires and Laurasiatheria. The coincidence of molecular
dates for the separation of Afrotheria and Xenarthra at approximately 100 Ma with the plate tec-
tonic sundering of Africa and South America hints at the importance of vicariance in the early
history of Placentalia. Dispersal has also been important including the origins of Madagascar’s
endemic mammal fauna. Further studies will benefit from increased taxon sampling and the
application of new ancestral area reconstruction methods.
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1. INTRODUCTION

Class Mammalia is impressive for its taxonomic, ecologi-
cal and morphological diversity [1]. A fundamental goal
of mammalian palaeobiogeography is to reconstruct the
underlying history of vicariant and dispersal events that
have shaped this diversity. Here, we highlight the
importance of phylogeny reconstruction, ancestral area
reconstruction and molecular dating for producing
ancestral area chronograms. We compare different
approaches for reconstructing ancestral areas, and
illustrate similarities and differences between these
approaches using a dataset for placental mammals. We
conclude with a review of selected topics in placental
mammal palaeogeography that illustrates how phyloge-
nies, ancestral area reconstructions, molecular dates
and palaeographic histories have reshaped our views on
mammalian historical biogeography. Finally, we identify
important areas for future inquiry.

2. PHYLOGENY RECONSTRUCTION

Phylogeny reconstruction begins with character data.
Large molecular datasets have yielded robust phyloge-
nies for many groups, thereby reducing the number of
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phylogenetic hypotheses that must be considered when
formulating ancestral area chronograms. The inclusion
of morphological data from fossils allows for taxono-
mically richer phylogenies, while also providing key
data points that bear on the geographical provenance
of a taxonomic group. In the words of Simpson [2],
fossils ‘are the historical documents of animal distri-
bution’. Fossils are also more difficult to place with
confidence in a phylogenetic framework owing to miss-
ing (molecular) data, and the inability of current
methods to separate homology and homoplasy with
some morphological datasets [3,4].

Maximum parsimony (MP) and maximum likeli-
hood (ML) yield a single best tree(s), whereas
Bayesian methods yield a sampling of trees from pos-
terior probability space. ML and Bayesian methods
have the advantage of incorporating models of
sequence evolution and yield trees with branch
lengths. Some ancestral area reconstruction methods,
such as those implemented in SIMMAP [5], can
take advantage of trees with branch lengths, as well
as multiple trees from posterior probability space.

Phylogeny reconstruction is usually the first step in
constructing an ancestral area chronogram, followed
by the estimation of divergence times at each of the
nodes. However, BEAST [6] allows for simultaneous
estimation of branching relationships and divergence
times. After reconstructing a phylogeny, molecular
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Figure 1. A flowchart of the approach used for incorporating different types of data, in conjunction with methods in phylogeny
reconstruction, molecular dating and ancestral area reconstruction, for inferring ancestral area chronograms and palaeobiogeo-

graphic history.

dating analyses and ancestral area reconstructions can
be performed in parallel or in series, and then
integrated to yield an ancestral area chronogram
(figure 1).

3. MOLECULAR DATING ANALYSES

Molecular clocks were introduced by Zuckerkandl &
Pauling [7], but have fallen out of favour owing to
the prevalence of lineage-specific rate variation. The
emergence of relaxed molecular clock methods has
promoted a resurgence of studies that have examined
both interordinal and intraordinal divergence times
in Mammalia [8-23]. Relaxed clock methods include
penalized likelihood approaches [24,25], and Bayesian
Markov chain Monte Carlo methods such as multidiv-
time [26], BEAST [6] and mcmctree [27]. It is useful to
compare both the results of different programs and the
results of the same program under different model and
parameter settings [28—30].

An important difference between BEAST and multi-
divtime is that BEAST allows rates to vary randomly
over lineages in a phylogeny, whereas multidivtime
assumes autocorrelated rates. In simulation studies,
BEAST performed poorly when rates were autocorre-
lated, whereas mulndivtime performed poorly when
there was uncorrelated rate variation [28]. Given
these results, Battistuzzi ez al. [28] recommended com-
posite 95% credibility intervals.

Relaxed clock methods allow for multiple calibra-
tions, including minimum and maximum constraints
on individual nodes. Multidiveime only allows for
‘hard’ constraints, whereas BEAST and mcmctree pro-
vide other options including ‘soft’ constraints that
permit specification of a given percentage (e.g. 95%)
of the normal distribution between the minimum
and maximum, with half of the remainder (e.g.
2.5%) allocated to each tail.
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4. ANCESTRAL AREA RECONSTRUCTION
Methods for reconstructing historical biogeography
include dispersalism, phylogenetic biogeography, pan-
biogeography, parsimony analysis of endemicity and
cladistic biogeography [31]. Early reconstructions of
mammalian historical biogeography were based on dis-
persalism and land bridges [2,32], and pre-date the
general acceptance of plate tectonic theory. Sub-
sequently, cladistic biogeography emphasized vicariance
as the most important factor in diversification by
discovering dichotomous area relationships (area clado-
grams) from taxon cladograms. In response to this
paradigm, which paid little regard to dispersal and
extinction, Ronquist [33] proposed dispersal—vicariance
analysis (DIVA) for reconstructing patterns of historical
biogeography [34]. DIVA infers ancestral areas by mini-
mizing the number of dispersal and extinction events.
Recent methods that build on Ronquist’s work include
Bayes-DIVA [35] and dispersal—extinction cladogenesis
(DEQC) [36,37].

A fundamental issue in ancestral area reconstruction
is area coding. Areas are usually coded to include the
entire geographical range of each species. Other options
include coding the entire area of the monophyletic clade
that is represented by the species, or the geographical
area of the oldest fossil belonging to each lineage. An
additional topic worthy of investigation is the problem
of coding geographical areas for taxa from the geological
past versus the present given that areas, as well as their
boundaries and physical relationships to each other,
can fluctuate over time. Parametric methods such as
DEC, which allow for changing dispersal probabilities
over time, provide a mechanism to accommodate the
impact of continental fragmentation and suturing on his-
torical biogeography.

Three general approaches are available for coding
areas (box 1), whether for living species, fossils or
larger monophyletic groups. The first method is
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II.

Box 1. Methods for coding areas and analysing area-coded data matrices.

1. Area coding

1. single multi-state character coding. Individual character states are non-overlapping and correspond to a single area
disadvantages: ranges are limited to a single area (character state) unless they are coded as polymorphic

2. binary character coding with multiple characters. Each binary character corresponds to the presence/absence of a taxon
in a single area

advantages: allows for the occupation of multiple areas

disadvantages: ancestral areas may receive no state assignments

3. string character coding (=polymorphism coding)

advantages: individual character states may include one or more areas

disadvantages: the number of character states becomes intractable when there are too many individual areas
Ancestral area reconstruction

1. monomorphic ancestral area reconstruction methods. These methods are used in conjunction with area data that have
been coded as a single multi-state character

a. Fitch parsimony (e.g. MACCLADE)

b. stochastic mapping (e.g. SIMMAP)

advantages: stochastic mapping allows for branch lengths and multiple trees

disadvantages: methods in this category implicitly assume that different character states (areas) are homologous to
each other, and attempt to find a single ancestral area (character state) at each node

2. polymorphic ancestral area reconstruction methods. These methods allow for ancestral areas that encompass more than
one area, and employ either binary character data for multiple characters or string character data

a. Fitch parsimony (e.g. MAcCLADE) with multiple, binary characters

b. stochastic mapping (e.g. SIMMAP) with multiple, binary characters

c. dispersal—vicariance (DIVA)

d. Bayes-DIVA

e. dispersal—extinction cladogenesis (DEC)

f. minimum area change (MAC) parsimony

advantages: all methods in this category allow for reconstructions that include multiple areas per node. Stochastic
mapping and DEC incorporate branch lengths; stochastic mapping and Bayes-DIVA allow for multiple trees
disadvantages: methods that employ multiple binary characters can result in empty ancestral area reconstructions.
Fitch parsimony, MAC parsimony and DIVA ignore branch length information. DIVA, Bayes-DIVA and DEC are

biased towards ancestral reconstructions that include numerous individual areas

single character, multi-state coding with non-overlap-
ping character states. The second method is binary
character coding with multiple characters, where
each character represents the presence or absence of
a taxon in a single area. In contrast to the first
method, this approach allows ancestral nodes to
encompass more than one area. Ancestral area recon-
structions are simply the sum of the individual area
reconstructions. A disadvantage of this approach is
that ancestral areas may receive ‘no-state’ assignments,
which imply empty ancestral areas. No-state assign-
ments are an artefact of the character independence
assumption [38]. Finally, string character coding
[37] allows individual character states to include one
or more geographical areas. Specifically, the geo-
graphical range of a species is coded as a string
denoting its presence/absence in a set of individual
areas. Ree & Smith’s [37] string character coding is
equivalent to Maddison & Maddison’s [39] poly-
morphism coding.

Ancestral reconstruction methods can be divided
into parsimony versus Bayesian/likelihood approaches
[40]. Only the latter takes advantage of branch lengths.
Another useful distinction is between methods that
reconstruct ancestral nodes as monomorphic character
states versus those that allow for range expansion and
contraction.

MP and ML methods employ discrete-state tran-
sition models, and reconstruct ancestral nodes as
monomorphic. Monomorphic methods for character
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state reconstruction assume that different character
states are homologous to each other, as is the case
for characters that pass Patterson’s [41] conjunction
test, which states that two structures that are found
in the same organism cannot be homologous. How-
ever, this test is nonsensical when applied to
geographical areas because the presence of a species
in one area does not rule out its presence in another
area.

Other ancestral range reconstruction methods have
the advantage of allowing for polymorphic ancestral
states and thereby accommodating range expansion
and contraction (box 1) [40]. Polymorphic reconstruc-
tions can be achieved using (i) monomorphic methods
with multiple, binary characters, each of which codes
for the presence/absence of a taxon in one area and
(i) polymorphic methods that allow ancestral nodes
to include one or more areas.

Fitch parsimony and stochastic mapping can be
used to reconstruct ancestral nodes for multiple
binary characters, and then summed over all character
reconstructions to obtain the complete set of areas for
each ancestral node. One difficulty is ancestral nodes
with no-state assignments. In these instances, multiple
interpretations are possible, including vicariance of an
ancestral area that was not included in the original
analysis. If there is geological evidence for formerly
contiguous areas, this information may be incorpor-
ated into ancillary characters to assist ancestral area
reconstructions.
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A B C D E F G H I J] K L MN O
A|l— 2 2 2 1 1 1 3 3 3 2 2 2 4 3
B|{2 —2 2 1 3 3 1 1 3 2 2 4 2 3
c|j2 2 —2 3 1 3 1 3 1 2 4 2 2 3
p|2 2 2 — 3 3 1 3 1 1 4 2 2 2 3
Ejf1 1 3 3 — 2 2 2 2 4 1 1 3 3 2
F|1 3 1 3 2 — 2 2 4 2 1 3 1 3 2
G|1 3 3 1 2 2 — 4 2 2 3 1 1 3 2
H|3 1 1 3 2 2 4 — 2 2 1 3 3 1 2
I1{3 1 3 1 2 4 2 2 — 2 3 1 3 1 2
J13 3 1 1 4 2 2 2 2 — 3 3 1 1 2
K{2 2 2 4 1 1 3 1 3 3 — 2 2 2 1
Lf(2 2 4 2 1 3 1 3 1 3 2 — 2 2 1
M2 4 2 2 3 1 1 3 3 1 2 2 — 2 1
N|4 2 2 2 3 3 3 1 1 1 2 2 2 — 1
o|3 3 3 3 2 2 2 2 2 2 1 1 1 1 —
A = Africa . .
B = Eurasia J = North America + South America

C = North America

D = South America

E = Africa + Eurasia

F = Africa + North America
G = Africa + South America
H = Eurasia + North America
I = Eurasia + South America

K = Africa + Eurasia + North America
L = Africa + Eurasia + South America
M = Africa + North America + South America
N = Eurasia + North America + South America

O = Africa + Eurasia + North America + South America

Figure 2. Example of a step matrix for minimum area change (MAC) parsimony. MAC parsimony assigns equal cost to all
gains and losses of an area. For example, a change in area from A (Africa) to G (Africa + South America) requires one
step (gain South America), whereas a change from A to H (Eurasia + North America) requires three steps (Africa loss, Eurasia
gain, North America gain). The step matrix is fully symmetrical.

In contrast to methods that were co-opted from
phylogenetics, DIVA [33] and DEC [36,37,42] were
developed explicitly for historical biogeographic
reconstruction. DIVA assigns no cost to widespread
ancestral areas that are subdivided by vicariance, but
assigns a cost to dispersal and local extinction
events. DIVA ignores branch lengths. DEC uses a con-
tinuous time model for geographical range evolution,
and employs string character coding to accommodate
polymorphic areas. DEC permits range expansion
through dispersal events and range contraction
through local extinction events. DEC also allows
areas of implausible distribution to be excluded,
such as those that are geographically discontinuous
[43]. DIVA and DEC are prone to reconstructing
ancestral areas that include too many individual
areas, especially towards the root of the tree. However,
both programmes have options for limiting the
number of ancestral areas.

An additional approach that we introduce is mini-
mum area change (MAC) parsimony, which uses
polymorphic character coding [39] and Sankoff optim-
ization, and can be implemented with MESQUITE [44].
MAC parsimony requires a step matrix (figure 2). In
contrast to DIVA, MAC parsimony assigns equal cost
to all gains and losses of an area, whether through dis-
persal, local extinction or vicariance. An advantage of
this approach is that it should be less prone than DIVA
to reconstructing ancestral areas that are too broad
relative to terminal taxa.

Another recent approach that builds on earlier cla-
distic biogeography methods is phylogenetic analysis
of comparing trees (PACT) [45-47]. Unlike earlier
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cladistic biogeography methods, PACT explicitly
incorporates molecular dates into general area
cladograms.

5. ANCESTRAL AREA CHRONOGRAMS AND
PALAEOGEOGRAPHY

Ancestral area chronograms are similar to ancestral area
cladograms, but additionally incorporate temporal infor-
mation into their framework. Alternate approaches for
reconstructing phylogeny, estimating divergence times
and reconstructing ancestral areas may yield different
ancestral area chronograms, each of which may be
interpreted in the context of geology-based palaeogeogra-
phical hypotheses (figure 1). Ancestral area chronograms,
in conjunction with geology-based palaeogeographical
reconstructions, provide a framework for proposing,
testing and refining palaeobiogeographic hypotheses.
Ancestral area chronograms, when interpreted in the
context of palaeogeographical hypothesis, yield insights
into dispersal, vicariance and area extinctions, all of
which are incorporated into palaeobiogeographic
hypotheses (figure 1).

Ancestral area chronograms are taxon-specific, but
ancestral area chronograms for multiple taxa that co-
occur in the same region can yield general area chron-
ograms. General area chronograms are similar to
general area cladograms, but include temporal infor-
mation that is absent from general area cladograms.
The fundamental idea behind cladistic biogeography
is that broad patterns, which are revealed through gen-
eral area cladograms, demand comprehensive causal
explanations. However, general area cladograms
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ignore temporal information and may result from
pseudo-congruence when taxonomic groups with the
same area relationships have different divergence
times, and presumably different underlying causes
[48]. Temporal information is critical for discriminat-
ing between groups that diversified during the same
time period, and therefore may have experienced the
same causal events, and groups that diversified
during different time periods and require different
causal explanations [48].

Just as there may be multiple ancestral area chro-
nograms for a taxonomic group, there may also be
multiple palaecogeographical hypotheses regarding the
history of connections of formerly connected land-
masses. For example, the ‘pan-Gondwanan’ and
‘Africa-first’ hypotheses represent alternate scenarios
for the breakup of Gondwana [49]. Both hypotheses
agree that the initial rift was between the African com-
ponent of West Gondwana (Africa, South America)
and the Indo-Madagascar component of East
Gondwana, although connections between Africa and
Indo-Madagascar were maintained via South Amer-
ica—Antarctica. Subsequent to this initial rift, the pan-
Gondwanan hypothesis [50] postulates that three vicar-
iant separations, South America from Africa, South
America from Antarctica and Antarctica from Indo-
Madagascar, all occurred during a narrow time
window (100—90 Ma). The Africa-first hypothesis, in
turn, suggests that Africa was the first Gondwanan con-
tinent to become completely separated from other
Gondwanan landmasses when it separated from
South America by approximately 100 Ma. Indo-Mada-
gascar separated from Antarctica—Australia at
approximately 130—110 Ma, but maintained subaerial
connections with Antarctica via the Kerguelen Plateau,
and possibly the Gunnerus Ridge to the west, well into
the Late Cretaceous (approx. 80 Ma). The final separ-
ation was between the Antarctica Peninsula and the tip
of South America in the Eocene.

Krause er al. [49] compared Cretaceous vertebrate
faunas from different Gondwanan landmasses, and con-
cluded that palaeontological data are most compatible
with a modified version of the Africa-first hypothesis.
Krause ez al.’s [49] work also illustrates how biogeographic
hypotheses based on fossils can be compared with
geology-based palaeogeographical hypotheses in an
arena that allows for reciprocal illumination. Thus, ances-
tral and general area chronograms provide a framework
for evaluating competing geology-based palaeogeo-
graphical reconstructions just as geology-based
palaeogeographical reconstructions provide a framework
for evaluating alternate ancestral area chronograms
(figure 1). Krause et al. [49] noted that there is no a
priori reason to assume that geological data trump
palaecontological data, or vice versa, insofar as each type
of data can be used to reveal large-scale biogeographic
patterns.

6. PLACENTAL PHYLOGENY AND A
COMPARISON OF DIFFERENT ANCESTRAL
AREA RECONSTRUCTION METHODS

Most placental orders have first fossil occurrences and
probable origins in Laurasia, but there are also orders
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with Gondwanan origins based on first fossil occur-
rences in South America (Xenarthra) or Africa (most
afrotherian  orders). Traditional morphological
phylogenies [51,52] have suggested close relationships
between Laurasian and Gondwanan orders, e.g.
Edentata (Xenarthra (Gondwanan) + Pholidota
(Laurasian)). By contrast, molecular phylogenies have
recovered three superordinal groups, Afrotheria,
Laurasiatheria and Euarchontoglires [3,53—-63], that
were not recovered on morphological trees. These
three groups, plus Xenarthra, comprise the four major
clades of placental mammals. There is also robust mol-
ecular support for Boreoeutheria (Euarchontoglires +
Laurasiatheria) [60—62,64]. This overhaul of placental
phylogeny, in conjunction with the results of molecular
dating analyses, laid the foundation for new
biogeographic hypotheses. We discuss these in §7, after
first comparing the results of different ancestral
area reconstruction methods in the remainder of
this section.

Ancestral area chronograms were reconstructed for
43 fully terrestrial placental taxa from Springer ez al.
[3]. Chiropterans and fully aquatic forms were
excluded because of their different modes of dispersal
(i.e. flight, swimming), and also because most fully
aquatic taxa inhabit areas (i.e. oceans) that are not
contained in the four-area scheme used in our analyses
(see below). Ancestral area chronograms were recon-
structed using a ML phylogram obtained with
RAxXxML [65], molecular divergence dates estimated
with BEAST [6] and ancestral areas reconstructed
with a variety of methods.

Four areas (Africa, Eurasia, North America and
South America) were recognized, and two methods
were used to code areas for terminal taxa. First,
areas were coded based on the geographical ranges of
extant species. Second, areas were coded based on
the geographical provenance of the oldest fossil for
each lineage. The step matrix that was used in MAC
parsimony analysis is shown in figure 2. Given that
the number of character states that are chosen for geo-
graphical range subdivision is arbitrary, it may be
instructive to compare the results of analyses with
coarser (e.g. Gondwana versus Laurasia) and finer
(e.g. Europe and Asia instead of Eurasia) scales for
area coding, although the analyses reported here are
confined to the four areas listed above.

We reconstructed ancestral areas using nine
methods: (i) MAC parsimony, (ii) Fitch parsimony
with multiple binary characters (FP-MBC), (iii) Fitch
parsimony with a single multi-state character (FP-
SMCQC), (iv) DIVA with no constraints on the maximum
number of areas per node, (v) DIVA with a maximum
of two areas per node (DIVA-2), (vi) DEC with no con-
straints on the maximum number of areas per node,
(vi) DEC with a maximum of two areas per node
(DEC-2), (viii) stochastic mapping with multiple
binary characters (SM-MBC), and (ix) stochastic map-
ping with a single multi-state character (SM-SMC).
Ancestral area chronograms (MAC parsimony) based
on the geographical ranges of extant species and fossil
lineages are shown in figures 3 and 4, respectively.
Tables 3 and 4 summarize the results of analyses with
all nine methods.
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Figure 3. Ancestral area chronogram for 43 placental taxa from Springer ez al. [3] with area coding based on extant ranges for
terminal taxa. RAXML was used to infer phylogenetic relationships, BEAST was used to infer divergence times, MAC parsi-
mony was used to infer ancestral areas with the step matrix in figure 2. We employed soft constraints (nodes 3, 8, 10, 16, 19,
21, 32, 34, 36, 38, 41) that followed a normal distribution, with 95% of the normal distribution between the specified mini-
mum and maximum constraints (table 1). Areas for extant taxa are enumerated in table 2 and are colour-coded as follows:
Africa, blue; Eurasia, green; North America, brown; South America, red. Multi-coloured names denote taxa that occur in
more than one area (table 2). Nodes with unambiguous ancestral area reconstructions are shown with a single coloured
circle; nodes with ambiguous reconstructions are shown with two or more circles, and each coloured circle corresponds to

a different reconstruction.
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Table 1. Fossil constraints. Minimum ages are based on the age of the oldest unequivocal fossils belonging to the clade.
Maximum ages are based on the maximum of stratigraphic bounding [66], phylogenetic bracketing [67,68] and phylogenetic
uncertainty. Stratigraphic bounding encompassed two successive underlying fossil-bearing deposits that did not contain any
fossils from the lineage of interest, phylogenetic bracketing encompassed the age of the oldest fossils that were up to two
nodes below the divergence event, and phylogenetic bracketing allowed for the possibility that taxa of uncertain phylogenetic
affinities belong to the crown clade, first outgroup or second outgroup. Dates used in stratigraphic bounding are from
Gradstein ez al. [69]. We recognized the following chronological units in succession from youngest to oldest: Pleistocene,
Pliocene, Late Miocene, Middle Miocene, Early Miocene, Late Oligocene, Early Oligocene, Late Eocene, Middle Eocene,
Early Eocene, Late Palacocene, Middle Palacocene, Early Palaecocene, Maastrichtian and Campanian.

fossil constraints (Ma)

node number?® minimum maximum oldest fossil for minimum reference(s)
3 55.6 71.2 Eritherium [70]

8 58.5 71.2 Riostegotherium [66,71]
10 33.8 65.5 Antarctic specimen® [72,73]
16 61.1 84.2 Adunator [74]

19 37.1 65.8 Hesperocyon gregarious [75-77]
21 55.5 61.1 Hyracotherium [78]

32 48.4 61.1 leporid tarsals [79]

34 48.4 61.1 Eogliravus [80]

36 33.8 56 Gaudeamus [81,82]
38 11.8 34 Prodolichotis [83]

41 52.4 61.1 Martimys [84]

*Node numbers refer to figures 3 and 4.

®The Eocene Antarctic specimen is an ungual phalanx that Carlini er al. [72] identified as a megatheroid sloth. Marenssi et al. [85] revised
the identification of the phalanx to include either Tardigrada (sloths) or Vermilingua (anteaters). Subsequently, Vizcaino & Scillato-Yané
[73] described a fragmentary tooth from the Eocene of Antarctica and referred this tooth to Tardigrada, but MacPhee & Reguero [86]

reinterpreted this tooth fragment as Mammalia incertae sedis based on histological evidence.

Ambiguous ancestral area reconstructions were a
problem for all methods, and the number of nodes
with equivocal reconstructions ranged from four
(SM-SMC with extant coding) to 26 (DEC-2 with
extant coding). For some methods, the number of
ambiguous nodes was higher with extant coding than
with fossil coding (FP-MBC, FP-SMC, MAC parsi-
mony, DIVA, DIVA-2, DEC, DEC-2), but in other
cases, this pattern was reversed (SM-MBC, SM-
SMC). Ancestral areas for Placentalia, Exafroplacenta-
lia (=Boreoeutheria + Xenarthra) and several nodes
within Rodentia were reconstructed as ambiguous by
nearly all methods. Other nodes were consistently
reconstructed with unambiguous ancestral areas,
including clades with ancestral areas in Africa
(Afrotheria and its internal nodes), Eurasia (Euarch-
onta, Paraprimates [=Dermoptera + Scandentia],
Muridae), North America (Erinaceidae + Soricidae)
and South America (Xenarthra and its internal
nodes, Cavioidea). Most analyses reconstructed
Eurasia as the ancestral area for Boreoeutheria,
Laurasiatheria and Euarchontoglires. This finding is
discussed below.

The importance of fossils is illustrated by recon-
structions for Lagomorpha (tables 3 and 4). All
methods returned North America as the ancestral
area when extant taxa were used for area coding, but
identified Eurasia with fossil coding.

DIVA and DEC analyses reconstructed more nodes
with multiple areas than did the other methods.
Analyses with DEC reconstructed 17—20 nodes with
two or more areas and four to six nodes with three
or more areas. DIVA analyses resulted in 15-18
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nodes with at least two areas, and five to six nodes
with three or more areas. None of the other methods
reconstructed ancestral nodes to include three or
more areas in a single reconstruction, although three
or four areas were sometimes represented by the
full complement of alternate reconstructions for a
given node.

FP-MBC returned nine empty nodes with extant
coding, and five empty areas with fossil coding. SM-
MBC with extant coding resulted in three or four
empty nodes with extant coding, and four empty
nodes with extinct coding (table 5).

7. PLACENTAL BIOGEOGRAPHY

Afrotheria (Afrosoricida, Hyracoidea, Macroscelidea,
Proboscidea, Sirenia, Tubulidentata) was the first of
the new superordinal groups to receive robust molecu-
lar support [53,55,56]. With the exception of Sirenia,
all afrotherian orders have first fossil occurrences in
Africa, and two orders (Macroscelidea, Afrosoricida)
have evolutionary histories that are restricted to the
Afro-Malagasy region. Springer er al. [53] suggested
that interordinal separation of afrotherian orders com-
menced during a window of isolation that began in the
Cretaceous, after Africa separated from South Amer-
ica, and lasted until the early Cenozoic when Africa
docked with Europe. Consistent with this scenario,
Africa was unambiguously reconstructed as the ances-
tral area for Afrotheria (figures 3 and 4). This
hypothesis contrasts with traditional views wherein
the African mammal fauna arrived from the north,
including a condylarth stock that arrived in Africa
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Table 2. Geographical area of extant taxa and oldest fossils used in ancestral area reconstruction.

taxon® area of extant species area of oldest fossil®

Choloepus didactylus SA SA; Megalonychidae; Miocene [87]
Tamandua tetradactyla SA SA; Tamandua; Pleistocene [87]
Myrmecophaga tridacryla SA SA; Neotamandua; Miocene [87,88]
Euphractus sexcinctus SA SA; Zaedyus; Pliocene [87,89]
Chaetophractus villosus SA SA; Chaetophractus; Pliocene [90]
Erinaceus europaeus Eurasia NA; Adunator; Palaecocene [74]

Talpa altaica Eurasia Eurasia; Eotalpa; Eocene [91]

Sorex araneus Eurasia NA; Domnina; Eocene [92]

Echinops telfairi Africa Africa; Widanelfarasia; Eocene [93]
Amblysomus hottentotus Africa Africa; Eochrysochloris; Oligocene [93]
Procavia capensis Africa Africa; Seggeurius; Eocene [94]
Loxodonta africana Africa Africa; Eritherium; Palaeocene [70]
Macroscelides proboscideus Africa Africa; Macroscelides; Pliocene [95]
Elephantulus rufescens Africa Africa; Elephantulus; Pliocene [95]
Orycteropus afer Africa Africa; Orycteropus; Miocene [96]
Tamias striatus NA NA; Spurimus; Eocene [97]
Muscardinus avellanarius Eurasia Eurasia; Eogliravus; Eocene [80]
Mus musculus Eurasia Eurasia; Progonomys; Miocene [74]
Rartus norvegicus Eurasia Eurasia; Karnimara; Miocene [74]
Pedetes capensis Africa Africa; Pondaungimys; Eocene [98]
Hystrix brachyurus Eurasia Africa; Gaudeamus; Eocene [81]
Castor canadensis NA NA; Mattimys; Eocene [84]
Dipodomys merriami NA NA; Proheteromys; Oligocene [99]
Cavia porcellus SA SA; Prodolichotis; Miocene [83,100]
Hydrochaeris hydrochaeris SA SA; Cardiatherium; Miocene [101]
Erethizon dorsatum NA SA; Eopululo; Eocene? [102]
Sylvilagus floridanus NA; SA Eurasia; tarsal elements; Eocene [79]
Ochotona princeps NA Eurasia; Sinolagomys; Oligocene [103,104]
Cynocephalus variegatus Eurasia Eurasia; Dermotherium; Eocene [105]
Tupaia minor Eurasia Eurasia; Eodendrogale; Eocene [106]
Lemur carta Africa Africa; Pachylemur; Quaternary [107]

Homo sapiens
Tarsius syrichta

Eurasia, NA; SA, Africa
Eurasia

Hippopotamus amphibius Africa

Lama glama SA

Tragelaphus eurycerus Africa

Sus scrofa Eurasia, Africa
Equus caballus Eurasia
Ceratotherium simum Africa

Tapirus indicus Eurasia

Felis catus Africa

Canis familiaris Eurasia

Manis pentadacryla Eurasia

Eurasia; Anthrasimias; Palaeocene [108]
Eurasia; Tarsius; Eocene [109]

Africa; Morotochoerus; Miocene [110]
NA; Poebrodon; Eocene [111]

Eurasia; Archaeomeryx; Eocene [112]
Eurasia; Eocenchoerus; Eocene [113]
Eurasia, NA; Hyracotherium; Eocene [78,114,115]
NA; Hyracodontidae; Eocene [116]
NA; Helaletes; Eocene [117]

Eurasia; Stenoplesictis; Eocene [118,119]
NA; Hesperocyon; Eocene [120]

Eurasia; Eomanis; Eocene [121]

%In cases of chimeric taxa, we used the most common species from Springer et al’s [3] concatenated supermatrix. NA, North America;

SA, South America.

®Area of the oldest stem fossil belonging to the terminal branch represented by each living taxon.

from Europe in the early Cenozoic, and insectivores
that arrived in the Neogene [124].

Asher et al. [125], Zack ez al. [126] and Tabuce er al.
[127] suggested that the geographical distributions of
living afrotherians are not representative of the histori-
cal geographical distribution of this clade, and that
Afrotheria is Holarctic in origin based on the place-
ment of extinct taxa from the Palaeocene of Laurasia
within or at the base of Afrotheria. However, pseu-
doextinction tests call into question the reliability of
the placement of fossil taxa in morphological cladistic
analyses [3].

The oldest xenarthran fossils are scutes from the
Palaeocene of South America [71]. Living members
of Xenarthra (anteaters, sloths, armadillos) are
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restricted to South and Central America with the
exception of the nine-banded armadillo, whose ances-
tors dispersed to North America during the Great
American Interchange [128]. Simpson [129,130] sup-
ported the view that South American xenarthrans
evolved in situ during South America’s isolation from
other continents in the early Tertiary. All of our ana-
lyses are consistent with the hypothesis that South
America was the ancestral area for Xenarthra (figures
3 and 4).

The remaining placental orders are placed in Laur-
asiatheria (Eulipotyphla, Chiroptera, Perissodactyla,
Cetartiodactyla, Carnivora, Pholidota) and Euarchon-
toglires (Primates, Dermoptera, Scandentia, Rodentia,
Lagomorpha). With the exception of bats, these orders
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Figure 4. Ancestral area chronogram for 43 placental taxa from Springer ez al. [3] with area coding based on the oldest fossil for
each lineage. RAXML was used to infer phylogenetic relationships, BEAST was used to infer divergence times, and MAC par-
simony was used to infer ancestral areas with the step matrix in figure 2. Areas for the oldest fossil lineage are enumerated in
table 2 and are colour-coded as follows: Africa, blue; Eurasia, green; North America, brown; South America, red. Nodes with
unambiguous ancestral area reconstructions are shown with a single coloured circle; nodes with ambiguous reconstructions are
shown with two or more circles, and each coloured circle corresponds to a different reconstruction.

have first fossil occurrences that are exclusively Laura-
sian. Our reconstructions provide support for Eurasia,
but not North America, as the ancestral area for these
clades (figures 3 and 4). These results are consistent
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with previous suggestions that Cretaceous zhelestids
and zamlambdalestids from Asia are members of
crown Placentalia [131,132]. Further, the fossil
record suggests that Eutheria were dominant in
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Table 5. Comparison of different methods for reconstructing ancestral areas. NA1l, not applicable for monomorphic
reconstruction methods; NA2, not applicable when the maximum number of areas is set at two; NA2, not applicable for
methods that employ single multistate characters®.

MAC
FP-MBC FP-SMC Parsimony DIVA DIVA-2 DEC DEC-2 SM-MBC SM-SMC

nodes with ambiguous 7/5 12/9 12/8 12/11 10/7 23/23 26/23 16/17 6/14

reconstructions® 19/20 17/18 10/12 4/10

nodes with > 2 areas® 3/3 NAl 4/6 16/18 15/16 18/20 20/19 7/7 NAl
17/20 17/17 4/6

nodes with > 3 areas®  0/0 NAl 0/0 6/5 NA2 6/6 NA2 0/0 NAl
4/5 0/0

empty nodes® 9/5 NA3 NA3 NA3 NA3 NA3 NA3 3/4 NA3
4/4

“Numbers before slashes are based on analyses with area coding for extant taxa, and numbers after slashes are based on analyses with area
coding for the oldest fossil. See table 3 for abbreviations.

PFor FP-MBC, nodes were considered ambiguous if at least one area was reconstructed as (01). For SM-MBC and SM-SMC, nodes were
considered ambiguous if the posterior probability (PP) of at least one area was 0.1 < PP < 0.9 (top line) or 0.2 < PP < 0.8 (bottom line).
For DEC and DEC-2, nodes were considered ambiguous if the frequency (f) of at least one area was 0.1 < << 0.9 (top line) or 0.2 <p <
0.8 (bottom line).

€At least two areas in at least one of the alternate resolutions for an ancestral node. For FP-MBC, each occurrence of 1 or (01) was taken
to include an ancestral area. For SM-MBC, areas were counted as present at a node if posterior probabilities were >0.10 (top line) or
>0.20 (bottom line). For DEC and DEC-2, areas were counted as present at a node if frequencies were >0.1 (top line) or >0.2 (bottom
line).

dAt least three areas in more than one of the alternate resolutions for an ancestral node. For FP-MBC, each occurrence of 1 or (01) was
taken to include an ancestral area. For SM-MBC, areas were counted as present at a node if posterior probabilities were >0.10 (top line)
or >0.20 (bottom line). For DEC and DEC-2, areas were counted as present at a node if frequencies were >0.1 (top line) or >0.2
(bottom line).

“For FP-MBC, nodes were considered empty if all areas were reconstructed as 0. For SM-MBC, nodes were considered empty if posterior

probabilities were <0.10 (top line) or <0.20 (bottom line) for all four areas.

Eurasia throughout the Cretaceous, but were absent
from North America through much of the Late Cre-
taceous and only attained appreciable diversity there
during the last approximately 10 Myr of the period
[133,134]. Boyer et al. [135] concluded that the
Indian subcontinent, Eurasia and Africa are more
likely places of origin for Euarchonta than is North
America. This agrees with our ancestral area
reconstructions (figures 3, 4 and tables 3, 4).

Although there is robust support for the monophyly
of Xenarthra, Afrotheria and Boreoeutheria, relation-
ships among these three groups and the root of the
placental tree remain contentious [10,54,60—63,136].
Murphy er al. [62] and Springer ez al. [10] suggested a
causal relationship between the sundering of Africa and
South America, and basal cladogenesis among crown-
group placental mammals given the coincidence of
molecular dates for the base of placentals and the
vicariant separation of Africa and South America
approximately 100—120 Ma.

Asher er al. [125] analysed a combined matrix and
recovered Afrotheria in a nested position within Pla-
centalia, which contradicts the hypothesis that the
plate tectonic separation of Africa and South America
played a causal role in the early cladogenesis of placen-
tal mammals. However, the nested position for
Afrotheria resulted from the paraphyly of Euarchonto-
glires, Glires and Rodentia. Rare genomic changes
confirm the monophyly of Xenarthra [137], Afrotheria
[138—-142], Euarchontoglires [139,141,142], Laura-
siatheria [139,141,142] and Boreoeutheria
[139,141,142], and preclude a nested position for
Afrotheria in the placental tree.

Rare genomic changes have also been used to
examine the position of the placental root. Kriegs
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et al. [139] reported LINE insertions that are shared
by Epitheria, whereas Murphy ez al. [16] discovered
rare genomic changes that support Atlantogenata.
Nishihara ez al. [142] performed genome-wide retro-
poson analyses and found 22, 25 and 21 LINE
insertions for Exafroplacentalia, Epitheria and Atlan-
togenata, respectively. Based on these results,
Nishihara ez al. [142] concluded that Xenarthra,
Afrotheria and Boreoeutheria diverged from one
another nearly simultaneously. They also suggested a
new palaecogeographical model for the breakup of Pan-
gaea and Gondwana in which Africa becomes isolated
from both South America and Laurasia at approxi-
mately 120 Ma, and argued that these coeval plate
tectonic events provide an explanation for the simul-
taneous divergence of Afrotheria, Xenarthra and
Boreoeutheria. However, relaxed clock dates for the
base of Placentalia are closer to 100 Ma than to
120 Ma (figures 3 and 4). A second difficulty concerns
the opening of the South Atlantic. Nishihara ez al.
[142] suggested that the Brazilian Bridge, which rep-
resented the last connection between Africa and
South America, was severed at approximately
120 Mya, but other recent reconstructions suggest
that the connection between the South Atlantic and
Central Atlantic was not established until late
Aptian/mid-Albian times (approx. 110-100 Ma)
[143,144].

8. THE IMPORTANCE OF DISPERSAL

In the context of pre-plate tectonic views of the
Earth, Simpson [2] proposed three types of
migration routes to describe the movement of ani-
mals: corridors, filter bridges and sweepstakes


http://rstb.royalsocietypublishing.org/

2492 M. S. Springer et al.

Mammalian historical biogeography

dispersal. Corridors connect two areas and are per-
meable to all animals; filter bridges impose selective
barriers that affect some, but not all animals; and
sweepstakes dispersal is required when there are
strong barriers to migration such as high mountain
barriers or oceans.

Simpson [2] suggested that Madagascar’s living
mammals were the product of sweepstakes dispersal
from Africa to Madagascar. Sweepstakes dispersal
hypotheses fell out of favour with the validation of
plate tectonic theory and were summarily dismissed
as ‘miraculous’ hypotheses with no scientific basis
[145]. However, it has become apparent that some dis-
tributional patterns can only be explained by
sweepstakes dispersal [146]. Observational data also
provide support for long-distance vertebrate dispersal
[147]. Examples of low probability sweepstakes disper-
sal involving mammals include the origins of the
endemic mammal fauna in Madagascar, and the
occurrence of caviomorph rodents and platyrrhine pri-
mates in South America.

Madagascar’s strictly terrestrial extant mammal fauna
includes endemic lineages from four placental orders:
tenrecs (Afrosoricida), euplerids (Carnivora), neso-
myines (Rodentia) and lemurs (Primates). In each
lineage, Madagascar endemics comprise monophyletic
assemblages with closest living relatives in Africa
[148,149]. Madagascar separated from Africa approxi-
mately 165 Ma, but maintained its connection with
Antarctica via the Kerguelen Plateau until as late as
80 Ma, at which time it became permanently
separated from other Gondwanan landmasses. This his-
tory suggests that Madagascar’s terrestrial endemic
mammals are either the ancient descendants of vicariant
events that occurred prior to 80 Ma, or reached Mada-
gascar via transoceanic sweepstakes dispersal at a later
time. Another possibility is that a land bridge connected
Africa and Madagascar between 45 and 26 Ma [150].

Molecular divergence dates suggest that all four
endemic lineages last shared a common ancestor
with their African sister group in the Cenozoic
[148,149,151,152]. Poux er al. [148] concluded that
dispersal by lemurs, rodents and carnivorans must
have occurred by transoceanic dispersal rather than
land bridge dispersal based on molecular dates for
the colonization of Madagascar that were outside of
the land bridge window, i.e. 60—50 Ma for lemurs,
26—19 Ma for carnivorans and 24—20 Ma for rodents.
However, present ocean currents allow for dispersal
from Madagascar to Africa, but oppose reciprocal dis-
persal from Africa to Madagascar across the
Mozambique Channel. If ocean currents were the
same for most of the Cenozoic as they are today,
they would not have facilitated west to east transocea-
nic dispersal across the Mozambique Channel because
of the strong south—southwest flow of the Mozambi-
que Current [153].

Ali & Huber [154] addressed this problem by simu-
lating surface ocean currents in the Indian Ocean
during the Eocene. They concluded that large-scale
ocean current systems in the Eocene were profoundly
different from modern observed circulatory patterns,
and that the flow along the African coast was eastward
towards Madagascar instead of southward through the
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Tanzania

Africa

Mozambique

Figure 5. Present day surface ocean currents in the Mozam-
bique Channel (solid arrows) are south—southwest and
would not have facilitated west to east transoceanic dispersal
from Africa to Madagascar [153]. By contrast, westerly sur-
face ocean currents in the Eocene (dashed arrows) would
have facilitated dispersal across the Mozambique Channel
from Africa to Madagascar, especially during tropical
storms [154]. The outline of Madagascar with dashed lines
shows its approximate position relative to Africa during the
Eocene.

Mozambique Channel (figure 5). Ali & Huber [154]
further suggested that dispersal probabilities were
enhanced by tropical storms that (i) generated large,
floating tree islands that would have allowed for a
successful oceanic voyage and (ii) accelerated
transportation rates from Africa to Madagascar that
would have allowed for complete crossing of the
Mozambique Channel in 25-30 days.

The dispersal of four groups of fully terrestrial
mammals from Africa to Madagascar, at a time when
there was no land bridge, is a testament to the impor-
tance of rare sweepstakes events in the evolutionary
history of Placentalia. Even more remarkable is the
occurrence of two different groups of placental mam-
mals, hystricognath rodents and anthropoid primates,
in Africa and South America.

Hystricognathi includes Hystricidae (Old World por-
cupines) and Phiomorpha (e.g. cane rats, dassie rats)
from the Old World, and Caviomorpha (e.g. porcupines,
chinchillas) from the New World. The oldest hystricog-
naths are from the late Eocene Egypt, and have been
dated at approximately 37 Ma [81]. Old World hystri-
cognaths are paraphyletic, usually with phiomorphs
having closer phylogenetic affinities to South American
caviomorphs than to hystricids [14,155,156]. Relaxed
clock dates suggest that South American caviomorphs
last shared a common ancestor with phiomorphs
between 45 and 36 Ma [81,155,157]. The most recent
common ancestor of Caviomorpha has been dated at
45-31 Ma [81,155,157,158].
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Figure 6. Alternate hypotheses for the dispersal of platyrrhine and caviomorph ancestors, respectively, from Africa/Asia to
South America. Hypothesis 1: transoceanic dispersal (1a) from Africa to South America, possibly with an earlier dispersal
from Asia to Africa (1b) if origination occurred in Asia. Hypothesis 2: dispersal from Asia through North America to
South America. Hypothesis 3: dispersal from Asia to South America via Australia and Antarctica after two transoceanic cross-
ings. Middle Eocene world map based on Palacomap Project (http:/www.scotse.com/newpage9.htm).

Among anthropoids, Old World catarrhines (e.g.
macaques, apes) and South American platyrrhines
(e.g. marmosets, capuchins, spider monkeys) are reci-
procally monophyletic sister taxa. The oldest
anthropoid fossils are from the Old World, although
whether the most recent common ancestor of Anthro-
poidea is African or Asian is uncertain [108,159,160].
Poux er al. [155] dated the split between catarrhines
and platyrrhines at approximately 37 Ma and the
base of Platyrrhini at approximately 17 Ma.

The vicariant separation of Africa and South Amer-
ica (110—100 Ma) is too old to explain the separation
of either Phiomorpha and Caviomorpha, or Catarrhini
and Platyrrhini. Similarly, Arnason et al’s [161]
hypothesis of land bridge dispersal during the Late
Cretaceous—Early Palaeocene is too old for relaxed
clock dates, which instead rule out the colonization
of South America by Caviomorpha and Platyrrhini
prior to the Eocene. Other hypotheses for the coloni-
zation of South America by caviomorphs and/or
platyrrhines include: (i) rrams-Atlantic dispersal from
Africa to South America [162], (ii) dispersal from
Asia through North America to South America
[163,164], and (iii)) dispersal from Asia to South
America via Australia and Antarctica after two ocean
crossings (figure 6) [165].

Most workers favour transoceanic dispersal from
Africa to South America for both Caviomorpha and Pla-
tyrrhini. Dispersal through Asia and North America is an
intriguing possibility, but palaeontological data provide
no support for migrations through North America. Simi-
larly, dispersal from Asia to South America through
Australia and Antarctica lacks palaeontological support,
requires multiple transoceanic dispersals and becomes
even less likely after the Eocene because of the severed
connection between Antarctica and South America,
and climatic deterioration in Antarctica associated with
the opening of the Drake Passage. In view of
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phylogenetic, geological, palacontological and molecular
data, rrans-Atlantic dispersal is the most likely scenario
for colonization of South America by caviomorphs and
platyrrhines.

9. BAT BIOGEOGRAPHY

In contrast to other mammals, bats are capable of
powered flight, which has profoundly enhanced their
dispersal capabilities. The occurrence of seven differ-
ent families of extant bats in Madagascar, including
the endemic sucker-footed bats (Family Myzopodi-
dae), and of another family in New Zealand, the
short-tailed bats (Family Mystacinidae), provides
abundant evidence of the dispersal capabilities of
bats [166].

The oldest bat fossils are from the Early Eocene of
North America [167,168]. Early Eocene bats are also
known from Europe, Africa and Australia [167]. The
prevalent view is that bats originated in Laurasia, but
a minority view holds that bats originated in Gond-
wana [169,170]. Teeling et al. [13] reconstructed
ancestral areas for bats with (i) multistate-coded data
for the current global distribution of each lineage
with nine different character states (Europe, Africa,
Asia, Madagascar, Australia, New Zealand, North
America, Central + South America and West Indies)
and (ii) binary-coded data for the earliest fossil occur-
rence for each lineage (Laurasia versus Gondwana).
Teeling er al’s [13] results suggested North America
or Laurasia as the ancestral area for bats, and Asia,
Europe or Laurasia as the ancestral area for both Yinp-
terochiroptera and Yangochiroptera. Eick ez al. [12]
used DIVA [33] to estimate ancestral areas for Chirop-
tera and its subclades, and coded areas based on
current distributions for each family. Seven areas
(Africa, Asia, Australia, Europe, North America,
South America and New Zealand) were recognized,
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Table 6. A comparison of ancestral area reconstructions for bats based on DIVA analyses. Eick ez al. [12] coded the presence
or absence of extant bat families in seven different areas and performed DIVA analyses with no constraints on the maximum
number of areas. We re-analysed Eick er al’s [12] dataset with DIVA using the same settings reported by these authors.
Africa, A; Asia, B; Australia, C; Europe, D; North America, E; South America, F; New Zealand, G.

node number (figure 7) Eick ez al. [12] re-analysis

1 A

ABCEF, ABDEF, ABCDEF, ABEFG, ABCEFG, ABDEFG, ABCDEFG

A ACEF, BCEF, ABCEF, DEF, ADEF, BDEF, ABDEF, ACDEF, BCDEF,
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3 AE, AF

E, AE, BE, CE, ACE, BCE, ABCE, F, AF BF, CF, ACF, BCF, ABCF,

CEF, ACEF, BCEF, ABCEF, AG, BG, CG, ACG, BCG, ABCG AEG,
BEG, CEG, ACEG, BCEG, ABCEG, AFG, BFG, CFG, ACFG, BCFG,
ABCFG, AEFG, BEFG, CEFG, ACEFG, BCEFG, ABCEFG

v

v

osliesliesiies)

E
E
E
E

jesliesliles|

-
-

G, FG, EFG

© 0o Ul
jesllesRlesNesies]

> P

10

EG, FG, EFG

A, B, AC, BC, ABC, AE, BE, ABE ACE, BCE, ABCE, AF, BF, ABF, ACF,
BCF, ABCF, AEF, BEF, ABEF, ACEF, BCEF

A, AC, AD, ACD, ABCD, ACE, ADE ACDE, ABCDE, ACF, ADF,

» 5, EG, FG, EFG

ACDF, ABCDF, ACEF, ADEF, ACDEF, ABCDEF, ACDEG ABCDEG,
ACDFG, ABCDFG, ACDEFG, ABCDEFG

11 AE, AF, AEF

AE, CE, DE, CDE, ACDE, BCDE ABCDE, AF, CF, DF, CDF, ACDF,

BCDF, ABCDF, AEF, CEF, DEF, CDEF, ACDEF BCDEF, ABCDEEF,
CDEG, ACDEG, BCDEG, ABCDEG, CDFG, ACDFG, BCDFG,
ABCDFG, CDEFG, ACDEFG, BCDEFG, ABCDEFG

12 A

A, C, D, CD, ACD, BCD, ABCD, CDE ACDE, BCDE, ABCDE, CDF,

ACDF, BCDF, ABCDF, CDEF, ACDEF, BCDEF, ABCDEF, CDG
ACDG, BCDG, ABCDG, CDEG, ACDEG, BCDEG, ABCDEG,
CDFG, ACDFG, BCDFG, ABCDFG, CDEFG, ACDEFG, BCDEFG,

ABCDEFG
A B G, D, AG, BG, ABG, CG, ACG BCG, ABCG, DG, ADG, BDG,

13 A

ABDG, CDG, ACDG, BCDG, ABCDG, AEG, BEG, ABEG, CEG
ACEG, BCEG, ABCEG, DEG, ADEG, BDEG, ABDEG, CDEG,
ACDEG, BCDEG, ABCDEG, AFG, BFG, ABFG, CFG, ACFG,
BCFG, ABCFG, DFG, ADFG, BDFG, ABDFG, CDFG, ACDFG
BCDFG, ABCDFG, AEFG, BEFG, ABEFG, CEFG, ACEFG, BCEFG,
ABCEFG, DEFG, ADEFG, BDEFG, ABDEFG, CDEFG, ACDEFG,
BCDEFG, ABCDEFG

14
15
16
17

M
”

> g

A
A, B
A, B
A, B

S

, B, C, AC, BC, ABC
, C, AC, BC
C

and Africa was reconstructed as the ancestral area for
the most recent common ancestors of Chiroptera,
Yinpterochiroptera and Yangochiroptera. Lim [47]
used parsimony to reconstruct ancestral areas, and
also recovered Africa as the ancestral area for
Yangochiroptera and its deepest nodes.

We recovered more inclusive ancestral areas for
Chiroptera, Yinpterochiroptera and Yangochiroptera
when we performed analyses with DIVA using the
same data and settings that were reported by Eick
er al. [12] (figure 7 and table 6). The reconstruction
for the base of Chiroptera was equivocal and included
seven different possibilities, all of which were equally
parsimonious based on DIVA’s criteria for minimiz-
ing dispersal and extinction (figure 7 and table 6).
Each of these reconstructions included at least five
areas, and four areas (Africa, Asia, North America
and South America) were common to all seven
reconstructions.
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Among the most comprehensive studies in mamma-
lian historical biogeography are Lim’s [46,47] analyses
of South American bats. Ancestral reconstructions pro-
vided evidence for multiple dispersals from Africa to
South America. One dispersal occurred in Noctilionoi-
dea (Eocene, approx. 42 Ma) and another occurred in
Emballonuroidea (Oligocene, approx. 30 Ma). Vesperti-
lionoidea have a more complex history that involves
numerous independent dispersals from Africa
(Eocene, earliest event approx. 50 Ma), as well as
from North America. Lim [46] used PACT to examine
evolutionary processes that have been important in the
diversification of South American emballonurids. His
general area cladogram revealed a complex history
with multiple vicariant, within-area and dispersal
events all playing a role. Within-area speciation during
the Miocene, particularly in the northern Amazon
area, was the most important diversification process in
this group. Lim [47] correlated Miocene speciation
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12 3 Miniopteridae ABCD
1 — 1 Vespertilionidae ~ ABCDEFG

Natalidae EF
Hipposideridae ~ ABC
Rhinolophidae ABCD
Rhinopomatidae ~ AB
Megadermatidae ABC
Pteropodidae ABC

14

Figure 7. Eick er al’s [12] phylogeny and area coding for
extant bat families. Ancestral area reconstructions based on
DIVA analyses are shown in table 6 for nodes 1-17.
Africa, A; Asia, B; Australia, C; Europe, D; North America,
E; South America, F; New Zealand, G.

with contemporaneous climatic and habitat changes that
occurred in the Amazon Basin. Construction of an
ancestral area cladogram for all bat species will provide
an unprecedented opportunity to examine the impor-
tance of transoceanic dispersal in promoting
taxonomic diversity in this highly successful group of
mammals.

10. MARSUPIAL BIOGEOGRAPHY

The oldest metatherian is Sinodelphys from China
[171]. Cretaceous marsupial fossils are also known
from Europe [172,173] and North America [174-
178]. The consensus is that metatherians originated
in Asia, and subsequently dispersed to North America
and Europe [173].

In contrast to the Cretaceous record of Metatheria,
almost all living metatherians have geographical distri-
butions that are entirely Gondwanan. Case er al
[179] suggested that the ancestor of living marsupials
dispersed to South America in the Late Cretaceous or
early Palaecocene. The South American marsupial
cohort Ameridelphia, which includes Paucituberculata
(shrew opossums) and Didelphimorphia (opossums),
is paraphyletic at the base of Australidelphia, which
includes the South American order Microbiotheria
(monito del monte), and the Australasian orders Dipro-
todontia (e.g. wombats, kangaroos), Dasyuromorphia
(e.g. quolls, numbats), Peramelemorphia (e.g. bandi-
coots, bilbies) and Notoryctemorphia (marsupial
moles) [17,21,180-182].

Subsequent to Kirsch er al’s [183] single-copy
DNA hybridization study of marsupials, which
placed South American microbiotheres within Austra-
lidelphia, marsupial biogeographers have focused on
the monophyly or paraphyly of Australasian taxa. Aus-
tralasian monophyly is consistent with a single
dispersal from South America to Australia via Antarctica,
but Australasian paraphyly requires either multiple dis-
persals to Australia, or dispersal to Australia followed
by back dispersal to South America [183—185]. Molecu-
lar phylogenies based on concatenated nuclear gene
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sequences [21,182] and retroposon insertions [186] sup-
port the monophyly of Australasian marsupials, and
suggest that Australasian marsupials last shared a
common ancestor with microbiotheres between 65 and
58 Ma. This phylogeny is compatible with a single dis-
persal event from South America to Australia via
Antarctica [21]. This dispersal would have been overland
if it occurred prior to the complete submergence of the
South Tasman Rise approximately 64 Ma [187].

In contrast, Beck er al. [181] analysed a dataset
comprising living and fossil taxa, including the early
Eocene genus Djarthia from Australia, and recovered
a sister-group relationship between Djarthia and
living australidelphians. Beck ez al’s [181] topology
suggest that South American microbiotheres back-dis-
persed from eastern Gondwana to South America even
though living Australasian marsupials comprise a
monophyletic taxon. However, the decay index that
associates crown Australidelphia to the exclusion of
Djarthia is only one step. This result highlights the
potential importance of fossils for inferring biogeo-
graphic history, and the precarious nature of
conclusions based on a fragmentary fossil record.

11. MONOTREME BIOGEOGRAPHY

Living monotremes include the semi-aquatic platypus
(Ornithorhynchus), which occurs in Australia and Tas-
mania, and echidnas, which occur in Australia
(Tachyglossus) and New Guinea (Zaglossus). The
oldest monotreme is 7Zéinolophos (121-112.5 Ma) of
Australia. Rowe er al. [188] suggested that Teinolophos
is a crown monotreme based on cladistic analyses.

In contrast to this ancient fossil record, relaxed
clock estimates for the platypus-echidna divergence
range from 88.9 to 27.7 Ma [188-191] and are too
young to accommodate 7Teinolophos in crown-group
Monotremata. Rather, these dates suggest that Téinolo-
phos lies on the monotreme stem branch. Younger
monotreme fossils, whether stem or crown, are exclu-
sively from the Southern Hemisphere. Luo ez al
[192,193] and Kielan-Jaworowska er al. [194]
suggested that Monotremata belongs to the more
inclusive = Gondwanan clade  Australosphenida,
although other studies place these Mesozoic taxa
closer to Theria than to Monotremata [188,189].

With or without these Mesozoic taxa, it appears that
the entire evolutionary history of Monotremata is
restricted to Gondwana. Details of this history are diffi-
cult to reconstruct owing to Monotremata’s depauperate
taxonomic diversity and meagre fossil record. Future
fossil discoveries and more robust phylogenetic analyses
are essential for revealing the full biogeographic range of
ancient monotremes in Gondwana. The occurrence of
monotremes in Australia and South America suggests
that their ancestral distribution may have included
other fragments of Gondwana such as Africa, Antarctica,
India and Madagascar.

12. CONCLUSIONS

Contemporary methods for deciphering palacobiogeo-
graphy are underpinned by phylogenies, divergence
times and ancestral area reconstructions, which
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together yield ancestral area chronograms that provide
a powerful framework for proposing and testing
hypotheses of dispersal and vicariance when evaluated
in the context of palaeographic hypotheses. The toolkit
for unravelling historical patterns of vicariance and
dispersal that have moulded the evolutionary history
of Mammalia now includes molecular data, fossils,
reconstructions of palaeogeography and palaeo-ocean
currents, and a burgeoning array of methods in phylo-
geny reconstruction, molecular dating and ancestral
area reconstruction. Larger and taxonomically more
complete molecular datasets, new fossil discoveries
and the application of new techniques will lead to sig-
nificant advances in our understanding of the
historical biogeography of Mammalia.
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