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ABSTRACT

Functional and ontogenetic skull differences among extant rhinoceroses and the extinct
North American rhinoceros Teleoceras major were investigated to assess the unknown feeding
ecology of Teleoceras. Ontogenetic skull sequences of the extant Indian rhino (Rhinoceros
unicornis), Sumatran rhino (Dicerorhinus sumatrensis), white rhino (Ceratotherium simum), and
black rhino (Diceros bicornis), and the extinct Miocene North American rhino T. major were
gathered for both qualitative and quantitative assessments. Eleven functional characters related
to specific feeding ecologies in extant perissodactyls were morphologically described, and each
species’ skull development was described in detail. Nineteen linear skull measurements were
taken across all specimens of all ages to statistically investigate functional and developmental
differences among the species. Specimens were also photographically documented for geometric
morphometric analyses of ontogenetic shape transformations. Functional character results
indicated that T. major was likely a grazer based on its high number of grazing characters, such
as its large posterior maxilla, broad jugal, and strong mandibular angle. Teleoceras major and
the extant grazer C. simum also shared grazing character states, such as an anterior jugal
extension, a low occiput, and a deep mandibular body. Ontogenetic comparisons revealed both
shared and distinct patterns among the species. The rhino species all shared early cranial
lengthening, similar timing in horn and tusks development, and strong adult development of the
masseter and temporalis attachment areas. Distinctions in the species’ ontogenies are in the
occiput, zygomatic arch, mandibular angle, and mandibular body, which are all characters related
to feeding ecology. Early development of masseter attachment areas in T. major and the
temporalis attachment areas in C. simum are understood as differing adaptations to grazing

feeding ecologies.
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CHAPTER 1. INTRODUCTION

The living rhinoceroses are represented by five threatened and endangered species with
about 24,600 total individuals currently existing in the wild, according to the International Rhino
Foundation (www.rhinos-irf.org). The white rhino and black rhino inhabit small areas within
south and east Africa, and the Indian rhino, Sumatran rhino, and Javan rhino have been reduced
to a few scattered pockets within Southeast Asia. The extant rhinos are all large-bodied
herbivores, varying in size between 800-2000 kg with differing feeding ecologies as browsers, a
mixed feeder, and a grazer (Owen-Smith 1988). Features used for fighting and defense are
represented by different combinations of a nasal horn, a frontal horn, and tusks.

The earliest rhino fossil records date to the Oligocene, approximately 47 million years
ago (Prothero 2005). Rhino lineages existed across Africa, Asia, North America, and Europe,
with species disappearing from North America in the Pliocene and from Europe in the
Pleistocene (Groves 1983, Prothero 2005). The numerous extinct lineages were more diverse
compared to the extant rhinos, with greater variations in body size, skull morphology, and
weapon combinations. Although similar morphologies are not necessarily present in the extant
rhinos, extinct rhino species must be compared with the extant rhinos for meaningful
paleoecological inferences.

The extinct rhino in this study is Teleoceras, a North American rhino genus from the
Miocene, which existed between 19.0 - 4.5 million years ago (Prothero 2005). Among the
extinct North American rhino genera such as Aphelops, Menoceras, and Teleoceras, Teleoceras
has the most numerous fossil specimens, the widest geographic range, and perhaps the most
distinct morphology (Prothero 2005). Teleoceras has a shortened skull, high-crowned dentition,

and shortened limbs, which have invited comparisons to hippos and led to an assumed similar



semi-aquatic, soft-grass grazing, herd-forming ecology (Osborn 1898, VVoorhies 1985, Mead
2000, Prothero 2005). Mihlbachler (2001) challenged the hippo-morph hypothesis for
Teleoceras by demonstrating that its shortened limbs are not a likely adaptation for a semi-
aquatic lifestyle. Instead, Mihlbachler (2001) argued that a shortened skull and shortened limbs
are more likely related to short-grass grazing. Mihlbachler (2001, 2003) also found no evidence
for herd forming in Teleoceras based on bone bed accumulations comparable with extant rhinos.
A study by MacFadden (1998) brought the feeding ecology of Teleoceras into question.
MacFadden (1998) assessed carbon isotopes in the teeth of T. proterum, finding isotopic
signatures suggestive of a mixed feeding ecology of consuming both browse and grass, contrary
to the traditional grazing assumptions of primarily feeding on grass.

Mihlbachler (2001) stated and demonstrated the importance of drawing comparisons with
extant rhinos before making ecological inferences for extinct rhinos. This study addresses
functional morphology of feeding in Teleoceras by comparing extant rhinos, whose ecologies are
already known, with an extinct rhino. By assessing functional skull characters, the feeding
ecology of Teleoceras can be elucidated.

An ontogenetic assessment of skull morphology in extant rhinos and Teleoceras with
emphasis on functional skull characters can provide evidence for feeding adaptations in the
rhinos. An exceptional T. major fossil assemblage in Nebraska makes this analysis possible. A
population of over 100 T. major individuals, representing all ages with complete and articulated
skulls and skeletons, is preserved in ash from approximately 12 million years ago (Voorhies
1985, Mead 2000). By comparing the ontogenies in extant rhinos and Teleoceras, shared and
distinct growth patterns can elucidate morphological development related to specific feeding

ecologies.



CHAPTER 2. BACKGROUND

2.1 EXTANT RHINOS

Ecological and morphological attributes for the four extant rhinos investigated in this
study are summarized below and in Table 2-1. Each species’ previous and current geographical
range, recognized subspecies, characteristic skull and dental morphology, size, habitat
preference, and feeding ecology are described below.
Rhinoceros unicornis

The current range of Rhinoceros unicornis, the Indian rhino, is confined to protected
areas in two regions, southern Nepal (Chitwan) and northeastern India (Kaziranga) (Zschokke
and Baur 2002). The previous range was more expansive throughout India and adjacent areas
(Owen-Smith 1988). In the Pleistocene, R. unicornis inhabited a wide region, with fossil
occurrences spanning across India to Pakistan and Sri Lanka, and from Java into Indochina and
China (Laurie et al. 1983). No subspecies of R. unicornis are recognized (Laurie et al. 1983).

Several skull and dental features characterize R. unicornis (Figure 2-1). The skull is short
and wide with a very high, steep, and anteriorly inclined occiput (Laurie et al. 1983). Nasals are
long and ventrally curved at the tip with a large and rugose horn boss. The horn is moderate in
length, usually 150-450 mm. The longest recorded nasal horn was over 600 mm (Laurie 1982).
Teeth are moderately high-crowned (sub-hypsodont). The i2 are enlarged as tusks, and the 11
serve as upper honing mechanisms. A prehensile upper lip is used to grab and crop grasses and
brush.

Rhinoceros unicornis is a large species that is sexually dimorphic in body size, with adult

females and males reaching 1600 kg and 2100 kg, respectively (Owen-Smith 1988, Dinerstein



1991). Rhinoceros unicornis is also tall, with adult females and males approximately 1600 mm
and 1860 mm at the shoulder, respectively (Laurie et al. 1983).

The habitat preferences of R. unicornis are alluvial plain tall grasslands and forests in a
monsoonal climate (Laurie 1982, Owen-Smith 1988). Rhinoceros unicornis is considered a
mixed feeder, with 70-89% of its diet being short and tall grass, depending on the season (Laurie
et al. 1983). It also consumes a wide range of vegetation, such as browse, fruits, ferns, and
aquatic plants.

The extant congeneric member with Rhinoceros unicornis is Rhinoceros sondaicus, the
Javan rhino. Rhinoceros sondaicus is the most endangered rhino species, and due to its paucity
in North American museums, R. sondaicus is not included in this study.

Dicerorhinus sumatrensis

The former range of Dicerorhinus sumatrensis, the Sumatran rhino, was throughout
Southeast Asia, spanning from Borneo and Sumatra up through Vietnam, India, and Pakistan
(Groves 1967, Owen-Smith 1988). Dicerorhinus sumatrensis currently is restricted in small
pockets in the southern part of its former range in Burma, Thailand, mainland Malaysia, Borneo,
and Sumatra (Owen-Smith 1988). Three extant subspecies that are geographically disjunct are
recognized. Dicerorhinus sumatrensis harrissoni inhabits Borneo, D. s. sumatrensis inhabits
Sumatra and peninsular Burma, Thailand, and Malaysia, and D. s. lasiotis inhabits mainland
Burma (Groves and Kurt 1972).

The skull of D. sumatrensis has a low occiput with a vertical occipital slope and a gentle
parietal slope (Figure 2-1). Anterior of the orbit, the skull is lengthened and the nasals are thin
(Groves and Kurt 1972). A short nasal horn and frontal horn are roughly 250 mm and 100 mm

in length, respectively (Laurie 1982). The maximum nasal horn length is close to 400 mm



(Groves and Kurt 1972). The teeth of D. sumatrensis are low-crowned (brachydont) (Owen-
Smith 1988). The i2 are enlarged as tusks, and the 11 serve as upper honing mechanisms. The
premaxillae are long, and a prehensile upper lip aids in feeding.

Dicerorhinus sumatrensis is the smallest extant rhino species, with adults at
approximately 800 kg and a maximum of 1450 mm at the shoulder (Groves and Kurt 1972,
Owen-Smith 1988). The species is not known to be sexually dimorphic in body size.

Dicerorhinus sumatrensis lives in highland and lowland zones of tropical rain forests
(Groves 1967, Owen-Smith 1988). Dicerorhinus sumatrensis is a browser with a diet including
leaves, twigs, and shrubs, and fruit (Groves and Kurt 1972).

Ceratotherium simum

Ceratotherium simum, the white rhino, has two extant subspecies that were historically
separated by more than 2000 km between southern and central Africa. The southern subspecies
(C. s. simum) ranged from South Africa to Namibia and Angola. The northern subspecies (C. s.
cottoni) ranged from Uganda to Sudan and the Central African Republic (Owen-Smith 1988).
Currently, C. s. simum is scattered across its former range, while C. s. cottoni is nearly extinct,
residing in a single reserve in Zaire (Owen-Smith 1988).

The skull of C. simum is long with a posteriorly elongated occiput (Figure 2-1) (Groves
1972). The nasals, premaxillae, and mandible are anteriorly shortened and widened.
Ceratotherium simum has a nasal and frontal horn, both often exceeding 1000mm (Laurie 1982).
The teeth of C. simum are high-crowned (hypsodont), the anterior dentition is lost, and the mouth

is wide with broad lips (Groves 1972, Owen-Smith 1988).



Ceratotherium simum is the largest extant rhino, and it is sexually dimorphic in body
size, with female and male body mass between 1600-1800 kg and 2000-2300 kg, respectively
(Laurie 1982, Owen-Smith 1988). Adult height at the shoulder is 1700-1850 mm (Groves 1972).

Ceratotherium simum lives in dry savannas and open forests (Groves 1972). It is a grazer
that feeds on tall and short grasses, depending on the season. Browse is only consumed
occasionally when feeding on grass (Owen-Smith 1988).

Diceros bicornis

Diceros bicornis, the black rhino, originally occurred across southern, eastern, and
central Africa (Owen-Smith 1988). Seven recognized subspecies existed in scattered populations
across this area, as far west as Cameroon, east into Kenya, and south into South Africa (Owen-
Smith 1988, Hillman-Smith and Groves 1994). Only three of the subspecies (D. b. michaeli, D.
b. bicornis, D. b. minor) currently exist in the wild (International Rhino Foundation, 2009).

The skull of D. bicornis is long with a high, posteriorly oriented occiput (Figure 2-1). The
nasals, premaxillae, and mandible are anteriorly shortened and constricted, forming a narrow
mouth. Diceros bicornis has a nasal and frontal horn, both of which are long and slender with
maximum lengths around 1300 mm and 800 mm, respectively (Hillman-Smith and Groves
1994). Its teeth are brachydont and anterior dentition is lost in adults, although rudimentary
incisors are often present in juveniles. A narrow, pointed, prehensile upper lip works with an
extending lower lip in feeding (Hillman-Smith and Groves 1994).

Diceros bicornis is medium in size for extant rhino species, with adult body mass up to
1100 kg, and adult body height between 1320-1800 mm. Diceros bicornis is not sexually

dimorphic in body size (Owen-Smith 1988).



Diceros bicornis lives in a wide range of closed arid habitats, such as mountain and
savanna forests, shrub steppes, grasslands, and semi-deserts (Hillman-Smith and Groves 1994,
Owen-Smith 1988). Diceros bicornis is a browser of leaves, twigs, shrubs, herbs, and occasional

grasses (Hillman-Smith and Groves 1994).

Figure 2-1. Skull images of extant rhino species. From top left, clockwise: R. unicornis (AMNH
54454), D. sumatrensis (AMNH 81892), C. simum (AMNH 51856), and D. bicornis (FMNH
127849).

2.2 TELEOCERAS

Evolutionary History

The genus Teleoceras contains nine species that existed in the Miocene and earliest

Pliocene of North America (e.g. Prothero 2005). Teleoceras is placed in the extinct tribe



Table 2.1. Ecological and morphological attributes of the four extant rhino species. Sources: 1. Owen-Smith (1988), 2. Groves (1972),
3. Groves and Kurt (1972), 4. Laurie et al. (1983), 5. Groves (1982), 6. Dinerstein (1991), 7. Hillman-Smith and Groves (1994), 8.

Laurie (1982), 9. Groves (1967), 10. Zschokke and Baur (2002), 11. International Rhino Foundation (2009)
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1600 kg (female)
2100 kg (male),
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Teleoceratini, which also contains several Old World genera (Heissig 1999). Teleoceras was the
sole teleoceratin representative in North America, and no Teleoceras remains have been found
outside of North America (Prothero 2005).

Teleoceras is first found in North America approximately 19 Ma in the Early
Hemingfordian North American Land Mammal Age (NALMA) (Prothero 2005). Eight species
succeeded the first, T. americanum; the temporal and geographic ranges of Teleoceras are
summarized in Table 2-2. Teleoceras species in the Hemingfordian and Barstovian NALMA
(19-16 Ma and 16-11 Ma, respectively) have been found in western and central plains regions of
the U.S. (Prothero 2005). Teleoceras brachyrhinum was an endemic species found only in New
Mexico, while T. americanum, T. medicornutum, and T. meridianum had more expansive
geographic ranges (Prothero 2005).

In the Clarendonian and Hemphillian NALMA (11-9 Ma and 9-4.5 Ma, respectively),
Teleoceras expanded into the southeastern U.S. Teleoceras proterum was an endemic species in
Florida, and four other species (T. major, T. fossiger, T. hicksi, and T. guymonense) were
widespread across the western and central U.S. (Prothero 2005).

Morphology

Several cranial, dental, and postcranial characters define the tribe Teleoceratini (Prothero
(2005). The skull is short and wide with a prominent occipital crest and robust zygomatic
arches. The nasal incision is above the anterior of P3, and a small, terminal nasal horn rugosity
is sometimes present. Lateral nasals are angled sharply ventrally. Limbs are shortened,
especially the distal segments. Carpals, tarsals, and metapodials are flat and robust, and the
calcaneal tuber is long. The lower tusks are exaggerated and the honing upper incisors are large

(Heissig 1989, 1999).



Table 2-2. Temporal ranges (above) and geographic ranges (below) of the nine Teleoceras species. Dates and states from Prothero
(2005). Abbreviations refer to U.S. states.

19.2. - 16.0 Ma 16.0-11.0 Ma 11.0-8.8 Ma 8.8-4.5Ma
Hemingfordian Barstovian Clarendonian Hemphillian
Early | Middle Late Early Middle Late Early Middle Late | Early | Middle Late

---------- T. americanum-----

-------- T. medicornutum--------
-------- T. meridianum-----------
------------------------------- T. brachyrhinum------------------------

----------- T. major-----------

-T. proterum-
-T. fossiger--
----------- T. hicksi--------

-T. guymonense-

T. americanum T. medicornutum T. meridianum T. brachyrhinum T. major
NV, CO, NE NV, CO, TX, NE TX, NE NM NV, TX, NE, SD, KS
T. proterum T. fossiger T. hicksi T. guymonense
FL NV, TX, OK, NE, SD, KS | Mexico, AZ, NM, NV, TX, NM, TX, OK, KS
CO, NE, KS, FL
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Teleoceras is distinguished within the Teleoceratini by several cranial and dental
characters (Figure 2-2) (Prothero 2005). Zygomatic arches are especially wide and robust.
Nasals are narrow and fused with a small terminal horn. Tusks are long, sharp, curved
anteriorly-dorsally, and teardrop-shaped in cross-section. Teeth are hypsodont, P1/p1l are lost,
and P2/p2 are occasionally lost. Heissig (1989) noted that limbs of Teleoceras are further
shortened compared to other teleoceratins.

In the Teleoceras lineage, some morphological traits gradually changed from the
Hemingfordian through the Hemphillian, as discussed by Prothero (2005). For example, the
teeth became more hypsodont, and limbs became shorter and more robust. Overall size, as
estimated by the length of lower molars 1-3 (m1-3), increased up to the Early Hemphillian and
decreased through the Late Hemphillian. Differing morphological characters, some of which
also gradually changed through time, distinguish Teleoceras species. For example, T. major is
distinguished from its predecessor T. medicornutum by having a shorter and wider skull, shorter
nasals, and shorter and more robust limbs (Prothero 2005). Species also are distinguished by
distinct differences in adult size. Both T. meridianum and T. guymonense were approximately
20% smaller than respective coexisting species, T. medicornutum and T. hicksi (Prothero 2005).

Teleoceras had different body dimensions than extant rhinos. Osborn (1898) compared a
complete T. fossiger skeleton to an R. unicornis skeleton, noting similarities in length (3.1 m) but
differences in height at the shoulders (1.21 m in T. fossiger and 1.69 m in R. unicornis). Osborn
(1898) also described the T. fossiger skeleton as having shorter limbs and a wider rib cage than
R. unicornis, and he indicated that Teleoceras was shorter and closer to the ground, resembling

the body shape of a hippo more than a rhino.
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Figure 2-2. Skull image of Teleoceras major (UNSM 52288).

Paleoecology

Due to its hypsodont dentition, a grazing niche has been historically suggested for
Teleoceras (Osborn 1898, Matthew 1932), and two studies support this feeding ecology
suggestion. Voorhies and Thomasson (1979) found fossilized grass remnants from sediments
where throats and rib cages would be in several T. major skeletons from Ashfall Fossil Beds in
Nebraska. The grass remains were viewed as a paleodiet indicator for Teleoceras. Mihlbachler
(2001) and Mihlbachler et al. (2004) presented a morphological argument for a grazing lifestyle
in Teleoceras based on comparisons with extant and extinct rhinos. Both Teleoceras and
Chilotherium, a Eurasian Miocene rhino, had short skulls, horizontal head orientations,
hypsodont teeth, large tusks, and shortened limbs (Mihlbachler 2001, Mihlbachler et al. 2004).
Heissig (1999) previously proposed that Chilotherium needed a horizontal head orientation for
tusk fighting. Heissig (1999) also believed that shortened limbs were a solution to be close to the
ground for grazing, which would not be possible with a short, horizontally oriented skull and
long limbs. Mihlbachler (2001, et al. 2004) used the same explanation for Teleoceras,

suggesting the shortened limbs of Teleoceras were an adaptation for short-grass grazing.

12



An investigation by MacFadden (1998) indicated that the feeding ecology of Teleoceras
might not be as simple as previously supposed. To examine the diet of Teleoceras, MacFadden
(1998) analyzed stable carbon isotopes of T. proterum teeth from Florida localities. From 9.5-
7.0 Ma, T. proterum had 8*3C values suggesting a diet of C; grasses and browse. From 7.0-4.5
Ma, T. proterum had 8'*C values suggesting a diet of primarily C, grasses. MacFadden (1998)
hypothesized that Teleoceras was a mixed feeder, and the change in delta **C values reflected an
increase in grass intake related to the spread of C4 grasses at the end of the Miocene.

In addition to its feeding niche, the combative behavior of Teleoceras has been
investigated. Webb (1969) discussed the presence of nasal bone wounds healed-over on a male
Teleoceras skull. Although the nasal rugosity of Teleoceras is small compared to extant rhinos,
this evidence suggests that Teleoceras also aggressively used its horn for combat, possibly in a
male butting contest as Webb (1969) suggested.

2.3 RHINOCEROTIDAE
Tusks and Horns

All extant and extinct rhinos are members of the Family Rhinocerotidae, which was
defined by Radinsky (1966) as the perissodactyl group ancestrally sharing a shearing mechanism
between the 11 and i2. The 11 are extended ventrally as chisels that shear against the anteriorly
elongated and pointed i2. In the early Oligocene, European Epiaceratherium and North
American Trigonias are the first genera to display this uniqgue mechanism (Radinsky 1966).
Descendants that may have lost the 11-i2 shearing function, such as extant C. simum and D.
bicornis, also are included as members of the Rhinocerotidae.

Extant and extinct rhinos all share a combination of tusks and/or horns used as weapons

(Figure 2-1), although horns are not synapomorphies for the Rhinocerotidae (Prothero et al.
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1986). In extant rhinos, three combinations of tusks and horns are present. Rhinoceros unicornis
and D. sumatrensis have a small nasal horn and enlarged lower incisor tusks; Dicerorhinus
sumatrensis also has a small frontal horn (Owen-Smith 1988). Rhinoceros unicornis males
primarily spar using tusks, while the horns are used secondarily (Dinerstein 1991). Conversely,
C. simum and D. bicornis have large nasal and frontal horns with no anterior dentition; the horns
are used in combat and defense (Berger 1994). Teleoceras has a weapon combination similar to
R. unicornis, with tusks and a nasal horn, but some extinct rhinos displayed a further diversity of
weapon combinations. For example, the North American rhino genus Aphelops had a large i2
tusk with no shearing 11 or horns, and the North American rhino genus Menoceras had the 11-i2
shearing mechanism as well as laterally paired nasal horns (Prothero 2005).
Evolutionary History

In the Rhinocerotidae, several tribes within four subfamilies (Diceratheriinae,
Menoceratinae, Aceratheriinae, and Rhinocerotinae) represent different evolutionary lineages
(Prothero et al. 1986). Extant rhinos are separated within the subfamily Rhinocerotinae into two
different tribes, the Rhinocerotini (Rhinoceros and Dicerorhinus) and the Dicerotini
(Ceratotherium and Diceros) (Groves 1983). Although they never expanded into North
America, both groups had a wide geographic range in Europe, Asia, and Africa. The
Rhinocerotini primarily existed in Asia while the Dicerotini mostly inhabited Africa (Owen-
Smith 1988, Heissig 1989).

Rhinocerotini are first found in the late Oligocene with Dicerorhinus in Europe and Asia
(Owen-Smith 1988, Heissig 1989). Based on fossil records, the extant species D. sumatrensis

originated in the middle Miocene in Southeast Asia (Heissig 1989). Rhinoceros is found in the
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late Miocene in Africa and early Pliocene in Asia (McKenna and Bell 1997). Rhinoceros
unicornis remains date back to the Pleistocene (Laurie et al. 1983).

Dicerotini originated in the middle Miocene in Africa with Ceratotherium neumayri the
earliest representative of the genus (Geraads 2005). Diceros arose in the early Pliocene, and
specimens identified as belonging to extant D. bicornis and C. simum are first found in the early
Pleistocene (Geraads 2005). Ceratotherium neumayri exhibits an intermediate set of skull
characters between that of C. simum and D. bicornis, which Geraads (2005) interpreted as an
indicator of a mixed feeding diet. Ceratotherium simum and D. bicornis lineages likely diverged
towards grazing and browsing diets in the early Pliocene (Geraads 2005).

The tribe Teleoceratini includes Teleoceras and Eurasian Aprotodon,
Brachydiceratherium, Diaceratherium, Prosantorhinus, and Brachypotherium (Heissig 1989,
Prothero 2005). Brachydiceratherium is the earliest known teleoceratin, first found in the Late
Oligocene of France (Heissig 1989, 1999). Phylogenetic affinities of the teleoceratins are
disputed, with the tribe placed in the Aceratheriinae (Heissig 1989, Cerdefio 1995) or
Rhinocerotinae (Prothero et al. 1986).

2.4 ECOLOGY
Grazers, Browsers, and Mixed Feeders

Extant rhinos are all exclusively herbivores, which consume two basic types of
vegetation: dicotyledonous material and grass. Commonly called browse, dicotyledonous
material consists of leaves, stems, and fruits from woody and herbaceous plants. Compared to
grasses, dicotyledonous material is generally softer with a higher nutritional value. Grasses have
more silica, fiber, and grit, making them more difficult to digest than dicotyledonous material

(Owen-Smith 1988, Sanson 2006).
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Herbivorous ungulates are generally classified into three feeding categories determined
by the percentage of grass and dicotyledonous material in the diet. Hofmann and Stewart (1972)
defined these categories as grazer, browser, and mixed feeder. A grazer consumes more than
90% grass, a browser consumes more than 90% dicotyledonous, and a mixed feeder consumes
both grass and browse with neither amounting to more than 90% of the diet. Hofmann (1973)
discussed these three feeding categories as ecologically significant groupings by associating
them with stomach anatomy.

Several investigations have correlated these feeding categories with skull morphology
and dentition in perissodactyls and artiodactyls. Perhaps the most accurate predictor of feeding
preference is molar crown height (Janis 1995). Due to the abrasive nature of grasses, grazers
generally have hypsodont molars to process grass over a lifetime. Consuming softer and less
abrasive vegetation, browsers have brachydont molars. With an intermediate diet, mixed feeders
typically have intermediate crowned (mesodont) molars (Janis 1995).

Janis and Ehrhardt (1988) quantitatively correlated muzzle shape with feeding categories
in herbivorous ungulates. Using the ratio of palate width to premaxilla width, Janis and Ehrhardt
(1988) found that grazers have broad muzzles, browsers have narrow muzzles, and mixed
feeders have intermediate muzzle widths. These findings supported the hypothesis that broad
muzzles aid in consuming large quantities of less nutritional grasses, while narrow muzzles help
in selecting edible parts of nutritious dicotyledonous plants.

The primary mastication muscles also have been used to understand feeding ecology in
herbivorous ungulates. In the mammalian skull, the two primary external adductor muscles are
the masseter and temporalis, which provide most of the jaw movement forces during mastication

(Figure 2-3) (Smith 1993). The temporalis, which primarily controls closing movements of the
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jaw, originates on the parietal and occipital crests of the skull and inserts on the coronoid process
of the mandible (Homberger and Walker 2004). The masseter, which provides mediolateral jaw
movements, has deep and superficial portions (Smith 1993, Homberger and Walker 2004). The
deep masseter originates on the posterior maxilla and the medial surface of the posterior jugal,
and the superficial masseter originates on the anterior jugal. The deep masseter inserts in the
masseteric fossa of the mandibular angle and ramus, and the superficial masseter inserts along

the edge of the mandibular angle (Homberger and Walker 2004).

Temporalis ——»
origination

Temporalis >
insertion

Masseter >
origination

Masseter >
insertion

Figure 2-3. Masseter muscle and temporalis muscle originations and insertions. Depicted on a C.
simum specimen, AMNH 51890.

Relative sizes of the temporalis and masseter have been related to feeding categories in
herbivorous ungulates. In grazers, the size and force of the masseter are expected to be larger
because medial-lateral jaw movements need to be more powerful for grinding coarse vegetation
(Smith 1993, Janis 1995). In browsers, the temporalis muscle is thought to be larger for stronger

opening and closing motions of the jaw to snip dicotyledonous material (Mead and Wall 1998a).
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A suite of morphological characters has been associated with grazers and browsers. Janis
(1995) summarized two studies, Solounias and Dawson-Saunders (1988) and Janis (1990), that
described cranial, mandibular, and dental differences between grazers and browsers, with mixed
feeders often having intermediate states. Mendoza et al. (2002) provided a few more character
differences between grazers and browsers. From Janis (1990) and Mendoza et al. (2002), 12
character differences between grazers and browsers are described below, summarized in Table 2-
3, and depicted in Figure 2-4.

Characters 1-2 relate to the facial region of the skull. Premaxilla width to palate width
ratio describes muzzle shape. A low ratio indicates a narrow mouth opening compared to medial
palate width, which is expected for browsers that are selective in choosing highly nutritious
dicotyledonous material (Janis and Ehrhardt 1988). A high ratio indicates a wide mouth opening
compared to medial palate width, which is expected in grazers that need to consume a large
amount of less nutritious grasses (Janis and Ehrhardt 1988). The anterior maxilla above the
premolars is the region for lip muscle insertion, and browsers typically have a deeper and larger
area for the insertion of enlarged lip muscles for selective browsing (Janis 1995).

Characters 3-4, 8, and 11-12 relate to masseter muscle size, shape, and orientation. A
broader posterior maxilla and jugal reflect a greater attachment area for the deep masseter. A
further anterior extension of the jugal reflects a greater attachment area for the superficial
masseter. Strong curvature of the mandibular angle and a large size of the mandibular ramus
reflect a greater attachment area for the deep and superficial masseter (Janis and Ehrhardt 1988).
The height of the mandibular condyle above the occlusal plane is an estimation of the moment
arm of the masseter (Radinsky 1984, Homberger and Walker 2004). In contrast, characters 6-7

relate to temporalis muscle size, shape, and orientation. Braincase length estimates temporalis
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size anterior-posteriorly, and occipital height estimates temporalis size dorsal-ventrally (Pérez-
Barberia and Gordon 1999).

Characters 5 and 10 relate to housing space for molars. A deep mandibular body and a
posterior orbit location provide room for high-crowned mandibular molars that are common in
grazers (Radinsky 1984, Mendoza et al. 2002). Character 9 is also a character related to
dentition, a ratio of premolar row length to molar row length. Grazers often have a greater dental
surface area for grinding coarse vegetation, and artiodactyls and perissodactyls possess two
contrasting solutions (Janis 1995). Artiodactyl grazers tend to have a long molar row and a short
premolar row to form a long grinding surface (Janis 1995). Conversely, perissodactyl grazers
tend to have a premolar row that is equal to or longer than the molar row (Janis 1995).
Functional Morphology in Rhinos

Zeuner (1936, 1945) assessed the feeding ecologies of the Pleistocene woolly rhino
Coelodonta antiquitatis and the extant rhinos by comparing head orientations. As Zeuner
proposed, the strongly inclined occipital slope of C. simum directs the head towards the ground
for low-grass grazing in open habitats. Diceros bicornis has a slightly inclined occipital slope to
orient the head slightly towards the ground for browsing in open habitats. The vertical occipital
slope of R. unicornis directs the head horizontal with the ground for feeding on high-growing
grass and browse in closed habitats. As C. antiquitatis and C. simum had similar head
orientations, Zeuner (1936, 1945) concluded C. antiquitatis was likely an open grass grazer.

Heissig (1989) used horns and tusks to explain differences in posterior skull morphology.
Heissig (1989) reasoned that the primary use of horns for combat requires the head to be angled
towards the ground, while the use of tusks requires the head to be horizontally oriented. The

extant rhinos illustrate this reasoning, as the horn-fighting C. simum and D. bicornis have
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Table 2-3. Functional character differences between grazers and browsers. General character
states are summarized for 12 functional characters in perissodactyls, as described by Janis (1990)
and Mendoza et al. (2002).

Character Character Grazer Browser
Name Number Character Character
Premaxilla width / :
palate width 1 High Low
Anterior maxilla 2 Shallow Deep
Posterior _ma>_(|lla and 3 Large small
posterior jugal
Anterior jugal extension 4 Anterior Posterior
Orbit location 5 Posterior Anterior
Braincase length 6 Short Long
Occipital height 7 Low High
Mandibular condyle
height above occlusal 8 High Low
plane
Premolar row length / 9 High Low
molar row length
Mandibular body 10 Deep Shallow
Mandibular angle 11 More convex Less convex
Mandibular ramus 12 Large Small
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Figure 2-4. Twelve functional characters depicted on a D. bicornis specimen (AMNH 51890).
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inclined occipital slopes, while the tusk-fighting R. unicornis and D. sumatrensis have vertical
occipital slopes.

Heissig (1989) understood head orientation in rhinos differently than Zeuner (1936,
1945) and recognized other feeding adaptations to low-grass grazing. Horn-fighting rhinos like
C. simum and C. antiquitatis often have lengthened skulls, while tusk-fighting rhinos like
Chilotherium and Teleoceras often have shortened limbs. Both groups, therefore, can maintain
fighting position while being able to reach short grasses.
Purpose of Functional Morphological Comparison

Characteristic morphologies for grazers, browsers, and mixed feeders have been
documented in herbivorous ungulates with strong empirical evidence and quantitative analyses.
Further, skull morphologies in extant and extinct rhinos have previously been assessed,
demonstrating both the possibilities and difficulties of interpreting skull morphologies as
evidence of ecological adaptations. | hypothesize that comparisons of morphological attributes
of the extant rhinos and Teleoceras will suggest a grazing feeding niche for Teleoceras.
2.5 SKULL DEVELOPMENT
Ontogeny

Through ontogeny, or development, different parts of the mammalian skull undergo
various shape changes with growth, termed allometry. Tracing allometric shape changes through
ontogeny can provide insight into development of functional roles of the mammalian skull, such
as food acquisition, mastication, brain protection, and weapon support (Emerson and Bramble
1993). In light of function, these developmental insights may then be understood as adaptive

responses to the environment, involving feeding, competition, defense, and social-interactions.

22



To functionally assess skull development, an understanding of mammalian skull growth
is necessary. The vertebrate skull is generally separated into cerebral and facial components
based on differing functions and growth patterns. The primary divisions of the cerebral
component are the braincase, basicranium, and optic and auditory capsules. The facial
component contains the jaw, adductor musculature, dentition, and facial bones. In vertebrates,
especially mammals, the cerebral component develops mostly prenatally, while the facial
component develops mostly postnatally (Emerson and Bramble 1993).

Ontogenetic investigations of skull growth in the extant rhinos are relatively sparse.
Ontogenetic research has focused primarily on distinguishing between subspecies and
uncovering sexually dimorphic characters during growth. Groves (1967, 1975) completed the
most comprehensive ontogenetic assessments for D. sumatrensis and C. simum. Analyzing
skulls from complete ontogenetic sequences, Groves (1967, 1975) separated his specimens into
six dental stages. He provided cranial dimensions for each stage, distinguishing when adult size
is reached as well as when sexual dimorphism appears.

Among extinct rhinos, there is an even greater paucity of ontogenetic skull investigations,
primarily because few articulated and well-preserved ontogenetic sequences have been
discovered (Prothero 2005). The most descriptive work of an extinct rhino species’ ontogeny
was of Chilotherium wimani, a member of the subfamily Aceratheriinae from the Late Miocene
of China. Deng (2001) described cranial changes with growth of nine complete specimens
covering infant, subadult, young adult, and old adult age classes.

The extinct rhino species with perhaps the most extensive ontogenetic representation is T.
major preserved in the Ashfall Fossil Beds of the Late Clarendonian in Nebraska. More than

100 specimens of all ages are fully or partially articulated in 3-dimensional death poses, thought
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to represent a catastrophic death assemblage occurring over several days (VVoorhies 1985, Mead
2000). Exceptional examples of fossilization include the preservation of grass silicates in mouth
and stomach cavities, fetal contents, hyoid apparatuses, healed broken ribs, and mother-calf pairs
(Voorhies and Stover 1978, Voorhies 1985). The well-preserved ontogenetic sequence at the
Ashfall Fossil Beds provides a rare opportunity to investigate the functional development of
Teleoceras, as discussed below.

Sexual Dimorphism

Sexual dimorphism in mammals is a result of competition to reproduce, typically
displayed in males by increased body size and weaponry for combat and display (e.g. Zschokke
and Baur 2002). Dimorphism in body size and weaponry have been previously documented in
the extant rhinos. In R. unicornis adults, Groves (1982) found dimorphism in various cranial
dimensions including cranial length, zygomatic breadth, occipital height, and nasal breadth.
Dinerstein (1991) indicated dimorphisms between old adult males and females, including tusk
length, horn base circumference, and neck, shoulder, and skull dimensions. Groves (1982) found
that the subspecies D. s. sumatrensis and D. s. lasiotis could both be sexually demarcated by
nasal breadth. Furthermore, Groves (1982) stated that D. s. sumatrensis males had significantly
larger skulls. Ceratotherium simum males are significantly larger in body size and horn size, but
D. bicornis is completely monomorphic (Owen-Smith 1988).

These dimorphisms in extant rhinos are likely related to reproductive competition.
Rhinoceros unicornis males primarily fight using tusks, so enlarged tusk and body size are likely
advantages in combat for breeding rights (Dinerstein 1991). Larger horn base and body size in
males are also probable products of selection through reproductive competition, as horn-related

fights account for 50% of all C. simum adult male deaths in the wild (Owen-Smith 1988).
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Sexual dimorphism similar to that of the extant rhinos has also been documented in
Teleoceras. Osborn (1898) first inferred sexual dimorphism in Teleoceras, deducing that T.
fossiger males had larger and more rugose skulls, more pronounced nasals, and larger tusks.
Voorhies and Stover (1978) confirmed tusk dimorphism in T. major by finding fetal bones inside
an adult with smaller tusks, indicating that smaller-tusked individuals were indeed females.

Two quantitative assessments of sexual dimorphism in Teleoceras have expounded
Osborn’s initial findings. Mead (2000) investigated the Ashfall Fossil Beds T. major assemblage
and found statistically significant size dimorphisms in the cranium, mandible, postcrania, and
tusks. Dimorphic dimensions included cranial length, occipital width, mandibular length,
mandibular condyle height, and tusk diameter. Mihlbachler (2005) investigated sexual
dimorphism in T. proterum of Florida’s Love Bone Bed and Mixson’s Bone Bed. Disarticulated
specimens prevented an investigation of cranial and mandibular dimensions, but statistically
significant differences were found in postcrania and tusk size. These dimorphisms in Teleoceras
suggest that male body size and weaponry were equally important in reproductive competition as
in extant rhinos.

In sexually dimorphic species, there are three possible developmental patterns that can
result in male morphological enlargements. Males can have faster growth rates, later maturation
resulting in prolonged growth, or more resources invested to them in gestation or lactation
(Zschokke and Baur 2002). In the extant rhinos, males of dimorphic R. unicornis and C. simum
are known to reach sexual maturity later than females (Owen-Smith 1988), and faster growth
rates were found in C. simum males by Groves (1973). Also, in a study of captive R. unicornis
individuals, Zschokke and Baur (2002) found no dimorphic differences in growth rates or infant

mass, yet dimorphisms were found in adult body size. Therefore, later maturation and faster
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growth rates are probable developmental patterns that result in male morphological enlargement
in the extant rhinos.

Later maturation also has been determined as a cause for dimorphisms in Teleoceras.
Mead (2000) found that T. major males had prolonged limb growth and delayed epiphyseal
fusion. Mihlbachler (2005) indicated that the tusks of T. proterum males erupted later in life and
continued to lengthen until old age, while female tusks stopped growing a few years after
eruption. These findings suggest that similar developmental patterns are likely responsible for
sexual dimorphism in the extant rhinos and Teleoceras. Further ontogenetic investigations of
extant and extinct rhinos can further clarify morphological developments as adaptations in light
of social dynamics.
Captivity

Captivity can have varying effects on morphological development in rhinos, including
exaggerations of features and changes in growth rates. Groves (1982) found that captive R.
unicornis individuals developed higher occiputs and wider zygomatic arches and mastoids;
captive adults were also smaller than wild adults. Dinerstein (1991) documented faster than
normal growth rates in captive R. unicornis males. In an uncompetitive captive environment,
four-year old males were often as large as adult females; this was never the case in the wild
(Dinerstein 1991). Groves (1982) also reported that D. sumatrensis could be variably affected in
captivity; instances of enhanced, stunted, and unaffected growth all were described.

Captivity can also result in retarded dental development in rhinos. Goddard (1970)
observed that D. bicornis captives often displayed retarded dental eruption and wear. For
example, a seven-year old had a dental age of five-years, and a 34-year old had a dental age of

25 years. Hillman-Smith et al. (1986) also indicated retarded eruption rates in a C. simum calf
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reared on an artificial diet. Captive specimens, if included in ontogenetic assessments, need to
be assessed for dental and skull development inconsistencies among non-captive specimens of
similar ages to ensure accurate ontogenetic portrayals.
Purpose of Ontogenetic Investigation

A comparison of the developmental patterns in extant and extinct rhinos is possible with
a full ontogenetic sequence of well-preserved and articulated Teleoceras skulls, and an expansive
extant rhino skeletal collection in American natural history museums. By comparing the growth
of these rhinos, and by placing emphasis on skull shape, muscle attachment sites, and tusk and
horn changes, shared and species-specific developmental patterns can be elucidated. |
hypothesize that differences skull development will be understood as adaptations related to

functional morphology, feeding ecology, and sexual dimorphism.
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CHAPTER 3. METHODOLOGY

The following methods were used to investigate functional morphology and development
of extant rhinos and Teleoceras. Specimens from Teleoceras and four extant rhino species
across all ages were obtained from museums in the United States. A dental age classification
method was used to assign all specimens to comparable age groups. Functional character states
for each species’ ontogeny were described. Dimensions to describe functional and ontogenetic
differences and use for statistical analyses were measured on each specimen. Digital images of
each specimen were taken for use in geometric morphometric shape analysis techniques. These
methods are described in detail below. Statistical analyses using measurement data were
completed using the program PAST (Hammer et al. 2009). Geometric morphometric analyses
were completed using PAST and MorphoJ (Klingenberg 2008).
3.1 SPECIMENS

Teleoceras major specimens from Ashfall Fossil Beds are held at the University of
Nebraska State Museum (UNSM) in Lincoln, Nebraska. Twenty-seven individuals had
articulated crania and mandibles with complete dentition allowing age classification,
morphological descriptions, a series of measurements, and photo documentation. Adult males
and females were easy to distinguish by sexually dimorphic tusk size. Specimens with erupted
tusks were visually sexed based on two noticeable groupings of overall tusk size (Mead 2000).
Sex identification for some specimens was not possible because adult tusks were not erupted. Of
the 27 specimens, there were two adult males, 13 adult females, and 12 unsexed pre-adults.

The extant rhino samples consisted of specimens from four museums: the American
Museum of Natural History (AMNH), in New York City, New York; the Field Museum of

Natural History (FMNH), in Chicago, Illinois; the National Museum of Natural History
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(USNM), in Washington, DC, and UNSM. A total of 68 specimens had articulated crania and
mandibles with complete dentition, allowing for age classification, morphological descriptions, a
series of measurements, and photo documentation. In total the species’ sample sizes were: R.
unicornis, n =15; D. sumatrensis, n = 7; C. simum, n = 20; and D. bicornis, n = 26.

The samples contained specimens with documentation of different subspecies, sexes, and
environments (wild versus captivity). The specimens’ developmental histories might be
considerably different, and combining all specimens into one sample could result in inaccurate
ontogenetic portrayals and comparisons. Assessments of sample differences in sex, subspecies,
and environment are discussed below.

Sex Differences

In the extant rhino sample, the male-female ratio for was mostly even with 21 males and
24 females. However, 23 of the total 68 specimens (34%) were of unreported sex. Specimen sex
counts are included in Table 3-1. Upon inspection of extant rhino specimens, no morphological
sexual differences were visually apparent. The males, females, and unsexed specimens formed a
uniform developmental series, and all individuals were included in ontogenetic descriptions.
Morphometric differences among sexes were statistically tested, and the methods are discussed

in the Traditional Morphometrics section.

Table 3-1. Specimen counts for male, female, and unknown sex for the five species.

Sex / Species | T.major | R.unicornis | D.sumatrensis | C.simum | D. bicornis
Male 2 6 2 5 8
Female 13 5 2 10 7
Unknown 12 4 3 5 11
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Subspecies Differences

In the extant rhino samples, only C. simum specimens were identified to subspecies: C. s.
cottoni (18) and C. s. simum (2). Ceratotherium simum cottoni specimens were from Zaire,
Sudan, and Uganda, while C. s. simum specimens were from South Africa. For D. sumatrensis,
five specimens were from Burma, Sumatra, Borneo, or Malaysia, and two specimens were from
unknown localities. Therefore, based on the geographic ranges of its subspecies, at least two
subspecies, D. s. harrissoni and D. s. sumatrensis, were present in the sample. For D. bicornis,
there were 13 specimens from Kenya, seven from Tanzania, and eight from unknown localities.
Based on subspecific distributions from Hillman-Smith and Groves (1994), the Kenyan
specimens were either D. b. ladoensis or D. b. michaeli, and the Tanzanian specimens were D. b.
minor. At least two subspecies were therefore present in the sample.

Subspecific differences in morphology exist in the extant rhinos. Groves (1975) found
that C. s. simum has slightly larger cranial dimensions than C. s. cottoni. The D. sumatrensis
subspecies are primarily distinguished by skull length, occiput size, and zygomatic breadth
(Groves 1965, 1967). Variations in skull size exist among the D. bicornis subspecies as well
(Hillman-Smith and Groves 1994).

As the samples contain several subspecies, potential subspecific differences in the sample
must be addressed. Upon visual inspection of the samples, no subspecific differences in
morphological development were apparent. Each species’ specimens formed uniform
developmental series, and all individuals were included in ontogenetic descriptions.

3.2 AGE CLASSIFICATION
To make meaningful comparisons, an age classification method with applicable ageing

criteria for all species must be used. Two dental ageing methods are commonly used on extant
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rhino specimens. Cementum line counting is a method that estimates chronological age with
annual growth increments in teeth. Teeth are sectioned to visually count the internal cementum
lines (Hitchins 1978). Cementum line counting can provide precise age estimations, but the
method can be time-consuming, expensive, and destructive, especially on fragile fossil
specimens. Dental eruption and wear classification groups individuals into classes based on
dental developmental stages. The stages are demarcated using sequential tooth eruptions and
wear patterns as criteria, and relative ages are assigned to groups. Although not as precise as
cementum line counting, dental classification can be quick, inexpensive, safe, and informative.

Previous studies have supplemented relative dental ages with chronological ages for D.
bicornis (Goddard 1970, Hitchins 1978) and C. simum (Hillman-Smith et al. 1986). Goddard
(1970) distinguished 20 mandibular age classes and provided chronological estimates for each
class using known-age individuals. Hitchins (1978) distinguished 18 mandibular and maxillary
age classes, and provided chronological estimates using cementum line counts; age estimations
were refined and supported using known-age individuals. Hillman-Smith et al. (1986)
distinguished 17 maxillary and mandibular age classes and provided age estimates with
cementum line counts and known-age individuals. No comprehensive dental development
studies have been completed for R. unicornis or D. sumatrensis.

Among these three studies, Goddard (1970) and Hitchins (1978) provided the most detail
for eruption timings and morphological wear patterns of each stage, especially for mandibular
dentition. Mandibular dentition in the T. major sample was better preserved than maxillary
dentition. Ventral crania were often fragile and fractured, thus limiting maxillary age

classification feasibility. Between these two studies, only Hitchins (1978) used both cementum
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line counts and known-age individuals for estimating chronological ages, so | assessed this age
classification method for consistency in the extant rhinos and T. major.

To use a single age classification method, eruption and wear patterns must be consistent
across all species. The D. bicornis eruption sequence for deciduous (d) and adult teeth as
described and depicted by Hitchins (1978) is dp2, dp3, p1, dp4, m1, p2, p3, m2, p4, m3. This
sequence is the order of teeth becoming fully erupted and beginning to wear. Two sets of teeth
have near synchronous eruptions: p1 and dp4, and p2, p3, and m2. Similar eruption sequences,
including the synchronous eruption of p2, p3, and m2, have been recognized in other extant
rhinos as well as in Teleoceras. Groves (1967) and Hillman-Smith et al. (1986) both reported
comparable sequences for D. sumatrensis and C. simum, respectively. Mihlbachler (2001) also
found the same eruption sequence in T. proterum. Upon inspection of the samples, the extant
rhinos and T. major all share the same eruption sequence.

Similar wear patterns among species must also be confirmed. The following are the D.
bicornis mandibular molariform wear patterns as described and depicted by Hitchins (1978), and
summarized by Mihlbachler (2001). Wear stage criteria for age classification are depicted and
described in Figure 3-1. Tooth-by-tooth wear stages are provided in Table 3-2.

The mandibular molariform teeth (dp3, dp4, p3, p4, m1, m2, and m3) are considered
erupting when they are just above the bone surface. The anterior lophid erupts slightly ahead of
the posterior lophid. Molariform teeth are fully erupted when both lophids are equal in height
and begin to show wear on the enamel polish. The anterior lophid begins to wear first, and it
remains ahead of the posterior lophid throughout the wear process.

As wear continues, dentine becomes exposed as a thin, lingually curved crescent on each

lophid; anterior and posterior exposed dentine is not initially joined. Dentine is exposed as a
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Infundibula

. Tooth is erupting above the bone surface.

. Anterior lophid has slight wear on the enamel polish.

. Anterior lophid dentine is exposed and posterior lophid has slight wear on enamel polish.

. Anterior and posterior lophid dentine is exposed but not joined.

. Anterior and posterior lophid dentine is joined.

. Anterior and posterior lophid dentine is wider with a constriction between the lophids.

. Constriction between lophids is reduced and anterior infundibulum reduced to enamel notch.
. Anterior infundibulum is worn away and posterior infundibulum is reduced to enamel notch.
. Anterior and posterior lophid enamel is worn away, forming a rectangular dentine surface.

O©CoOoO~NOoOOoThs, WwN PR

Figure 3-1. Molariform wear sequence for age class demarcation. Lingual and occlusal views of
the wear stages are provided for mandibular molariform dentition in rhinos, from Mihlbachler
(2001).
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Table 3-2. Wear stage criteria for age classification. Wear stages of the mandibular molariform

teeth are provided for each Age Class, as described by Hitchins (1978).

Ag_(le_(gf)[[arl]ss / dp3 dp4 m1l p3 m2 p4 m3
0
1 1
2 1
3 2,3 2,3
4 3,4 3,4 1
5 56,7 5,6 2,3
6 7,8 6, 7 3,4
7 7 4 1 1
8 4 2,3 2,3 1
9 4,5 3,4 3,4 3,4 1
10 56,7 4,5 4,5 4,5 1,2
11 6, 7 5 4,5 4,5 2
12 7 6 6 5,6 3,4
13 8 6,7 7 6, 7 4,5
14 8,9 7,8 7 7 56,7
15 8,9 8,9 8 8 6,7, 8
16 9 9 8 8,9 7,8
17 9 9 8,9 9 7,8

crescent because each lophid is lingually curved and hollow, an infundibulum. The

infundibulum narrows towards the root like a funnel. As wear increases, anterior and posterior

dentine crescents widen and eventually join. A buccal constriction develops between lophids,

forming an m-shaped dentine surface. Anterior and posterior dentine widens as infundibula

shrink with increased wear. Gradually, the buccal constriction widens and infundibula become

small enamel notches. The anterior infundibulum disappears, and the lophid becomes a flat and

straight dentine surface. When the posterior infundibulum disappears, all occlusal enamel on the

molariform tooth is worn away.
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3.3 DESCRIPTIVE MORPHOLOGY

Following age classification, crania and mandibles were articulated, and each species
sample was demarcated into groups based on shared morphological similarities among age
classes. The 12 character differences among grazers and browsers, as summarized by Janis
(1995) and Mendoza et al. (2002), were assessed and described in each species. The skull
morphologies of each species’ ontogenetic sequence were then described using right lateral and
dorsal viewpoints. Morphological changes of the dorsal cranium and lateral skull were described
in detail, with special attention given to the temporalis and masseter muscle attachment sites,
tusks, and horns. Captive specimens were assessed for dental and skull development
inconsistencies among non-captive specimens of similar ages.

3.4 TRADITIONAL MORPHOMETRICS
3.4.1 Measurements

Nineteen cranial, mandibular, and dental measurements were selected to statistically
investigate functional and ontogenetic differences in the species’ skulls. The measurements are
described in Table 3-3 and depicted in Figure 3-2.

Measurement 1 was selected as an overall size dimension. Total cranial length (TCL) has
been used to estimate body size in extant and extinct ungulates, and it has been used as the
standard in comparing mammalian skull shape changes (Radinsky 1981, McKinney and Schoch
1985, Wayne 1986). The measurement’s landmarks vary among studies; the anterior margin
(basion) and posterior margin (opisthion) of the foramen magnum are common posterior
landmarks, and the anterior-most premolar, premaxilla-maxilla junction, and premaxilla tip are

common anterior landmarks. Among the specimens in this study, the premaxilla and basion
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were often disarticulated or fractured, so the anterior-most premolar and the opisthion were
chosen as landmarks.

Measurements 2-5 were cranial dimensions selected to address ontogenetic changes, as
preliminary observations suggested these dimensions disproportionately change with growth.
Anterior cranial length (ACL) addresses the facial region. Medial cranial length (MCL)
addresses the orbit and zygomatic arch. Posterior cranial length (PCL) addresses the braincase
length, which is also a character of functional significance. Supraorbital width (SW) addresses
medial cranial width, possibly related to the frontal horn.

Previous ungulate studies have correlated these measurements with muscle size and
function. Occipital height (OH) has been related to temporalis size and exertion force (Pérez-
Barberia and Gordon 1999). Zygomatic width (ZW) has been correlated with temporalis size
(Joeckel 1990). Mandibular length (ML) has been used to approximate the mandibular lever arm
during mastication (Homberger and Walker 2004). Ramus length (RL) was measured to
approximate masseter insertion size, and condyle width (CW) has been associated with masseter
function while grinding (Joeckel 1990).

Measurements 11-19 were orthal and dental dimensions selected for functional
investigations, as correlations among these measurements have been used to predict ungulate
feeding preferences. Diastema width (DW) and maxillary posterior premolar width (MXPPW)
are similar to muzzle dimensions used in distinguishing grazers from mixed feeders and
browsers (Janis and Ehrhardt 1988). Anterior premolar width of the maxilla (MXAPW) was also
used to functionally assess the shape of the muzzle. The ratio of premolar row length to molar
row length has been used to distinguish grazers from browsers, so both maxillary (MXPL,

MXML) and mandibular (MNPL, MNML) dimensions were taken (Janis 1995). The total dental
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length of both the maxilla and mandible (MXDL, MNDL) were measured to address ontogenetic
changes of the total tooth row.

The above non-dental measurements were applicable for all ages and species. All
anatomical left and right measurements were taken for all length dimensions. Disarticulated and
fractured specimens prevented some cranial and mandibular dimensions from being measured.
The number of specimens with all cranial and mandibular dimensions measured is provided in
Table 3-5. All dental measurements were taken on the bone surface from the furthest buccal
corner of fully erupted teeth. Alveoli of shed teeth were not used as measurement landmarks.

An 80 cm aluminum caliper was used for measurements greater than 15 cm. A digital
caliper was used for measurements less than 15 cm. To address total potential error of an
individual measurement from the measurer and tools, a series of five repeated measurements
were taken on a D. bicornis specimen (AMNH 85175).

Table 3-3. Nineteen measurements taken on each specimen from all species. * indicates length
measurements with both right and left dimensions measured when possible.

Number Name Abbreviation Type Description
1 Total Crazlal TCL Cranial opisthion to anterior-most
Length premolar
5 Posterior Cianlal PCL Cranial opisthion to Igteral-most point of
Length zygomatic arch condyle

. . lateral-most point of zygomatic
3 Medial Crinlal MCL Cranial arch condyle to anterior-most
Length i )
point of orbit

Anterior Cranial anterior-most point of orbit to

4 Length* ACL Cranial posterior-most point of nasal
incision

lateral-most point of left
SW Cranial supraorbital process to
corresponding right process

Supraorbital
Width

Table continued
37




opisthion to posterior-most

6 Occipital Height OH Cranial midline point of occipital crest
Zvaomatic lateral-most point of left
7 Y90 ZW Cranial zygomatic arch condyle to
Width T
corresponding right condyle
Mandibular lateral-most point of mandibular
8 * ML Mandibular | condyle to anterior-most point of
Length . :
mandibular symphysis
posterior-most m to posterior-
9 Ramus Length* RL Mandibular most point of posterior ramus
bulge
lateral-most point of left
10 Condyle Width Ccw Mandibular mandibular condyle to
corresponding right condyle
left ventral-lateral premaxilla-
11 Diastema Width DW Cranial maxilla junction to
corresponding right junction
Maxillary .
12 Anterior MXAPW Dental Ié)(;‘:rzr;teorrl](()jri-nmor?t E t'\gltllo
Premolar Width P grg
Maxillary .
13 Posterior MXPPW Dental Iz]:)trfeosStgggirr;m?iSthT\gl\;O
Premolar Width P grg
Maxillary . .
14 Premolar MXPL Dental anterior-most PM to posterior-
most PM
Length*
15 Maxillary Molar MXML Dental anterior-most M to posterior-
Length* most M
Maxillary . .
16 Dentition MXDL Dental anterior-most PM to posterior-
- most PM
Length
Mandibular anterior-most pm to posterior-
17 Premolar MNPL Dental mogt m P
Length* P
Mandibular anterior-most m to posterior-
18 Molar Length* MNML Dental most m
Mandibular anterior-most pm to posterior-
19 Dentition MNDL Dental P P
most m
Length*
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OH

TCL

PCL
ACL

MCL

SW W

ML

RL

Figure 3-2a. Cranial and mandibular measurements taken for morphological analyses (D. bicornis
specimen, FMNH 22366). See Table 3-3 for measurement abbreviation explanations.
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MNML MNPL
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MNDL

MXAPW MXPPW

MXDL

DL

MXPL MXML

Figure 3-2b. Mandibular and dental measurements taken for morphological analyses (D. bicornis
specimen, FMNH 22366). See Table 3-3 for measurement abbreviation explanations.
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3.4.2 Measurement Error

Basic statistics were determined with PAST (Hammer et al. 2009) for each set of five
repeated measurements from an adult D. bicornis specimen to assess measurement error. The
coefficient of variation (CV) of a sample measures variability relative to the sample mean. CV is
an appropriate measure for sample comparisons of a wide range of magnitudes (Goto and
Mascie-Taylor 2007). With repeated measurements varying between 48.84mm (DW) and
523mm (TCL), CV was the measure of variability used for assessing measurement error.

The following statistics were reported for the repeatedly measured D. bicornis specimen
in Appendix 1: minimum, maximum, mean, standard deviation (SD), and CV. The CVs for all
measurements ranged between 0.146% (MXML) and 2.870% (DW), with a mean of 0.557%.
With the DW value removed, the mean was 0.480%.

A small CV difference exists between the two measurement tools (Table 3-6). For the
ten manual caliper measurements (>15 cm), the CV mean was 0.423%. For the nine digital
caliper measurements (<15 cm), the CV mean was 0.720%. However, when the diastema
measurements were removed from the digital caliper sample, the CV mean was only 0.555%,

closer to the manual caliper’s CV mean.

Table 3-4. Coefficient of variation (CV) results for the manual and digital calipers.

Measure %
CV Mean 0.55743
CV Non-Diastema Mean 0.48033
CV Manual Mean 0.42316
CV Digital Mean 0.72046
CV Non-Diastema Digital Mean 0.55508
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3.4.3 Asymmetry

Asymmetry between right and left sides is common in an organism, and the degree of
asymmetry in a population is a result of both genetic and environmental influences (Hammer
2002). Asymmetry in fossil specimens also could be a result of postmortem warping. As
asymmetry could arise from several influences, assessing the degree of asymmetry could
elucidate developmental differences among species.

Assessing the degree of asymmetry is also important to maximize specimen coverage in
statistical analyses. Acknowledging and understanding the degree of difference between right
and left sides across ages and species is necessary for specimens with only one measurable side
dimension. More specimens could be included in the analyses if specimens with missing side
dimensions were comparable to specimens with both side dimensions measured.

To assess asymmetry, an Asymmetry Index was calculated for each of a specimen’s 12
left-right measurements. The index is a size-independent percentage of asymmetry comparable

for all ages with the right measurement chosen as the standard (Rossi et al. 2003).

Right — Left
Asymmetrylndex = — | x100
Right

Using PAST (Hammer et al. 2009), the Kruskal-Wallis test for equality of medians was
used to assess asymmetry in the 12 dimensions among groups. The Kruskal-Wallis test has no
sample size or normality assumptions, a non-parametric equivalent to ANOVA (Hammer 2002).
For all Kruskal-Wallis tests with multiple pairwise comparisons, a significance level of 0.05 was
used for the overall test significance H-statistic. Following test significance, PAST reported
Bonferroni-corrected p-values for all pairwise comparisons. A value of 0.05 was used to test for

significance for these p-values.
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The specimens were divided into four age groups based on subsequent molar eruption:
Age Classes 1-4 (m1 not yet fully erupted), Age Classes 5-7 (m1 fully erupted), Age Classes 8-9
(m2 fully erupted), and Age Classes 10-17 (m3 fully erupted). Teleoceras major, C. simum, and
D. bicornis were each tested for equality in asymmetry among age groups for the cranial and
mandibular dimensions using the Kruskal-Wallis test. Due to small sample sizes, the age groups
of R. unicornis and D. sumatrensis were not tested using the Kruskal-Wallis test. Instead, the
total samples of R. unicornis and D. sumatrensis were tested for normality using the Shapiro-
Wilk test with a significance level of 0.05. Specimen counts are provided in Appendix 2.
3.4.4 Sex and Subspecies Differences

Two methods were used to assess sexual and subspecific differences in ten cranial and
mandibular variables in R. unicornis, C. simum, and D. bicornis. Teleoceras major was excluded
from this assessment because the Ashfall Fossil Beds sample reflects a population, and Mead
(2000) previously identified dimorphism in the same T. major sample. Dicerorhinus sumatrensis
also was excluded because of small sample size; only 4 specimens were from adults and only 4
specimens’ sex was identified. For the first method, each set of variables for adults of each
species was tested for a unimodal distribution using the Shapiro-Wilk test for normality with a
significance level of 0.05. Deviations from a unimodal distribution could be indicative of
morphological differences between sexes or subspecies. Second, permutation t-tests were used
to test characters for differences between male and female adult specimens of each species.
Permutation t-tests test the standard t-statistic with 10,000 random pairs of replicate comparisons
from the data set. The results are more accurate than standard t-tests for small sample sizes

(Hammer 2009). A significance level of 0.05 was used for each test. Both Shapiro-Wilk and
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permutation t-tests were completed using PAST (Hammer et al. 2009). Specimen counts for
tests are provided in Appendix 2.
3.4.5 Function

The following measurements and ratios were investigated for skull dimension differences
among species associated with feeding ecology: PCL, OH, RL, MXPL to MXML, MNPL to
MNML, DW to MXPPW, and MXAPW TO MXPPW (Table 3-3 for abbreviations). Adult
specimens (Age Classes 10-17) from each species were tested for differences in these functional
characters. The mean of left and right side measurements were used for dimension lengths.
Specimen counts are provided in Appendix 2.

Seven measurements and ratios were each tested for equality among species using the
Kruskal-Wallis test in PAST (Hammer et al. 2009). For all Kruskal-Wallis tests with multiple
pairwise comparisons, a significance level of 0.05 was used for the overall test significance H-
statistic. Following test significance, PAST reported Bonferroni-corrected p-values for all
pairwise comparisons. A value of 0.05 was used to test for significance for these p-values.
3.4.6 Allometry

Linear curve fitting techniques are the most common method for investigating allometric
changes, in which a dimension of interest (dependent variable) is fitted against a size estimator
(independent variable) (Hammer 2002). The slope of the fitted line between the dependent and
independent variables is used as the growth ratio (Klingenberg 1998).

The primary equation for assessing allometry is Huxley’s (1932) bivariate equation, Y =
b X ? where Y is the shape variable of interest, X is a measure of size, and a and b are the
coefficients that describe the fit (German and Meyers 1989). To transform the line of fit into a

straight line for ease in comparisons, morphometric data are often log-transformed, resulting in
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the equation Y =log b + a log X. When Y is regressed on X, the growth ratio, a, is a change in
Y for every unit X. Positive allometry of a shape variable has slope >1, negative allometry has
slope <1, and isometry (no change in shape with size) has a slope =1 (Gould 1966).

If multiple variables are involved, Jolicoeur’s (1963) multivariate generalization of
allometry is often used instead of numerous bivariate regressions. A principal component
analysis (PCA) produces linear combinations of the variables (components) to explain the most
variation in the sample (Hammer 2002). A PCA of log-transformed morphometric data produces
allometric growth estimations (Shea 1985). Jolicoeur (1963) found that the variable loading
ratios (eigenvectors) are proportional to Huxley’s bivariate slope estimations. Size is considered
to inherently affect all variables in a PCA, and it can be assessed and scaled equally using the
eigenvector of the first principal component (Giannini 2004).

With a large number of variables and species in this study, a PCA was the preferred
method to describe ontogeny and compare shape change of skull dimensions in the extant rhinos
and T. major. Cranial variables were tested separately from mandibular and dental variables
because some juvenile specimens were missing several mandibular and dental measurements.
The first variable set included 7 cranial variables with 91 specimens, and the second variable set
included 7 mandibular and dental variables with 86 specimens. The following specimens were
excluded from the second set of variables due to numerous missing measurements: UNSM
51101 (T. major, Age Class 4), AMNH 274636 and USNM 574963 (R. unicornis Age Class 1),
AMNH 54764 (D. sumatrensis, Age Class 2), and USNM 182019 (D. bicornis Age Class 0). In
the two variable sets, T. major, C. simum, and D. bicornis specimens represent a full range of

ages, but R. unicornis and D. sumatrensis specimens have less age coverage.
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Using PAST (Hammer et al. 2009), a PCA was completed for both data sets of each
species to estimate allometric coefficients for each variable. All data sets included a few missing
data points, which were accounted for by column average substitution PAST. Specimen and
missing data counts are provided in Appendix 2.

3.5 GEOMETRIC MORPHOMETRICS

To further assess and compare skull ontogenetic shape changes between T. major and the
extant rhinos, geometric morphometrics were used. Geometric morphometrics shape analysis
techniques can be used to assess, describe, and depict morphological shape. Landmark-based
methods use the coordinates of selected landmarks on specimen images as quantitative variables
for analyses (Zelditch et al. 2004).

Digital images were captured for all specimens using orthographic projection techniques
developed by the lab of Dominique Homberger and student Michelle L. Osborn. A rotating
surface with perpendicular axes was created for consistent skull placement for all species.
Crania and mandibles were articulated, and the occlusal planes were kept parallel with the
rotating surface (Figure 3-3). On the x-axis, skulls were aligned with the anteroposterior axis.
On the y-axis, skulls were aligned with the anterior orbit of the right and left sides. The camera
was placed at an equal height to the right zygomatic arch and aligned perpendicular to the y-axis;
the right lateral view of each specimen was captured.

For biologically meaningful shape comparisons among specimens and across groups,
landmarks must be anatomically homologous, and of an intersection, point, or tip of a structure
(Zelditch et al. 2004). Fifteen homologous landmarks were digitized using tpsDIG2 (Rohlf
2008) on all specimen images possessing the complete set of landmarks (52 total specimens).

Landmarks were chosen to fully cover the skull and to track ontogenetic shape changes. (Teeth
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were not used as landmarks to maximize inclusion of specimens from all ages.) Landmarks are
depicted in Figure 3-4 and described in Table 3-5, and specimen counts for each species are
provided in Appendix 2.

Landmark coordinates were entered into MorphoJ (Klingenberg 2008) for data
manipulation. Six data sets were created, one for each of five species and one with all five
species together. Landmarks were normalized across specimens using Procrustes
superimposition, which scales, rotates, and aligns the specimens by least squares distances
among corresponding landmarks (Hammer 2002). Procrustes superimposition does not change
the shape of the structure, and the shape becomes independent of size.

Specimen outliers were then assessed in MorphoJ using the squared Mahalanobis
distance, which estimates how unusual a specimen is from the sample; no significant outliers
were apparent. A wireframe outline joining the landmarks was created in PAST and Morphol
for each of six data sets to aid in depicting shape change among related landmarks (Figure 3-5).

Normalized shape variables in MorphoJ were used for two statistical analyses, PCA and
CVA (canonical variate analysis) to compare shape variation within and among groups. A PCA
is an ordination technique that produces new variables (components) with linear combinations of
original variables (Zelditch et al. 2004). The new variables can simplify the patterns of variation
among individuals in a sample. Multiplying shape variables by the PC coefficients results in
vector displacements of the landmarks that correspond to each component and depict shape
variation. A PCA of shape variables was completed in MorphoJ for each of the five species to
compare ontogenetic shape changes. The significant components in each analysis were used to
assess the landmarks that contribute most to the variation and shape change within a species. A

minimum of 10% of the variance explained was the basis of cutoff for significant components.
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Figure 3-3. Orthographic alignment of specimens (D. bicornis specimen, FMNH 127849).
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Figure 3-4. Landmark depictions for geometric morphometric analyses. The 15 landmarks
are depicted on a T. major juvenile specimen, UNSM 52245 (above) and a D. bicornis adult
specimen, FMNH 127849 (below). See Table 3-10 for the list of landmarks.
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Table 3-5. Morphological descriptions of the landmarks, as shown in Figure 3-4.

Landmark Description
1 The dorsal-most point of the occipital crest
2 The dorsal junction of the occipital condyle with the occipital plate
3 The dorsal-most point of the mandibular condyle
4 The posterior-most projection of the mandibular muscle attachment band
5 The anterior-most extension of the mandibular muscle attachment band
6 The center of the mental foramen
7 The anterior-most point of the mandible
8 The ventral-most junction of the maxilla and premaxilla
9 The posterior-most point of the nasal incision
10 The center of the infraorbital foramen
11 The center of the anterior orbital prominence
12 The anterior-most point of the nasals
13 The dorsal-most junction of the nasals and frontals
14 The anterior-most point of the jugal facial crest
15 The dorsal-most point of the zygoma

Figure 3-5. Wireframe outline of connected landmarks used to depict skull shape changes.

Different from PCA, CVA is a discrimination technique used to describe group
differences (Zelditch et al. 2004). A CVA linear uses linear combinations of original variables
like PCA, but group differences are used to maximize the separation of groups and to scale new

coordinate axes. Multiplying the shape variables by the CV coefficients produces vector
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displacements that help in visualizing the variables that best discriminate groups. A CVA of the
five species grouped Procrustes coordinates was completed in MorphoJ to distinguish shape
differences among the species’ ontogenies. CV specimen plots and landmark displacements
were assessed for the discriminating shape differences among species. A minimum of 10% of
the variance explained was the basis of cutoff for significant components.

Another method for visually assessing shape change uses the change in coordinates of a
specimen compared to a source configuration (Hammer 2002). Visual representations of this
deformation, termed thin-plate splines, can yield insight into shape changes within a species.
Deformation is broken down into uniform and non-uniform components. The uniform
component represents linear deformation such as scaling and stretching. The non-uniform
component is described by the partial warps, which are ordered from global changes to local
changes (Hammer 2002).

The landmark coordinates were entered into PAST for assessing each species thin-plate
splines. Five data sets were created, one for each species, and Procrustes superimposition was
performed on each data set. The partial warps were calculated, and the total ontogenetic
deformation (uniform and non-uniform together) for each species was visualized using thin-plate
splines. To assess allometric growth factors, local expansion and contraction of the grids, which
indicate changes in the primary growth centers through ontogeny, were assessed. The youngest

specimen was used as the reference configuration to display ontogenetic deformation.
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CHAPTER 4. RESULTS
4.1 AGE CLASSIFICATION

Upon inspection of extant rhino and T. major dentition, D. bicornis mandibular wear
patterns were consistent in all pre-adult specimens. In heavily worn teeth of old adults, two
inconsistencies were common. First, species occasionally displayed inconsistent wear stages of
the full tooth row compared to age class descriptions of Hitchins (1978). Mihlbachler (2003)
cited similar inconsistencies between T. proterum and D. bicornis. Mihlbachler (2003) used
development of the most recently erupted teeth for classification because they would have been
least affected by wear rate differences among individuals. The same age classification rationale
and methodology was used in this study.

A second inconsistency was development of isolated, ovular infundibula in the premolars
of old adult C. simum specimens. Ceratotherium simum molariform teeth have narrower lingual
dentine at comparable stages of wear in other rhinos. As premolars wear, dentine lingually joins,
forming an isolated infundibulum in Wear Stage 6. With heavy wear, infundibula gradually
shrink and disappear. Despite this difference in premolar development, all other aspects of C.
simum molariform wear were consistent with Hitchins (1978).

Overall, mandibular eruption and wear patterns described by Hitchins (1978) were
accurate and applicable in extant rhinos and T. major. Hitchins’s (1978) criteria were therefore
used confidently for age classification in this study. Using these criteria, each specimen was
placed into the most appropriate age class. Counts of species’ specimen numbers for each age

class are provided in Table 4-1.
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Table 4-1. Age Class specimen counts for each species

,?%e Cl_ass T.major R.unicornis D. sumatrensis C.simum D. bicornis
pecies
0 2
1 2 L
2 3 1 2
3 1 1 3 3
4 2 1 1
5 5 1 1 L
6 1 1 1
7 L ; .
9 1 2 L
10 2 1 2 1 L
11 5 3 1 2 2
12 3 3 3 4
13 2 1 2
14 2 1 2
15 1 1
16
17 L

4.2 DESCRIBED FUNCTIONAL CHARACTERS

Adult skull images of the five rhino species are provided in Figure 4-1 for depiction of
the functional characters described below. Refer to Table 2-3 and Figure 2-4 for explanations of
the functional characters.
Teleoceras major

The anterior maxilla above the premolars is short and shallow, and the nasal incision and
orbit are contracted (Appendix 3). In Age Classes 10-15, the ventral maxilla is rugose and
deeper, but still small in area. The posterior maxilla is thin and narrow below the jugal.
However, the jugal is dorsal-ventrally broad, and it expands significantly throughout ontogeny,

forming a very broad surface with the posterior maxilla.
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The anterior jugal angles anteriorly-dorsally and extends past the anterior orbit border. In
Age Class 4, the jugal develops a rugose ventral edge that gradually becomes sharper. The orbit
location is anterior. In Age Class 2, the anterior orbit is above the anterior of P3. In Age Class
15, the anterior orbit is above the middle of M1. The anterior skull appears contracted.

The mandibular condyle is even with the anterior orbital tubercle, forming a parallel
plane with the occlusal surface. The mandibular body is thin and anteriorly tapered in Age
Classes 2-3, and it deepens slightly in Age Classes 4-9. In Age Class 10, the mandibular body is
deep with less curvature. The mandibular angle is large and strongly curved with a pronounced
muscle attachment band. A substantial increase in curvature and size occurs in Age Class 10.
Rhinoceros unicornis

The anterior maxilla above the premolars is deep and narrow. The nasal incision and
orbit are close in Age Classes 1-8, and they separate from each other in Age Classes 11-13
(Appendix 3). In Age Classes 11-13, the maxilla increases in height, depth, and rugosity. The
posterior maxilla and posterior jugal deepen through ontogeny, forming an overall broad and
deep surface.

The anterior jugal ends behind the anterior orbit border. The jugal is parallel with the
occlusal surface, having a ventral edge that sharpens gradually. The orbit location is anterior.
The anterior orbit is above the anterior of P3 in Age Class 1 and above the posterior of P4 in Age
Classes 11-13.

The mandibular condyle is above the anterior orbital tubercle. The mandibular body is
thin and curved in Age Class 1. In Age Classes 3-13, the mandibular body is deeper and

anteriorly tapered, but overall is thin. The mandibular angle changes significantly. In Age Class
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1, the mandibular angle is small and gently curved. In Age Classes 11-13, the mandibular angle
is large and strongly curved with a pronounced muscle attachment band.
Dicerorhinus sumatrensis

The anterior maxilla above the premolars is high and wide. The nasal incision and
anterior orbit continually expand (Appendix 3), and the anterior maxilla heightens in Age
Classes 7-13. In Age Classes 10-13, the ventral maxilla is rugose. The posterior maxilla is thin
and the posterior jugal is narrow in Age Classes 2-8. In Age Classes 10-13 the maxilla and jugal
deepen slightly.

The anterior jugal ends behind the anterior orbit border. The jugal is parallel with the
occlusal surface, and the ventral edge sharpens in Age Classes 7-13. The orbit location is
medial. In Age Class 2, the anterior orbit is above the anterior of P3. In Age Class 13, the
anterior orbit is above the posterior of M1.

The mandibular condyle is slightly below the anterior orbital tubercle. The mandibular
body is very thin in Age Class 2 and only slightly deeper in Age Classes 7-13. In Age Class 2,
the mandibular angle is small and gently curved. In Age Classes 7-13, the mandibular angle
increases in curvature and size, but it remains small and not strongly curved.

Ceratotherium simum

The anterior maxilla is long, high, and smooth. In Age Classes 1-3, the nasal incision and
anterior orbit are close, but in Age Classes 4-14 they expand (Appendix 3). The anterior maxilla
increases in height and remains smooth. The posterior maxilla and posterior jugal are thin early
in ontogeny. In Age Classes 7-14, both the maxilla and jugal expand in depth, but they remain

moderately deep.
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The anterior jugal angles anteriorly-ventrally and extends past the anterior orbit border.
The rugose ventral edge of the jugal in Age Class 3 sharpens in Age Classes 7-14; the ventral
edge is long through ontogeny. The orbit location is posterior. In Age Class 1, the anterior orbit
is above the posterior of P3. In Age Class 14, the anterior orbit is above the middle of M2.

The mandibular condyle is even with the anterior orbital tubercle, forming a plane
parallel with the occlusal plane. The mandibular body is very deep and slightly curved. The
body deepens throughout ontogeny. The mandibular angle is gently curved. Mandibular angle
curvature and muscle attachment band robustness slightly increase in Age Classes 5-14.
Diceros bicornis

The anterior maxilla is large and rugose. In Age Classes 1-6, the nasal incision and
anterior orbit are close, but in Age Class 7-17, the two diverge (Appendix 3). Anterior maxilla
height and rugosity increase in Age Classes 7-17. The posterior maxilla and the posterior jugal
are thin. The jugal gradually expands ventrally and the maxilla below remains thin.

The anterior jugal ends behind the anterior orbit border. The jugal is parallel with the
occlusal surface, and in Age Class 5 a rugose ventral edge develops that sharpens through
ontogeny. The orbit location is medial. The anterior orbit is above the middle of P3 in Age
Class 1 and above the middle of M1 in Age Classes 14-17.

The mandibular condyle is below the anterior orbital tubercle. The mandibular body is
medial in depth. In Age Classes 0-3, the mandibular body is thin and gently curved, and in Age
Classes 4-17, the body deepens and straightens. The mandibular angle changes significantly. In
Age Classes 0-3, the mandibular angle is weakly curved. In Age Classes 10-17, the mandibular

angle is large and strongly curved, with a pronounced muscle attachment band.
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Figure 4-1. Adult skull images for depiction of described functional characters. Refer to Table
2-3 and Figure 2-4 for explanations of the functional characters. Top left: T. major (UNSM
52288); top right: R. unicornis (AMNH 54454); center: D. sumatrensis (AMNH 81892); bottom
left: C. simum (AMNH 51856); bottom right: D. bicornis (FMNH 127849).
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4.3 DESCRIBED SKULL ONTOGENY
Teleoceras major
Ontogenetic Sequence

The Teleoceras major specimens were morphologically and developmentally divided into
4 groups: Age Classes 2-3, 4-5, 8-9, 10-15. The ontogenetic sequence based on dental
development is provided in Appendix 4. Lateral skull images of specimen representatives for
each age group are provided in Figure 4-2.

Dorsal Cranium

Dorsal crania in Age Classes 2-3 are short, wide, and globular. Rounded, slightly
rectangular frontals join wider, rounder parietals posteriorly. The occipital crest is faint and
concave. The zygomatic arches have a slight U-shaped outline, flaring laterally at the jugal-
squamosal articulation. Temporal lines are not visible. The nasals are short and narrow to a
point. In Age Class 3, the posterior frontals are more stretched and narrowed, forming a
smoothly rounded hourglass shape with the parietals.

Dorsal cranium elongation distinguishes Age Classes 4-5 from other groups. The frontals
are further elongated, forming a rounded and stretched diamond. The parietals are laterally
rounded with a narrow, flat, midline surface bounded by the temporal lines, first appearing in
Age Class 4. The occipital crest is more prominent and slightly less concave. The nasals are
elongated and the zygomatic arches are longer with an increase in flare and robustness.

Frontal and parietal widening with the development of strong crests characterizes Age
Classes 8-9. The frontal diamond is wider and flatter, distinct from adjacent nasals and parietals.

The posterior frontals are narrowed, and the frontal-parietal suture is not visible beginning in
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Age Class 8. Near the frontal-parietal junction, the temporal lines have converged to a single
crest that connects with the occipital crest.

In Age Classes 10-15, the frontals and parietals are wider, but the posterior frontals and
anterior parietals narrow to a short cylinder between the zygomatic arches. Overall zygomatic
arch robustness has increased, and the dorsal-lateral edges are more medially rounded. The
nasals are also wider, and the nasal-frontal suture remains apparent in all Age Classes 10-15
specimens. The occipital crest is strongly concave.

Lateral Skull

Early-developed muscle attachment sites on a short and rounded skull distinguish Age
Classes 2-3. The mandibular angle is robust and strongly curved with ventral and posterior
bulges. The facial crest is long and sharp, and the lateral zygomatic arch is broad and robust.
The occiput, although small in size, has a sharp occipital crest. The parietal slope is inclined and
rounded, and the frontals and nasals are flat. The premaxillae parallel the nasals, and the
zygomatic arch parallels the dorsal parietal slope. The mandibular body is thin, curved, and
anteriorly tapered.

Mandibular and facial enlargements characterize Age Classes 4-5. The mandibular body
is deeper and longer, more proportional with the wide ramus. The mandibular angle is stronger
and more robust. The ventral-posterior maxilla is deeper, and the anterior facial crest is curved
dorsally. The premaxilla and nasals have lengthened. The occipital crest is sharper and oriented
dorsal-anteriorly, but the braincase is still round. The lateral zygomatic arch is broader and more
robust. All temporalis and masseter attachment sites increase in size in Age Classes 4-5.

Expansion of muscle attachment sites and overall lengthening of the skull characterize

Age Classes 8-9. The zygomatic arch is anteriorly-posteriorly expanded and the facial crest is
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broader. The mandibular ramus is wider with a stronger curve. The parietals are expanded
posteriorly and the parietal slope is flatter; the occipital slope is vertical. The frontals, nasals,
and mandibular body lengthen considerably.

Overall skull dimensions in Age Classes 10-15 are similar to Age Classes 8-9, but muscle
attachment sites are exaggerated. The zygomatic arch, facial crest, and mandibular ramus are
expanded. The occiput is more robust and its parietal slope is higher; the occipital slope is still
vertical. The mandibular body deepens considerably. All facial sutures are visible in Age Class
10 specimens. Sutures usually close in Age Classes 11-12, but all sutures are noticeable in

UNSM 5273 (Age Class 14). The jugal-zygoma suture is present in all individuals.

Figure 4-2. Lateral skull images representing the ontogenetic sequence for T. major. Top left:
Age Class 2 (UNSM 52245); top right: Age Class 5 (UNSM 52234); bottom left: Age Class 8
(UNSM 52232); bottom right: Age Class 14 (UNSM 52288).
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Horns
A slight nasal bump appears on the nasal tip in Age Class 5, and a small rugose area

appears in Age Class 10. The nasals are consistently parallel to the premaxillae in all age
classes, and little structural support is apparent. The most significant increases in nasal length
and robustness occur within Age Classes 5 and 8.

Tusks

The exact timing of lower second incisor (i2) tusk eruption cannot be determined from
the specimens available. In Age Classes 2-5, di2 are small, rounded, and peg-like. In an Age
Class 8 specimen (UNSM 52232), the i2 have erupted, having a lozenge or teardrop shape. The
tusks are short, suggesting they were recently erupted. The other Age Class 8 representative
(UNSM 52230) still has di2. There were no Age Class 6-7 specimens available for data
collection. These data suggest that di2 are shed between Age Classes 6-8, possibly during Age
Class 8.

During tusk growth, a change in tusk orientation occurs. Prior to tusk eruption the di2 are
anteriorly oriented, parallel to each other along the midline. In Age Classes 8-10 the tusks are
slightly splayed laterally, no longer parallel to the midline. Beginning in Age Class 11, as the
tusks further erupt and the mandibular symphysis widens, the tusks splay further laterally. All
specimens from Age Classes 11-15 have significantly splayed tusks.

Sexual dimorphism is apparent. Two of the 16 adult specimens have significantly longer
and wider tusks (UNSM 52272, UNSM 52288). These specimens are of Age Classes 11 and 14,
respectively. The other 14 specimens have negligible tusk differences other than wear.

Specimens UNSM 52272 and UNSM 52288 were interpreted as adult males.
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Non-Molariform Dentition

No specimens possess a mandibular p1. The mandibular permanent p2 is commonly shed
in adults, earliest evidence being in Age Class 10 (UNSM 52238), coinciding with m3 eruption.
Adults with m3 in wear occasionally retain p2. In the sample, 5 of 13 (38%) specimens Age
Class 10 and older retain at least one p2. The maxillary P1 is occasionally shed in adults; the
earliest evidence is Age Class 10 (UNSM 52238), coinciding with M3 eruption. Adults with M3
in wear often retain P1. Overall, 8 of 13 (62%) specimens Age Class 10 and older retain at least
one P1.

The specimens retain rudimentary first lower incisors (i1) or open il alveoli, in all age
classes. The incisors are short, thin, and rounded; they are located at bone level, or slightly
above. Inthe sample, 11 of 27 specimens (41%) have lower incisors, while 17 of 27 specimens
(63%) have il or empty il alveoli. All specimens without evidence of lower incisors have
fractured mandibular symphyses.

Rhinoceros unicornis
Ontogenetic Sequence

The Rhinoceros unicornis specimens were morphologically and developmentally divided
into 4 groups: Age Classes 1, 3-5, 6-8, 11-13. The ontogenetic sequence based on dental
development is provided in Appendix 4. Lateral skull images of specimen representatives for
each age group are provided in Figure 4-3.

Dorsal Cranium

Rounded frontals and parietals with slender zygomatic arches characterize the dorsal

crania in Age Class 1. The frontals and parietals are globular and similar in size, with the

frontals narrower than the parietals. The frontal-parietal juncture is slightly VV-shaped, forming a
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bilobed dorsal surface. The occipitals are thin, having a straight and unpronounced occipital
crest. The nasals are short, rounded, and triangular. The zygomatic arch outline is straight, and
the arches are slender, especially anteriorly. Temporal lines are not visible.

The development and subsequent stretching of a diamond-shaped dorsal surface
characterize Age Classes 3-5. This surface forms as frontals have posteriorly lengthened and
narrowed, and the postorbital processes are protruding. The nasals are longer, more robust, and
anteriorly rounded. The nasals and frontals together form a flat, stretched diamond across much
of the dorsal surface. The temporal lines, which appear in Age Class 3, form prominent posterior
edges of the diamond-shaped surface. The temporal lines converge then diverge on the parietals,
posteriorly joining with the occipital crest. The occipital crest is pronounced with a slightly
concave posterior edge. The zygomatic arches are longer and larger.

Further transformations to the diamond-shaped dorsal surface distinguish Age Classes 6-
8. The diamond-shape is further stretched and narrowed posteriorly, culminating as a thin and
sharp surface bounded by the temporal lines. The temporal lines and occipital crest are sharper,
and the occipital crest is more concave. Lateral of the temporal lines, the parietals are concavely
sloped, no longer convexly rounded. The parietal-occipital suture is not visible in Age Class 6,
while the frontal-parietal suture is no longer visible in Age Class 8.

Exaggerations of the nasals, frontals, and parietals characterize Age Classes 11-13. The
temporal crests are more prominent, and laterally, the parietal slope is steeper. The zygomatic
arches are more robust and the dorsal-lateral edges are medially rounded. The nasals are wider
and bulbous, and the posterior frontals are narrower. The nasal-frontal suture has disappeared in

Age Class 12.
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Lateral Skull

An undeveloped braincase, mandible, and muscle attachment sites typify Age Class 1.
The parietals are round with an inclined dorsal slope. The occipital slope is anteriorly inclined.
Thin zygomatic arches parallel the parietal slope. The facial crest is not pronounced. The dorsal
nasal surface is posteriorly flat, and it curves and thins to a point anteriorly-ventrally. The
mandibular body is thin, curved, and tapered anteriorly. The mandibular angle is gently curved
with a slight posterior bulge.

Transformations to the occiput, facial crest, and mandible distinguish Age Classes 3-5.
The parietals are higher and angular, shaped as a rounded triangle. The parietal slope is further
inclined, beginning above the anterior orbit; the occipital slope is nearly vertical. Anterior of the
nasal swelling, the nasals curve sharply ventrally. The zygomatic arch is more robust with a
sharp and short facial crest. The zygomatic arch is higher, paralleling the dorsal parietal slope.
The mandibular ramus is deeper and more strongly curved with the development of a peripheral
muscle attachment band. The peripheral band has anterior and posterior bulges. The mandibular
body is deeper and still curved and tapered anteriorly.

Continued transformations to the muscle attachment sites typify Age Classes 6-8. The
occiput is higher and more triangular. The parietal slope begins further posteriorly, above the
posterior orbit. The anterior zygomatic arch is broader, and the facial crest is longer and sharper.
The nasal swelling is higher. The mandible is overall more robust with the mandibular angle
more strongly curved dorsally. Both mandibular angle bulges are prominent, and the peripheral
muscle attachment band is posterior-ventrally extended and exaggerated in size. The mandibular

body is deeper.
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Age Classes 11-13 are characterized by exaggerations to the muscle attachment sites.
The parietal slope is more inclined and the occipital slope is nearly vertical, resulting in a high,
angular occiput. Zygomatic arch height, broadness, and robustness have increased, especially
anteriorly. The facial crest is sharper, and the maxilla anterior of the facial crest is broader.
Nasal curvature has increased anteriorly. The mandibular angle is strongly exaggerated,
anteriorly curving dorsal of the posterior bulge. The peripheral attachment band is expanded and
robust, having extremely prominent bulges. The mandibular body is deeper with a greater
anterior taper. All Age Class 11 specimens have visible sutures but no facial sutures are visible

in Age Class 12.

Figure 4-3. Lateral skull images representing the ontogenetic sequence for R. unicornis. Top
left: Age Class 1 (USNM 574963); top right: Age Class 5 (AMNH 119475); bottom left: Age
Class 8 (AMNH 54456); bottom right: Age Class 12 (AMNH 54454).
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Captive Specimens

One R. unicornis captive specimen, UNSM ZM13844, had a suspect age classification
because its visible jugal-zygoma suture implied an older age than the dentition. The jugal-
zygoma suture is no longer visible; all Age Class 11 specimens have noticeable jugal-zygoma
sutures. UNSM ZM13844 is the only classified Age Class 10 individual in the sample. The
specimen also had distinct skull morphology not present in the rest of the sample. It had a steep
parietal slope and zygomatic arch, steeper than all other specimens. The facial crest and jugal
are both unusually short. The characteristic smooth-sloped transition from the anterior parietal
slope to the nasal bulge is not present. Instead, the steep parietal slope transitions to a short
orbital bulge followed by a steep nasal inclination. A higher occiput and an anteriorly-
posteriorly compressed orbital region compared to other adult specimens result in an
uncharacteristic morphology, so UNSM ZM13844 was removed from the ontogenetic sequence.

Another captive R. unicornis specimen, FMNH 140833, was incomplete and damaged,
preventing a full assessment of its morphology; it was removed from ontogenetic descriptions.
The third captive R. unicornis specimen, FMNH 57639, displayed no age inconsistencies or
morphological distinctions, so it was included in the ontogenetic sequence.
Horns

Horn development is not constant through ontogeny. In Age Class 1, the nasals are
sloped anteriorly and ventrally. There is no dorsal swelling or rugosity present. In Age Classes
3-8, the dorsal swelling is present and it gradually increases. Anterior of the swelling, the nasals
curve sharply ventrally. The nasal horn rugosity first appears in Age Class 8, and it becomes

more robust throughout Age Classes 11-13.
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Tusks

A relatively complete ontogenetic sequence allows an estimate of di2 shedding and tusk
eruption. In Age Classes 1-6, di2 are small, rounded, and peg-like, and little size increase
occurs. By Age Class 8, the tusks are erupted, having a teardrop shape. Representatives of Age
Class 7 were unavailable for collection. The i2 eruption is estimated to occur in Age Classes 7-8.

A change in tusk orientation occurs during development. Prior to tusk eruption, di, are
anteriorly oriented and parallel to each other along the midline. In Age Class 8, the tusks are
slightly splayed laterally, not parallel to the midline. In Age Classes 11-13, as the tusks erupt
further and the mandibular symphysis widens, the tusks are splayed further. There are no
noticeable tusk size or shape differences between sexes, likely due to the small sample size.
Non-Molariform Dentition

The mandibular p1 is lost in all nine specimens Age Class 11 and older. No Age Class 9
or 10 specimens were in the sample, but an Age Class 8 specimen still retains pl. Therefore, the
pl is likely shed with m3 eruption. The maxillary P1 is occasionally lost in adults, the earliest
evidence being in Age Class 11, coinciding with M3 eruption. Adults with m3 in wear often
retain P1. Overall, 5 of 9 (56%) specimens Age Class 11 and older retain at least one P1.

The rudimentary il is occasionally present in the sample. The incisors are short, thin, and
rounded. All 15 specimens have il alveoli, and 4 of 15 (27%) specimens have il present. Some
i1 are retained in adults; for example, two Age Class 13 specimens (FMNH 25707, 57639) have
i1. Rudimentary second upper incisors (12) are also present early in ontogeny. The I2 are short,
rounded nubs at the bone surface in Age Class 1 (AMNH 274636, USNM 574963). The
premaxillae of Age Class 3 and Age Class 5 specimens are not preserved, and Age Class 6 and

older specimens show no sign of 12.
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Dicerorhinus sumatrensis
Ontogenetic Sequence

The Dicerorhinus sumatrensis specimens were morphologically and developmentally
demarcated into 3 groups: Age Classes 2, 7-8, 10-13. The ontogenetic sequence based on dental
development is provided in Appendix 4. Lateral skull images of specimen representatives for
each age group are provided in Figure 4-4.

Dorsal Cranium

Rounded frontals and parietals with thin zygomatic arches characterize the dorsal
cranium in Age Class 2. The frontals are fairly rectangular while the parietals are slightly larger,
more rounded, and narrowed posteriorly. The occipitals are thin and the occipital crest is a short,
straight, unpronounced line. The nasals are short, rounded, and triangular. The zygomatic
arches are straight and thin with no lateral flare. Temporal lines are not visible.

Elongated frontals, nasals and zygomatic arches typify Age Classes 7-8. The frontals and
parietals are rounded and narrowed posteriorly. The occipital crest is slightly concave. The
nasals are longer and terminally rounded, with a rugosity appearing in Age Class 8. The
zygomatic arches are long, straight, and robust posteriorly near the occipital articulation.
Temporal lines are visible but unpronounced in Age Class 8. The parietal-occipital and frontal-
parietal sutures are not visible in Age Classes 7 and 8, respectively.

Age Classes 10-13 are characterized by frontal-parietal continuity and nasal
exaggerations. The frontals and parietals are dorsally flattened and smoothly connected by the
temporal lines. In Age Class 13, the frontals are wider and rounder as the frontal rugosity
develops. Throughout Age Classes 10-13, the anterior nasals become rounder and wider, and the

nasal rugosity gradually expands. The nasal-frontal suture is not visible in Age Class 10. The
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temporal lines are pronounced and parallel to the midline. The parietals are rectangular, and the
occipital crest remains slightly concave. The zygomatic arches are robust in Age Classes 10-11,
and in Age Class 13 they are laterally extended.

Lateral Skull

A globular occiput, undeveloped muscle attachment sites, and thin mandible characterize
Age Class 2. A rounded parietal slope and an inclined occipital slope form a globular occiput.
The zygomatic arch is thin and parallel to the parietal slope, and the facial crest is indistinct. The
nasals thin to a point, curving ventrally. The thin mandibular body slightly tapers anterior of the
premolars. The mandibular angle is slightly curved with a weak posterior bulge.

An angular occiput and weak muscle attachment crests typify Age Classes 7-8. The
occiput is sharply triangular, having a further inclined parietal slope and a vertical occipital
slope. The occipital crest and temporal lines are visible but not prominent. The squamosal is
thin, the jugal is short and broad, and the facial crest is apparent but not prominent. The nasals
have a slight dorsal swelling, and in Age Class 8 the nasal rugosity develops. The mandibular
ramus is narrow with a rounded mandibular angle and noticeable anterior and posterior bulges.
The slender mandibular body tapers from the premolars to the incisors.

Increases in nasal and frontal swelling and slight muscle attachment site enlargements
characterize Age Classes 10-13. The parietal slope is increased, and the temporal lines and
occipital crest are sharper. A frontal swelling appears in Age Class 10; it enlarges through Age
Classes 11-13. The nasal swelling rises and the nasal tip curves more ventrally in Age Classes
10-13. The jugal is considerably broader. The facial crest is longer and sharper, and anteriorly
the maxilla is broader and extended. The mandibular angle is stronger and deeper with a

peripheral band. The anterior and posterior bulges are more prominent, especially in Age Class
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13. The facial sutures close in Age Class 10 except for the jugal-zygoma suture (Age Class 11)

and maxilla-jugal suture (after Age Class 11).

Figure 4-4. Lateral skull images representing the ontogenetic sequence for D. sumatrensis. Top:
Age Class 2 (AMNH 54764); bottom left: Age Class 8 (FMNH 63878); bottom right: Age Class
13 (AMNH 81892).
Horns

Nasal development mostly occurs in Age Classes 10-13. The nasals have a slight dorsal
swelling in Age Classes 2-8. In Age Classes 10-13, the nasal swelling becomes higher and the
nasal tip curves steeper ventrally. The nasal rugosity appears in Age Class 8, increasing through
Age Class 11, and the frontal rugosity appears in Age Class 11.
Tusks

The sample is small and incomplete, so the timing of di2 shedding and tusk eruption was

estimated based on two specimens. In Age Class 7, the alveoli are empty and the tusks are
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erupting, still below bone level. In Age Class 8, the tusks are erupted, and they have a lozenge
shape. These two specimens suggest that di, are shed in Age Class 7. During tusk growth and
development, a change in tusk orientation occurs. In Age Classes 8-11, the tusks are anteriorly
oriented, parallel to each other along the midline. In Age Class 13, the tusks are longer and
splayed laterally. The mandibular symphysis does not appear to have widened among these
stages. Due to the small sample size, size or shape differences between sexes are not discernible.
Non-Molariform Dentition

The mandibular pl is present in all specimens Age Classes 1-8 and lost in all specimens
Age Class 10 and older. Mandibular p1 loss may be associated with m3 eruption because m3
eruption occurs in Age Classes 9-10. The maxillary P1 is also shed, possibly earlier than the
mandibular p1. An Age Class 7 specimen (AMNH 173576) has heavily worn P1, while an Age
Class 8 specimen (FMNH 63878) has empty P1 alveoli. In specimens Age Class 10 and older,
P1 are lost with no alveoli remaining. Maxillary P1 loss may be associated with the synchronous
eruption of P2, P3, and M2, which were erupted with no wear in FMNH 63878. There is no
evidence of rudimentary lower or upper incisors in the sample.
Ceratotherium simum
Ontogenetic Sequence

The Ceratotherium simum specimens were morphologically and developmentally
demarcated into 5 groups: Age Classes 1-2, 3-4, 5-7, 8-9, 10-14. The ontogenetic sequence
based on dental development is provided in Appendix 4. Lateral skull images of specimen

representatives for each age group are provided in Figure 4-5.
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Dorsal Cranium

Rounded parietals and rectangular frontals characterize Age Classes 1-2. The parietals
are round, and the occipitals are narrow with a concave occipital crest. Postorbital processes
protrude from rectangular, posteriorly narrowed frontals. The nasals are rounded, slightly
narrowing anteriorly. The zygomatic arches are straight and robust.

Lengthened frontals and parietals, and bulbous nasals distinguish Age Classes 3-4.
Posteriorly the frontals are lengthened and concavely narrowed, forming a cylindrical junction
with the lengthened parietals. The parietal-occipital junction is triangular, deeper than the
occipital crest. The nasals are wider and more bulbous.

Overall lengthening with frontal and occiput flattening and widening characterizes Age
Classes 5-9. The frontals are anteriorly wider with a more exaggerated posterior narrowing. The
parietals are medially cylindrical and laterally wide. The squamosals are narrow, flat shelves
near the parietal articulation. The occipital crest is medially deeper with posterior-lateral flares.
The nasals are particularly more bulbous with a slight midline indentation in Age Class 9. The
zygomatic arches are extended with medially rounded dorsal-lateral edges. In Age Class 6, the
frontal-parietal suture is not visible while the temporal lines are apparent. The temporal lines are
narrow and parallel near the suture, and they diverge posteriorly. In Age Class 9, the temporal
lines are fully prominent. The parietal-occipital suture disappears between Age Classes 6-8.

Nasal, frontal, and occipital exaggerations distinguish Age Classes 10-14. The frontals
and nasals are further rounded and widened. In Age Class 10, nasal and frontal rugosities
develop; both the nasal and nasal-frontal sutures are not visible in Age Class 11. The nasals and

frontals are completely covered by rugosity in Age Class 12. The temporal lines are posteriorly
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sharper, diverging along wider and deeper occipital flares. The occipitals are broader than the
frontals, and the squamosal shelves are wider. The zygomatic arches are overall more robust.
Lateral Skull

A posteriorly oriented, angular occiput and deep mandibular body characterize Age
Classes 1-2. The occiput has a gentle parietal slope and a vertical occipital slope. A slender
zygomatic arch parallels the parietal slope. The facial crest is short and slightly prominent. The
nasals are bulbous with a slight dorsal swelling and steep terminal slope. All facial sutures are
visible. The mandibular body is deep and gently curved, tapering to a point anterior of the
premolars. The mandibular ramus is also deep, having a posterior bulge and weak mandibular
angle. Dorsal of the bulge the ramus is almost vertical.

Parietal and facial elongations characterize Age Classes 3-4. The parietals are oriented
further posteriorly but the parietal slope has not changed; the occipital slope is vertical. The
maxilla is longer and the premaxilla is projecting further past the premolars. The zygomatic arch
is more robust and the facial crest is sharper and longer. The nasals are larger with a higher
swelling. The mandible undergoes slight developments in Age Classes 3-4. The mandibular
body maintains its shape and depth. The ramus is wider and the mandibular angle is stronger.
The posterior bulge is more prominent and a thin peripheral muscle attachment band is present.

A posteriorly stretched occiput and transformed zygomatic arch characterize Age Classes
5-9. The cranium has significantly increased in length and height. The parietals are stretched
posteriorly and more shallowly sloped, making the occiput long and triangular. The nasals are
longer and the nasal swelling is higher. Significant increases in the nasal swelling occur through
Age Classes 5-9. The zygomatic arch becomes more robust with a change in orientation, but still

paralleling the lowered parietal slope. The jugal becomes broader and flatter while the
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squamosal becomes inclined, staying parallel to the parietal slope. The facial crest becomes a
long, sharp attachment area. The mandible gradually becomes deeper and wider. The body
deepens and its ventral profile flattens. The ramus widens and the mandibular angle becomes
stronger and longer. In Age Classes 7-9, the posterior bulge is no longer apparent, as the
peripheral muscle attachment band becomes longer and more robust.

Age Classes 10-14 are characterized by horn swellings, facial suture closings, and
increases in robustness. A slight frontal swelling develops, and the nasal swelling increases
through Age Classes 10-14. The mandibular body is deeper, and the zygomatic arch, facial crest,
and peripheral band are more robust. All facial sutures are closed in Age Class 10. The jugal-

zygoma suture disappears in Age Class 12.

Figure 4-5. Lateral skull images representing the ontogenetic sequence for C. simum. Top left:
Age Class 1 (AMNH 51918); top right: Age Class 5 (AMNH 51870); bottom left: Age Class 8
(AMNH 51931); bottom right: Age Class 12 (AMNH 51856).
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Horns

Nasal development is gradual with shape and size transformations occurring in Age
Classes 5-9. The nasal and frontal rugosities develop in Age Classes 8 and 10, respectively. The
rugosities and swellings steadily increase in Age Classes 11-14.
Non-Molariform Dentition

The mandibular p1 is lost in specimens Age Class 8 and older. An Age Class 8 specimen
(AMNH 51931) has open p1 alveoli, and two Age Class 9 specimens (AMNH 54125, 51865)
show no evidence of p1. Mandibular p1 loss may be associated with synchronous eruption of p2,
p3, and m2, which are recently erupted in AMNH 51931. The maxillary P1 is lost in all
specimens Age Class 8 and older. An Age Class 8 specimen (AMNH 51931) has open P1
alveoli, and two Age Class 9 specimens (AMNH 54125, 51865) have near closed P1 alveoli.
Maxillary P1 loss may be associated with synchronous eruption of P2, P3, and M2, which are not
fully erupted in AMNH 51931.

No rudimentary incisors are present in the sample. However, shallow upper and lower
incisor alveoli with no teeth are present in Age Classes 2 (AMNH 51882), 8 (AMNH 51931),
and 9 (AMNH 51865). No specimens Age Class 10 and up have incisor alveoli. Only 1 of 10
premaxillae are articulated in Age Classes 1-7, so incisor alveoli may be common in pre-adults.
Diceros bicornis
Ontogenetic Sequence

The Diceros bicornis specimens were morphologically and developmentally demarcated
into 6 groups: Age Classes 0, 1-3, 4-5, 6-7, 8-10, 11-17. The ontogenetic sequence is based on
dental development provided in Appendix 4. Lateral skull images of specimen representatives

are provided in Figure 4-6.
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Dorsal Cranium

A rounded cranium with thin, straight zygomatic arches distinguishes Age Class 0. The
frontals are long and rectangular while the parietals are shorter but equal in width. The occipitals
widen posteriorly and the occipital crest is convexly curved. The nasals are triangular and
distally rounded.

Significant nasal, frontal, and parietal lengthening occurs in Age Classes 1 and 3. The
nasals become longer and more rounded terminally. The frontals and parietals lengthen
considerably; both are rectangular. The zygomatic arches lengthen and slightly extend laterally.
The occipital crest is straight.

Posteriorly narrowed frontals and laterally extended zygomatic arches typify Age Classes
4-5. The frontals narrow posteriorly and the parietals narrow anteriorly, forming a concave
juncture. The occipitals are longer with a concave occipital crest. The zygomatic arches are
more robust and laterally extended. A narrow squamosal shelf is present near the articulation
with the parietals.

Anteriorly rounded frontals and posteriorly widened parietals form a dorsal hourglass
shape in Age Classes 6-7. The parietals widen laterally, the occipital crest is straight, and the
squamosals form wide, flat shelves. The zygomatic arches are wider and more robust.
Appearing in Age Class 6, the temporal lines are faint, unpronounced, and concave along the
dorsal hourglass shape.

Rugosity development and muscle attachment site pronouncements distinguish Age
Classes 8-10. The frontals and nasals become rounder and wider in Age Classes 8-10, with

rugosities appearing in Age Class 8. Wider frontals and parietals between pronounced temporal
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lines form a more distinct dorsal hourglass. The zygomatic arches are more pronounced and
robust. In Age Class 8, the frontal-parietal and parietal-occipital sutures are not visible.

Pronounced nasals, frontals, temporal lines, zygomatic arches, and occipital crest
characterize Age Classes 11-17. The nasals and frontals become exceptionally round and
rugose. Anteriorly the temporal lines become narrower, and posteriorly they become wider,
joining the occipital crest. The temporal lines and occipital crest are sharper, and the zygomatic
arches are more robust. The nasal-frontal suture is not visible in Age Class 11.
Lateral Skull

An undeveloped occiput and mandible with a broad jugal distinguish Age Class 0. The
frontals and parietals are flat and inclined. The occipital slope is anteriorly inclined. The nasals
are short and pointed with a small dorsal swelling. The jugal is broader and more robust than the
squamosal. An undeveloped mandible has a thin, curved body; a short, narrow, ramus; and a
sharp mandibular angle.

Occiput, zygomatic arch, and mandible muscle attachment site developments characterize
Age Classes 1-3. The parietal slope is steeper and the occipital slope is almost vertical, together
forming an angular occiput. The jugal and squamosal are equally broad, and the zygomatic arch
is inclined, paralleling the parietal slope. The facial crest is long and fairly sharp. The nasals are
steeply sloped on both sides of the pronounced dorsal swelling. All facial sutures are visible.
The mandibular ramus is wide and vertical, and the mandibular body tapers anteriorly. The
mandibular angle has a thin peripheral band and posterior bulge.

Increases in parietal, zygomatic arch, and mandibular angle robustness distinguish Age
Classes 4-5. The parietals are enlarged and extended vertically, forming a more angular occiput.

The occipital slope is vertical. The jugal is broader than the squamosal, the zygomatic arch is
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more inclined, and the facial crest is longer and sharper. The nasals have a slightly higher
vertical swelling. The mandibular body is deeper. The ramus is more robust with a pronounced
posterior bulge and peripheral band.

Muscle attachment site transformations distinguish Age Classes 6-7. The parietals are
higher and more sharply sloped. The zygomatic arch and facial crest are longer. The nasals are
rounder and more robust, with a higher dorsal swelling. The mandibular ramus is deeper and the
mandibular body is flatter and deeper.

Frontal swelling and rugosity development typify Age Classes 8-10. Dorsal of the
anterior orbit, a slight frontal swelling with rugosity appears in Age Class 8. The nasal rugosity
also appears in Age Class 8. The occipital crest is directly dorsal of the foramen magnum. The
zygomatic arch is broader, the facial crest is sharper, and the facial region is deeper. The facial
sutures are faint but still apparent. In Age Classes 8-10, the mandibular angle is nearly vertical,
and it curves anteriorly dorsal of the posterior bulge. The mandibular body and ramus are
deeper, and the peripheral band is more pronounced.

Age Classes 11-17 are characterized by a gradual increase in frontal and nasal rugosity,
and muscle attachment site increases. The frontal and nasal swellings increase throughout Age
Classes 11-17, and the rugose areas gradually spread. The occiput, zygomatic arch, and
mandibular angle become more robust, and the facial crest becomes longer and more
pronounced. The jugal-zygoma and facial sutures disappear in Age Class 12.

Captive Specimens

One captive specimen, FMNH 60784, was advanced morphologically for its age

classification. Although it was the only Age Class 9 specimen, it was larger and more robust

than Age Class 10-11 specimens. Increased robustness of the zygomatic arch and occiput, and
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Figure 4-6. Lateral skull images representing the ontogenetic sequence for D. bicornis. Top:
Age Class 1 (USNM 182030); center left: Age Class 3 (USNM A34718); center right: Age Class
5 (USNM 240884); bottom left: Age Class 8 (USNM 161925); bottom right: Age Class 12
(FMNH 127849).

highly developed nasal and frontal rugosities are comparable in development to Age Class 12.
The jugal-zygoma and facial sutures are still visible, which disappear approximately in Age

Class 12. Overall development of FMNH 60784 was characteristic of Age Class 12. Due to age

class inconsistencies, FMNH 60784 was removed from the ontogenetic sequences
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Another captive specimen, FMNH 166520, was incomplete and damaged, preventing a
full assessment of its morphology; it was removed from the ontogenetic sequence. The other two
captive specimens, FMNH 121646 and FMNH 57809, displayed no age inconsistencies or
morphological distinctions; they were included in the ontogenetic sequence.

Horns

Nasal horn development is gradual in Age Classes 0-17. The nasal swelling is present in
all specimens. The swelling gradually increases, and in Age Class 8 the nasals become more
robust and the rugosity develops. The nasal rugosity gradually increases from Age Classes 10-
17. Frontal horn development begins in Age Class 8 with the appearance of a frontal swelling.
The frontal rugosity also appears in Age Class 8, steadily increasing in Age Classes 10-17.
Non-Molariform Dentition

The mandibular p1 is lost in all specimens by Age Class 12. Mandibular p1 loss may be
associated with m3 eruption, as all 11 specimens with m3 fully erupted have lost p1. The
maxillary P1 is rarely missing in adults, as only 3 of 12 specimens (25%) have lost P1.
Specimens in Age Classes 12 (FMNH 127849), 15 (FMNH 57809), and 17 (USNM 182195) are
the only specimens missing P1.

Rudimentary lower incisors are present in all ages, from Age Class 1 (USNM 182030) to
Age Class 15 (FMNH 57809). Overall, 9 of 26 specimens (35%) have rounded incisor nubs at
bone level, and 14 of 26 specimens (54%) have incisors or open alveoli. Rudimentary upper
incisors are retained in all age ranges, from Age Class 1 (USNM 182030) to Age Class 12
(FMNH 22366). The incisors are small, round protuberances at bone level. Among the 13 of 26

specimens (50%) with premaxillae articulated, 5 of 13 (38%) have upper incisors.
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4.4 TRADITIONAL MORPHOMETRICS
4.4.1 Measurements

The 19 dimensions were measured on each specimen for all ages and species. Due to
disarticulated bones for extant species specimens and fractured skulls for T. major specimens,
not all measurements were available on each specimen. The percentage of specimens with all

dimensions measured is provided in Table 4-2

Table 4-2. Specimen numbers and percentages with all dimensions measured for each species.

T.major | R.unicornis | D. sumatrensis | C.simum | D. bicornis
Specimens
with all 17 11 5 15 19
measurements

Total 27 15 7 20 26
specimens

[0)

/o of 63% 73% 71% 75% 73%
specimens

4.4.2 Asymmetry

Testing the Asymmetry Index among age groups for T. major, C. simum, and D. bicornis
revealed no significant differences from equality for any cranial or mandibular dimensions with
the Kruskal-Wallis test (Table 4-3). The Shapiro-Wilk tests of normality for R. unicornis and D.
sumatrensis resulted in only one dimension, ACL of R. unicornis, with a significant p-value (p =
0.000009154) (Table 4-4). This sample contained one specimen, UNSM ZM13844, with an
Asymmetry Index of -31%. This specimen is a captive individual that was removed from
ontogenetic assessments because of inconsistencies with the R. unicornis sample. When UNSM
ZM13844 was removed from the ACL asymmetry analysis, the sample was not significantly

different from normality (p = 0.1824). No dimensions for any species were found to have
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significant differences in asymmetry among age groups, and specimen UNSM ZM13844 was

removed from all subsequent analyses of asymmetry and function.

Table 4-3. Kruskal-Wallis test results for asymmetry among age groups. H-statistics and p-values
are provided for tests for asymmetry among age groups for T. major, C. simum, and D. bicornis.

T. major C. simum D. bicornis
TCL H: 1.74 H: 1.937 H: 5.79
p: 0.6281 p: 0.5856 p: 0.1223
PCL H: 0.7465 H: 2.054 H: 6.18
p: 0.8622 p: 0.5613 p: 0.1032
MCL H: 1.443 H: 6.478 H: 1.416
p: 0.6955 p: 0.09055 p: 0.7019
ACL H: 4.786 H: 3.299 H: 0.1896
p: 0.1882 p: 0.3477 p: 0.9792
ML H: 1.261 H: 5.487 H: 3.605
p: 0.7384 p: 0.1394 p: 0.3075
RL H: 1.336 H: 0.4641 H: 4.113
p: 0.7207 p: 0.9267 p: 0.2495

Table 4-4. Shapiro-Wilk test for normality results for asymmetry among age groups. W-statistics
and p-values are provided among age groups for R. unicornis and D. sumatrensis. ACL* is with
captive specimen UNSM ZM13844 removed.

R. unicornis D. sumatrensis
W: 0.9182 W: 0.9531
TCL p: 0.2375 p: 0.7578
W: 0.9574 W: 0.9282
PCL p: 0.6809 p: 0.5665
W: 0.9535 W: 0.8931
MCL p: 0.5815 p: 0.3345
W: 0.5499 W: 0.9936
ACL p: 0.000009154 p: 0.9980
ML W: 0.9668 W: 0.8934
p: 0.8305 p: 0.2926
RL W: 0.9623 W: 0.8501
p: 0.8161 p: 0.1578
W: 0.9144
*
ACL p: 0.1824
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Following age group comparisons within species, adult groups among species were tested
for equality in asymmetry for all 12 dimensions using the Kruskal-Wallis test. Only one cranial
dimension (MCL, p = 0.000298) and one mandibular dimension (ML, p = 0.001012) had
significant p-values (Table 4-5). No dental dimensions deviated from equality.

For MCL, R. unicornis was found to differ significantly from two species, T. major (p =
0.001613) and C. simum (p = 0.02143). Within these samples, there were no significant outlier

Table 4-5. Kruskal-Wallis test results for asymmetry among adults. H-statistics and p-values are
provided among adult samples of the species.

H: 6.329 H: 2.99
TCL p: 0.175 MXPL p: 0.559
H: 4.021 H: 1.687
PCL p: 0.403 MXML p: 0.793
H: 21.14 H: 1.138
MCL p: 0.0002975 MXDL p: 0.888
H: 9.229 H: 4.053
ACL p: 0.055 MNPL p: 0.398
H: 18.44 H: 6.301
ML p: 0.001012 MNML p: 0.177
H: 9.345 H: 2.735
RL p: 0.053 MNDL p: 0.603
MCL T. major R. unicornis D. sumatrensis  C. simum
T. major
R. unicornis 0.001613
D. sumatrensis 0.1058 1
C. simum 1 0.02143 0.6825
D. bicornis 0.171 0.4884 1 1
ML T. major R. unicornis D. sumatrensis C. simum
T. major
R. unicornis 0.04228
D. sumatrensis 0.362 1
C. simum 0.3937 0.06536 1
D. bicornis 0.04295 0.2789 1 1
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specimens. The R. unicornis sample had a strong left asymmetry, with a sample minimum of —
3.15%, a maximum of 0%, and a median of -2.45%, while the T. major (0%, 5.08%, 2.00%) and
C. simum (-1.39%, 5.15%, 1.33%) samples had strong right asymmetries (Appendix 5).

For ML, T. major was found to differ significantly from two species, R. unicornis (p =
0.04228) and D. bicornis (p = 0.04295). The T. major sample had a wide range of positive and
negative values, with a minimum of -5.62%, a maximum of 6.81%, and variance of 9.39. The
other species had minima and maxima between -1.72% and 1.88%, and variances under 1.00.

The analyses indicate no asymmetry differences in age groups within species and
minimal adult differences in asymmetry in extant rhinos. The stronger asymmetric values of T.
major are not unexpected, as several mandibular condyles were significantly warped
postmortem. Comparing specimen counts of asymmetry and symmetry for each dimension using
0.5% difference as a threshold (Table 4-6), the difference between T. major and extant rhinos is
more apparent, as several cranial and mandibular lengths (MCL, ACL, ML, RL) are right side
dominated in T. major. To address asymmetries, a right and left measurement mean was used for
each length in statistical analyses using measurement data. Specimens with one side dimension
measured were included in analyses as only a few characters had large asymmetric values.

4.4.3 Sex and Subspecies Differences

Testing the adult samples for sexual dimorphism and subspecies differences resulted in
only one significant difference. The Shapiro-Wilk tests for normality for sex and subspecies
differences yielded no p-values below the threshold of 0.05, giving no signs of deviation from
unimodal distributions among the adult samples (Table 4-7). Permutation t-tests for sex

differences yielded one significant p-value among the 30 tests for R. unicornis, C. simum, and D.
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Table 4-6. Asymmetry Index counts for right-left dimensions in the species. Specimens are categorized as right asymmetric, left
asymmetric, and symmetric, with 0.5% difference as the threshold. See Table 3-3 for measurement abbreviations.

T. major |  R.unicornis | D.sumatrensis |  C.simum | D. bicornis
Asymmetry | Right | Left | Even | Right | Left | Even | Right | Left | Even | Right | Left | Even | Right | Left | Even

TCL% 4 15 6 3 4 7 2 2 3 6 0 12 5) 4 16
PCL% 11 14 1 8 4 2 0 5) 1 4 10 5) 13 8 3
MCL% 20 4 3 1 11 3 2 4 0 8 7 5) 10 14 2
ACL% 16 3 4 9 4 2 3 3 1 7 12 1 10 10 6
ML% 20 5) 0 2 7 5) 1 3 3 9 4 7 5) 11 7
RL% 18 7 1 5) 6 1 3 2 1 9 6 4 10 7 6
MXPL% 13 10 3 5) 7 1 5) 1 0 7 7 5) 8 12 5)
MXML% 8 10 2 5) 2 4 3 2 1 5) 6 2 5) 9 4
MXDL% 16 6 4 5) 4 4 2 2 2 6 6 7 11 5) 9
MNPL% 13 9 4 3 5 5 0 3 3 9 5 6 9 10 6
MNML% 4 14 3 5) 5) 1 3 0 3 3 6 4 9 6 4
MNDL% 9 11 5) 4 6 4 2 3 1 5) 5) 10 7 5) 13
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Table 4-7. Shapiro-Wilk test for normality results for sex and subspecies. W-statistics and p-
values are provided for sex and subspecies differences among adults in R. unicornis, C. simum,
and D. bicornis. The significance threshold was p < 0.05. See Table 3-3 for abbreviations.

R. unicornis C. simum D. bicornis
TCL W: 0.9689 W: 0.8438 W: 0.9266
p: 0.8905 p: 0.1401 p: 0.3072
PCL wW: 0.911 W: 0.9873 W: 0.9643
p: 0.4029 p: 0.9817 p: 0.8185
MCL W: 0.9311 W: 0.8291 W: 0.9353
p: 0.5261 p: 0.0785 p: 0.3994
ACL W: 0.9309 W: 0.8638 W: 0.9706
p: 0.5244 p: 0.1637 p: 0.9011
SW W: 0.9438 W: 0.8958 W: 0.8925
p: 0.6484 p: 0.3061 p: 0.1056
OH W: 0.893 W: 0.9833 W: 0.9534
p: 0.2906 p: 0.9667 p: 0.6507
ZW W: 0.9155 W: 0.9346 W: 0.957
p: 0.3946 p: 0.591 p: 0.7077
ML W: 0.9624 W: 0.8447 W: 0.9381
p: 0.833 p: 0.1099 p: 0.4327
RL W: 0.9505 W: 0.925 W: 0.9126
p: 0.7165 p: 0.509 p: 0.1993
Cw W: 0.8936 W: 0.9061 W: 0.8774
p: 0.294 p: 0.3692 p: 0.08107

Table 4-8. Permutation t-test results for sex and subspecies differences. P-values are provided for
sex and subspecies differences among adults in R. unicornis, C. simum, and D. bicornis. The
green shaded value indicates a significant p-value of < 0.05. See Table 3-4 for abbreviations.

R. unicornis C. simum D. bicornis

TCL |p: 0.0286 p: 1 p: 0.6812
PCL |p: 0.108 p: 0.1027 p: 0.9696
MCL | p: 0.7605 p: 0.2033 p: 0.6855
ACL |p: 0.7605 p: 0.9336 p: 0.8822
SW |[p: 0.658 p: 0.1026 p: 0.9389
OH p: 0.6503 p: 0.1968 p: 0.3782
ZW | p: 0.3144 p: 0.1015 p: 0.9193
ML p: 0.5532 p: 0.3064 p: 1

RL p: 1 p: 0.7111 p: 0.4187
CW |p: 0.8975 p: 0.0972 p: 0.4282
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bicornis (Table 4-8). The R. unicornis female sample had a significantly larger TCL than the
male sample (p=0.0286). As no subspecies differences and one sex difference resulted from all
tests, the inclusion of all ages and subspecies in the allometry sample was done with confidence.
4.4.4 Functional Characters

The Kruskal-Wallis tests for equality of medians in seven functional characters resulted
in significant H-statistics for each test (Table 4-9). All species comparisons for functional
characters had several significant Bonferroni-corrected p-values < 0.05. Each character’s test
results are discussed in detail below (Table 4-10 and the sample statistics are provided in
Appendix 6. Rankings and groupings of the species for each character are based on test results
and sample statistics.
Posterior Cranial Length

The PCL analysis resulted in several significant p-values among species, placing the
species into two groups: R. unicornis, D. sumatrensis, and D. bicornis in Group 1, and T. major
and C. simum in Group 2. Most pairwise comparisons of a Group 1 species with a Group 2
species were significant (<0.05). Within group comparisons yielded no p-values close to the
significance level. Dicerorhinus sumatrensis was not significantly different from any species,
but based on nearly significant p-values and sample statistics, it was placed in Group 2.
Occipital Height

The OH analysis resulted in several significant differences among species, with R.
unicornis differentiating from all species with significant p—values except for D. sumatrensis.
Another significant p-value (0.04619) resulted between C. simum and D. bicornis. Similar to

PCL, D. sumatrensis was not significantly different from any species in OH. Based on sample
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statistics, the species ranked into three groups: Group 1 with T. major and C. simum; Group 2
with D. bicornis and D. sumatrensis; and Group 3 with R. unicornis.
Ramus Length

The RL analysis resulted in two D. bicornis comparisons with significant p-values: T.
major (0.00085) and R. unicornis (0.00932). Based on test results and sample statistics, the
species ranked into three groups: Group 1 with T. major and R. unicornis; Group 2 with C.
simum and D. sumatrensis; and Group 3 with D. bicornis.
Premolar Row Length to Molar Row Length

The MXPL to MXML and MNPL to MNML analyses indicated that T. major was
significantly different from all the extant rhinos. Of the eight comparisons between T. major and
the extant rhinos, seven p-values were significant. Further, of the 12 comparisons among the
extant rhinos, only one p-value was significant, which was between R. unicornis and C. simum
for the mandible (p=0.03569). Based on the test results and sample statistics, the species were
placed into two groups: Group 1 with T. major; and Group 2 with D. sumatrensis, D. bicornis, C.
simum, and R. unicornis.
Premaxilla Width to Palate Width

The DW to MXPPW analysis resulted in four of ten comparisons with significant p-
values. Three of the significant p-values were from comparisons between T. major and R.
unicornis, D. sumatrensis, and C. simum. The only other comparison with a significant p-value
was between C. simum and D. bicornis. The rankings and groupings of this character are: Group

1 with C. simum, D. sumatrensis, and R. unicornis, Group 2 with T. major and D. bicornis.
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Anterior Premolar Width to Palate Width

The MXAPW to MXPPW analysis resulted in two T. major comparisons with significant
p-values: D. sumatrensis (0.03495) and C. simum (0.02988). Based on test results and sample
statistics, the rankings and groupings of this character are: Group 1 with C. simum and D.
sumatrensis, and Group 2 with R. unicornis, T. major, and D. bicornis.
Table 4-9. Kruskal-Wallis test results for functional character differences among species. H-

statistics and p-values are provided for differences among functional characters. With a
threshold of < 0.05, all seven tests indicated significant differences.

H: 2586
PCL p: 0.0000337
H: 254
OH p: 0.00004185
H 18.1
RL p: 0.00118
MXPL/ | H: 2348
MXML | p: 0.0001014
MNPL/ | H: 3142
MNML | p: 0.000002513
DW/ | H: 2462
MXPPW | p: 0.00005987
MXAPW/ | H: 16.25
MXPPW | p: 0.002701

4.4.5 Cranial Allometry

In the cranial variable set, each species’ PCA had over 91% of the variation explained by
the first principal component, while the second component varied between 0.7-6.2% (Appendix
7). Although the second component explained some of the variance, the Joliffe cut-off value
indicated that only the first principal component was significant in each species’ PCA.

The five species all had positive variable loadings on the first component, but the
loadings were not equal, having both high and low positive scores (Appendix 8). The specimen
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Table 4-10. Kruskal-Wallis test results for pairwise comparisons of functional characters.
Bonferroni-corrected p-values are provided, with shaded values indicating significance (< 0.05).

PCL T. major R. unicornis  D. sumatrensis  C. simum
T. major
R. unicornis 0.02988
D. sumatrensis 0.06768 0.21860
C. simum 1 0.00939 0.08475
D. bicornis 0.01406 1 0.16870 0.04619
OH T. major R. unicornis  D. sumatrensis  C. simum
T. major
R. unicornis 0.00152
D. sumatrensis 1 0.1379
C. simum 1 0.00939 0.74530
D. bicornis 1 0.00152 1 0.04619
RL T. major R. unicornis  D. sumatrensis  C. simum
T. major
R. unicornis 1
D. sumatrensis 1 1
C. simum 1 1 1
D. bicornis 0.00085 0.00932 1 0.44070
MXPL/MXML T. major R. unicornis  D. sumatrensis  C. simum
T. major
R. unicornis 0.00372
D. sumatrensis 0.29470 1
C. simum 0.00597 1 1
D. bicornis 0.00440 0.47220 1 1
MNPL/MNML T. major R. unicornis  D. sumatrensis  C. simum
T. major
R. unicornis 0.00372
D. sumatrensis 0.04889 1
C. simum 0.00082 0.03569 1
D. bicornis 0.00039 1 1 0.21490
DW/MXPPW T. major R. unicornis  D. sumatrensis  C. simum
T. major
R. unicornis 0.00248
D. sumatrensis 0.04375 1
C. simum 0.06019 1 1
D. bicornis 0.25110 0.09218 0.10730 0.04938
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MXAPW/MXPPW | T. major R. unicornis  D. sumatrensis  C. simum
T. major
R. unicornis 0.63120
D. sumatrensis 0.03495 0.37240
C. simum 0.02988 0.60601 1
D. bicornis 1 0.63121 0.79732 0.26540

plots on the first component also indicate that the specimens were distributed according to
overall size (Figure 4-7). As explained by Shea (1985), positive but unequal first component
variable loadings and specimen distribution according to size together indicate that the first
component reflects growth allometry, not just size. Further, calculated allometric coefficients
from the variable loading ratios yielded positive allometric, negative allometric, and isometric
variables for each species, another sign that the cranial PCA summarized each species’ growth
allometry (Table 4-11).

The cranial PCA resulted in allometric coefficient groupings among the species. For
example, C. simum and T. major had nearly isometric growth for TCL and MCL, while R.
unicornis, D. bicornis, and D. sumatrensis had negative allometric coefficients. Conversely, D.
bicornis, R. unicornis, and D. sumatrensis all had strong positive allometric scores for OH, while
C. simum and T. major had strong negative allometric scores.

Two variables, PCL and ZW, had noticeable groupings of coefficients. For PCL, T.
major, D. bicornis, and R. unicornis had strong negative allometric scores, while C. simum and
D. sumatrensis had slight negative allometric scores. For ZW, D. sumatrensis and T. major had
isometric scores, R. unicornis had a slight negative allometric score, and C. simum and D.
bicornis had strong negative allometric scores.

The variables ACL and SW had a three species grouping and two species with isolated

scores. For ACL, T. major had a strong positive allometric score, C. simum, D. sumatrensis, and
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R. unicornis had slight positive allometric scores, and D. bicornis had a slight negative
allometric score. For SW, C. simum had a positive allometric score, D. bicornis, T. major, and
R. unicornis had near isometric scores, and D. sumatrensis had a negative allometric score.
4.4.6 Mandibular and Dental Allometry

In the mandibular and dental variable set, each species’ PCA had over 88% of the
variation explained by the first principal component, while the second component varied
between 2.8-7.4% (Appendix 9). Like the cranial variable set, the Joliffe cut-off value indicated

that only the first principal component was significant.

T. major

Figure 4-7a. Cranial PCA specimen plots of PC1-PC2 for T. major. Specimen numbers increase
with Age Class along PC1, a sign that PC1 distributes specimens according to overall size and
that growth allometry is reflected. Clustered specimens on PC1 are specimens of similar size.
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R. unicornis

D. sumatrensis

Figure 4-7b. Cranial PCA specimen plots of PC1-PC2 for R. unicornis and D. sumatrensis.
Specimen numbers increase with Age Class along PC1, a sign that PC1 distributes specimens
according to overall size and that growth allometry is reflected. Clustered specimens on PC1 are
adult specimens of similar size.
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Figure 4-7c. Cranial PCA specimen plots of PC1-PC2 for C. simum and D. bicornis. Specimen
numbers increase with Age Class along PC1, a sign that PC1 distributes specimens according to
overall size and that growth allometry is reflected. Clustered specimens on PC1 are adult

specimens of similar size.
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Table 4-11. Allometric coefficients PCA cranial dimensions.

T.major R. unicornis D.sumatrensis C.simum D. bicornis
TCL 0.9988 0.9281 0.8694 1.0410 0.8916
PCL 0.7821 0.8212 0.9155 0.9117 0.8118
MCL 1.0190 0.9378 0.9175 1.0260 0.9291
ACL 1.3980 1.0940 1.1520 1.1740 0.9486
SW 0.9775 0.9695 0.9293 1.1120 0.9825
OH 0.8175 1.3160 1.1830 0.8608 1.5650
ZW 1.0070 0.9335 1.0340 0.8740 0.8710

Four of the species, D. sumatrensis excluded, had positive variable loadings on the first
component, and the loadings were unequal, having both high and low positive scores (Appendix
8). Positive and negative variable loadings for D. sumatrensis indicate that the first component
did not reflect growth allometry like in the other four species, and consequently, mandibular and
dental allometry were not discussed for D. sumatrensis. Specimen plots on the first component
also indicate that the specimens were distributed according to overall size (Figure 4-8).

Most of the allometric coefficients were similar across all species with only slight
differences (Table 4-12). For ML, all the species’ allometric coefficients were isometric, and all
the MXDL coefficients were positive. MNDL had strong positive allometric coefficients for all
species except D. bicornis, which had isometric coefficients.

Three variables, MNPPW, RL, and CW, had negative allometric coefficients for all
species. For MNPPW, R. unicornis had a significantly lower coefficient than other species. For
RL, D. bicornis had a significantly higher score than T. major and C. simum. The very low
coefficient of R. unicornis for RL was probably strongly affected by a lack of young specimens,
so it is not regarded as accurate. For CW, C. simum had the highest score while D. bicornis had

the lowest score; T. major and R. unicornis had intermediate scores.
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T. major

R .unicornis

Figure 4-8a. Mandibular and dental PCA plots of PC1-PC2 for T. major and R. unicornis.
Specimen numbers increase with Age Class along PC1, a sign that PC1 distributes specimens
according to overall size and that growth allometry is reflected. Clustered specimens on PC1 are

adult specimens of similar size.

96



C. simum

D. bicornis

Figure 4-8b. Mandibular and dental PCA plots of PC1-PC2 for C. simum and D. bicornis.
Specimen numbers increase with Age Class along PC1, a sign that PC1 distributes specimens
according to overall size and that growth allometry is reflected.
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One variable, MNAPW, had the most variation in allometric coefficients across species.
Diceros bicornis had a strong positive coefficient, R. unicornis and T. major had isometric
coefficients, and C. simum had a strong negative coefficient.

Table 4-12. Allometric coefficients for PCA mandibular and dental dimensions. Green shaded
values indicate allometries removed from analysis. See Table 3-3 for abbreviations.

T.major R. unicornis D.sumatrensis C.simum D. bicornis

ML 0.9910 1.0020 -0.2310 0.9790 1.0140
RL 0.4986 0.1105 -7.3620 0.4218 0.8705
CwW 0.8018 0.8415 0.6516 0.9234 0.7259
MXDL 1.4650 1.7050 5.5090 1.6860 1.3580
MNDL 1.4920 1.8480 5.7910 1.7220 1.0680
MNAPW 1.0230 1.0330 1.4700 0.5113 1.3110
MNPPW 0.7289 0.4593 1.1710 0.7565 0.6528

4.5 GEOMETRIC MORPHOMETRICS
4.5.1 Principal Component Analysis
Teleoceras major

The PCA for T. major resulted in 11 components that explained the total variance within
the sample. The first three components each explained over 10% of the variance, and together
they accounted for 68.6% (Appendix 10). PC1, which explained 42.0% of the variance,
summarized the most fundamental shape differences within the ontogenetic sample. The
wireframe outline for T. major indicates that four characters had the most ontogenetic variation:
occipital slope angle, zygomatic arch length and height, nasal length and height, and mandibular
angle curvature (Figure 4-9a).

PC2, which explained 14.5% of the variance, displayed large-scale vertical variance in
both the cranium and mandible. In the cranium, the occipital, parietal, and facial regions all
varied in vertical depth. In the mandible, the body and ramus varied in vertical depth, and
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mandibular angle curvature also showed variation. PC3, which explained 11.9% of the variance,
had only two characters with slight local variances: zygomatic arch anterior-posterior extension
and infraorbital foramen ventral displacement.
Rhinoceros unicornis

The PCA for R. unicornis resulted in two out of 10 significant components, with PC1 and
PC2 explaining 50.4% and 21.8% of the variance, respectively. PC1 displayed significant
variances in four characters: occipital slope angle, zygomatic arch height, mandibular angle
curvature, and nasal height and length. PC2 summarized variation in two areas: occipital
extension posteriorly and mandibular angle and body extension anteriorly.
Dicerorhinus sumatrensis

The PCA for D. sumatrensis resulted in five total components, with the first four
components each explaining over 10% of the variance and accounting for 94.7% in total. PC1,
which explained 53.3% of the variance, displayed shape variation in three characters: occipital
angle slope, mandibular angle curvature, and nasal length. PC2, which explained 20.6%,
primarily summarized global cranial variation. The occiput, zygomatic arch, and maxilla all
demonstrated anterior-posterior extension; occipital dorsal-ventral extension was also present.

PC3 and PC4, which explained 10.6% and 10.1% of the variance, respectively, displayed
relatively little shape variation. PC3 summarized some variation in mandibular body depth. PC
4 displayed global anterior-posterior variation in the zygomatic arch and facial region, similar to
PC2 shape variation.
Ceratotherium simum

The PCA for C. simum resulted in 10 total components, with the first three components

each explaining over 10% of the variance and accounting for 75.8% in total. PC1, which
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explained 48.5% of the variance, depicted shape variation in two characters: nasal extension, and
anterior-posterior and dorsal-ventral occipital extension. PC2, explaining 17.2%, summarized
variance in zygomatic arch height and length, and mandibular angle curvature. PC3, which
explained 10.0%, described further variation in zygomatic arch height and nasal length and
height, as well as mandibular body depth.
Diceros bicornis

The PCA for D. bicornis resulted in 11 total components, with the first four components
each explaining over 10% of the variance and accounting for 81.7% in total. PC1 explained
34.0% of the variance, and displayed shape variation in four characters: occipital angle slope,
zygomatic arch length and height, mandibular angle curvature, and nasal length. PC2, which
explained 24.2%, summarized vertical variations in mandibular body depth and nasal height.

PC3, explaining 13.2% of the variance, demonstrated shape variation in frontal depth,
occipital extension posteriorly and dorsally, and mandibular extension posteriorly. In PC4,
which explained 10.2%, frontal depth was the only character with noticeable variance.
4.5.2 Canonical Variate Analysis

The CVA produced four canonical variates that explained 100% of the total variation
among the five species (Table 4-13). The first three variates explained at least 10% of the
variance each, and the fourth variate explained almost 5%. CV specimen score plots of the six
variate-combinations indicate that CV1 and CV2 were significant species discriminators, while
CV3 and CV4 weakly discriminated the species (Figure 4-10). Although some species were
grouped together, no specimens were misclassified into different species for all CVs.

Canonical variate 1 (CV1), which explained 62.8% of the variance, separated all species

except for D. sumatrensis and D. bicornis, which were grouped together. The wireframe outline
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T. major PC1 R. unicornis PC1

T. major PC2 R. unicornis PC2

T. major PC3

Figure 4-9a. PCA shape transformations for T. major and R. unicornis. Shape transformations
are summarized by significant PCs in each species. Numbers refer landmarks. The light blue
outline signifies the mean shape for the sample. The dark blue line signifies the shape
summarized by the PC.
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. C. simum PC1
D. sumatrensis PC1

D. sumatrensis PC2 C. simum PC2

D. sumatrensis PC3

C. simum PC3

D. sumatrensis PC4

Figure 4-9b. PCA shape transformations for D. sumatrensis and C. simum. Numbers refer
landmarks. The light blue outline signifies the mean shape for the sample. The dark blue line
signifies the shape summarized by the PC.
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D. bicornis PC1

D. bicornis PC2

D. bicornis PC3

D. bicornis PC4

Figure 4-9c. PCA shape transformations for D. bicornis. Numbers refer landmarks. The light
blue outline signifies the mean shape for the sample. The dark blue line signifies the shape
summarized by the PC.
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of the Procrustes coordinates for CV1 depicted four distinct shape differences for strong positive
scores on CV1: occiput orientation, mandibular angle size, facial length and nasal depth (Figure
4-11). Based on the specimen scores, these characters were shown to be present in the
ontogenetic samples of T. major and R. unicornis, while the opposite characters were present in
C. simum, D. bicornis, and D. sumatrensis.

Canonical variate 2 (CV2), which explained 21.4% of the variance, separated the species
into three groups. Three shape differences described strong positive scores for CV2 based on the
wireframe graph: mandibular body depth, occiput height, and anterior jugal length. These
characters were shown to be present in D. sumatrensis, R. unicornis, and D. bicornis, while the
opposite characters were present in C. simum and T. major.

Canonical variate 3 (CV3) explained 10.7% of the variance and separated the species into
three groups that formed a continuum of CV scores. Three shape differences distinguished the
three groups of species: zygomatic arch length, anterior extension of the masseteric attachment
band, and mandibular condyle height. These characters were shown to be present in R. unicornis
and C. simum, while the opposite characters were present in D. bicornis and D. sumatrensis.

Canonical variate 4 (CV4), which explained 4.9% of the variance, only slightly separated
D. sumatrensis from the other species. Both D. bicornis and R. unicornis grouped together with
strong positive scores, C. simum and T. major grouped together with neutral scores, and D.
sumatrensis had strong negative scores. The only shape difference described by CV4 was
medial and posterior cranial depth, which was shown to be present in D. bicornis and R.

unicornis, and the opposite condition was present in D. sumatrensis.
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4.5.3 Thin-Plate Splines
Teleoceras major

Local expansion (green) and contraction (purple) factors for the T. major sample indicate
changes in primary growth centers in ontogeny (Figure 4-12). With an Age Class 2 specimen as
the reference, large expansion factors in Age Classes 4-5 were located in the anterior facial and
nasal regions, specifically around the orbit and nasal incision. The mandibular ramus and
zygomatic arch had strong expansion factors in Age Classes 4-5. Large contraction areas in Age

Classes 4-5 were located along the anterior mandible and posterior occiput.

Table 4-13. Eigenvalues and % variance of each CV for the grouped species CVA.

CVv Eigenvalue | % Variance | Cumulative %
1 79.12922686 62.825 62.825
2 26.99395954 21.432 84.258
3 13.56330317 10.769 95.026
4 6.26442722 4.974 100
R. unicornis
C. simum

Figure 4-10a. Specimen plots for comparisons with CVV1-2. CV1-2 accurately discriminate the
species, as the species are separated. Species with similar scores for a CV have similar
ontogenetic morphological changes for the traits characterized by that CV (Figure 4-11).
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R. unicornis

C. simum

Figure 4-10b. Specimen plots for comparisons with CV3-4. CV3-4 do not accurately
discriminate species, as the species are overlapping. Species with similar scores for a CV have
similar ontogenetic morphological changes for the traits characterized by that CV (Figure 4-11).

Cvl Cv2

CV3 Cv4

Figure 4-11. Shape transformations summarized by CVs in the grouped species CVA. Numbers
refer landmarks. The light blue outline signifies the mean shape for the sample. The dark blue
line signifies the shape summarized by the CV. Species with similar scores on a CV (Figure 4-
10) have similar ontogenetic morphological changes depicted here.
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Similar expansion and contraction factors were present in Age Class 8, but beginning in
Age Class 9, the mandibular body and ventral maxilla both had strong expansion factors. Age
Classes 10-12 showed strong expansions of the mandibular body and nasal-frontal regions, with
strong contractions in the occiput and posterior mandible. The anterior facial region retained
strong expansion factors through Age Classes 4-12.

Rhinoceros unicornis

The R. unicornis sample displayed relatively consistent expansion (green) and
contraction (purple) factors through ontogeny (Figure 4-13). Using an Age Class 1 specimen as
the reference, expansion factors in Age Classes 3-5 were located along the mandibular angle and
the anterior mandible and nasals. Strong contraction areas in Age Classes 3-5 were located at the
nasal incision and across the braincase between the orbit and posterior zygomatic arch. In Age
Class 6, the mandibular ramus had a stronger expansion factor, while the anterior mandible and
nasals retained similar expansion factors. The contraction factor of the occiput was stronger in
Age Class 6, but also more localized posteriorly.

The expansion factors of Age Classes 3-6 remained similar through Age Classes 8-13,
with the mandibular ramus continuing to expand strongly. In Age Class 8, a stronger contraction
factor was present in the frontal region between the orbit and nasal-frontal suture. Both the
posterior occiput and frontal region retained strong contraction factors from Age Classes 8-13.
Dicerorhinus sumatrensis

The incomplete D. sumatrensis sample displayed consistent expansion (green) and
contraction (purple) factors in ontogeny (Figure 4-14). With an Age Class 2 specimen as the
reference, strong expansion factors were present in three regions in Age Classes 7-8: the

mandibular ramus, the anterior mandible, and the anterior facial region between the orbit and
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Age Class 2 (source configuration) Age Class 4

Age Class 5 Age Class 8

Age Class 10 Age Class 12

Figure 4-12. Thin-plate splines depicting shape transformations in T. major. Green areas
indicate centers of expansion and purple areas indicate centers of contraction. Bright areas
represent stronger expansion/contraction than dark areas.
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Age Class 1 (source configuration) Age Class 3

Age Class 5 Age Class 8

Age Class 11 Age Class 13

Figure 4-13. Thin-plate splines depicting shape transformations in R. unicornis. Green areas
indicate centers of expansion and purple areas indicate centers of contraction. Bright areas
represent stronger expansion/contraction than dark areas.
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posterior-ventral maxilla. Strong contraction factors in Age Classes 7-8 were located at the
posterior occiput and the nasal incision.

These expansion and contraction factors remained mostly consistent in Age Classes 10-
11, only slightly changing in location and strength. The most noticeable changes were the
stronger expansion of the nasals and the stronger contraction of the braincase anterior of the
occiput.

Ceratotherium simum

Local expansion (green) and contraction (purple) factors for the C. simum sample
indicate relatively weak growth changes through most of ontogeny (Figure 4-15). With an Age
Class 2 specimen as the reference, no strong expansion or contraction factors were present in
Age Classes 3-4. Slight expansion factors were found at the anterior facial region, nasals, and
anterior ramus, and a slight contraction factor was present at the posterior occiput.

In Age Classes 5-7, the mandibular body, anterior facial region, anterior ramus, and
nasals had slightly stronger expansion factors, while the posterior occiput and anterior mandible
had slightly stronger contraction factors. These expansion and contraction areas remained
unchanged in Age Classes 8-9.

Age Class 11 had the strongest expansion and contraction factors in the ontogenetic
sample. The anterior ramus and posterior body of the mandible had strong expansion factors,
while the anterior facial region and posterior occiput had strong contraction factors.

Diceros bicornis

Local expansion (green) and contraction (purple) factors for the D. bicornis sample

displayed gradual growth center transitions in ontogeny (Figure 4-16). With an Age Class 3

specimen as the reference, three primary areas had strong expansion factors in Age Classes 5-6:
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Age Class 2 (source configuration) Age Class 7

Age Class 8 Age Class 10

Age Class 11
Figure 4-14. Thin-plate splines depicting shape transformations in D. sumatrensis. Green areas

indicate centers of expansion and purple areas indicate centers of contraction. Bright areas
represent stronger expansion/contraction than dark areas.
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Age Class 2 (source configuration) Age Class 4

Age Class 6 Age Class 8

Age Class 9 Age Class 11
Figure 4-15. Thin-plate splines depicting shape transformations in C .simum. Green areas

indicate centers of expansion and purple areas indicate centers of contraction. Bright areas
represent stronger expansion/contraction than dark areas.
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Age Class 3 (source configuration) Age Class 5

Age Class 7 Age Class 8

Age Class 10 Age Class 11
Figure 4-16. Thin-plate splines depicting shape transformations in D. bicornis. Green areas

indicate centers of expansion and purple areas indicate centers of contraction. Bright areas
represent stronger expansion/contraction than dark areas..
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the mandibular ramus, anterior mandible, and posterior facial region and anterior zygomatic
arch. Two areas had strong contraction areas in Age Classes 5-6: the posterior occiput and the
nasal incision.

In Age Classes 7-8, the anterior facial region had a stronger expansion factor while the
mandibular ramus had a weaker expansion factor. The posterior occiput and nasal incision
retained strong contraction factors. In Age Classes 8-11, the frontal and nasal regions displayed
stronger expansion factors, and the mandibular ramus changed to a slight contraction factor.
Also in Age Classes 8-11, the anterior mandible remained at a consistent expansion factor, and

the occiput remained at a consistent contraction factor.

114



CHAPTER 5. DISCUSSION
5.1 FUNCTIONAL INFERENCES

Table 5-1 provides the functional character states for T. major and the extant rhinos.
Functional inferences regarding the characters are discussed below. Refer to Table 2-3 for
explanations regarding browsing and grazing character states of the functional characters.

5.1.1 Oral Cavity and Dentition

Three ratios were used to describe oral cavity morphology. For muzzle shape, DW to
MXPPW and MXAPW to MXPPW were used. Statistical results for muzzle shape suggest that
both ratios somewhat predict feeding ecologies in the extant rhinos. As expected, C. simum has
the highest median ratios and D. bicornis has the lowest median ratios; both D. sumatrensis and
R. unicornis have intermediate median ratios. Although R. unicornis was expected to have
higher ratios than D. sumatrensis based on the higher percentage of grass in its diet, these species
both have large maxillary incisors for honing with the mandibular tusks. T. major, also having
maxillary incisors, has similar ratios to D. sumatrensis and R. unicornis. Both diet and large
incisors likely contribute to muzzle shape in rhinos. Although C. simum and D. bicornis have
the expected muzzle shape ratios related to feeding ecology, this character appears to be an
ineffective feeding ecology distinguisher in species possessing maxillary incisors.

The third ratio of the oral cavity, premolar row length to molar row length, has also been
used to distinguish grazers from browsers. Premolar row length to molar row length ratio does
not significantly distinguish any of the extant rhinos as no differences in the maxillary or
mandibular ratios were apparent. However, T. major was clearly distinguishable from extant
rhinos, having significantly lower ratios. This difference in premolar row length to molar row

length between T. major and the extant rhinos is likely related to premolar developmental
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Table 5-1. Summary of functional character states in T. major and the extant rhinos.

Character Number T. major R. unicornis | D. sumatrensis C. simum D. bicornis
Premaxilla \.N'dth ! 1 Intermediate | Intermediate | Intermediate High Low
palate width
Anterior maxilla 2 Shallow Deep Deep Deep Deep
Posterlo_r maxilla 3 Broad Broad Narrow Intermediate Narrow
and jugal
Anterlor.JugaI 4 Anterior Posterior Posterior Anterior Posterior
extension
Orbit location 5 Anterior Anterior Medial Posterior Medial
Braincase length 6 Short Long Long Short Long
Occipital height 7 Low High Intermediate Low Intermediate
Mandlbul_ar 8 Intermediate High Low Intermediate Low
condyle height
Premolar row / . . . .
molar row length 9 Low High High High High
Mandibular body 10 Deep Shallow Shallow Deep Intermediate
Mandibular angle 11 Very convex | Very convex Convex Slightly convex Convex
Mandibular ramus 12 Large Large Intermediate Intermediate Small
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differences. In T. major, the mandibular p1 is absent throughout all of ontogeny, and the
mandibular p2 is commonly shed in adulthood. This degree of premolar shortening is not found
in the extant rhinos, as the p2 was present in all adult specimens, and often the p1 was present
into late adulthood.

As all functional premolars were included in the measurements for all adult specimens, a
possible reason for the lack of distinguishable ratios among the extant rhinos is the differences in
pl shedding. All C. simum specimens Age Class 8 and older were missing the mandibular p1,
but in D. bicornis, the p1 was sometimes present through Age Class 11; both R. unicornis and D.
sumatrensis lost the pl by Age Class 10. Thus, the adult samples for R. unicornis, D.
sumatrensis, and D. bicornis did not have equal amounts of premolars measured, which likely
affected the ratios. Differences in dental ratios may exist among the extant rhinos, but
differences were not discernable in these samples based on the variation of premolars present.

Premolar row length to molar row length ratio is not an accurate feeding ecology
predictor in this study because there are no discernable differences among species from the
Kruskal-Wallis comparisons. However, in a similar comparison of the dental ratios in the extant
rhinos, Mead and Wall (1998b) found more distinction among species. Dicerorhinus
sumatrensis and D. bicornis were found to have relatively longer premolar rows, while R.
unicornis and C. simum had shorter premolar rows. This finding indicates that extant rhinos
appear to follow the artiodactyl dental patterns of grazers having shorter premolar rows
compared to browsers. With distinction found among extant rhinos (Mead and Wall 1998b), the
shortened premolar row in T. major is suggestive of a grazing feeding ecology. However, this
suggestion requires a reexamination of extant rhino samples with more comparable

measurements in the future.
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5.1.2 Anterior Skull

Three anterior skull characters, mandibular body depth, orbit location, and anterior
maxilla depth, have been correlated with feeding ecology in ungulates. Mandibular body depth
mostly predicts the feeding ecologies of the extant rhinos, as C. simum has the deepest
mandibular body while R. unicornis and D. sumatrensis have the shallowest mandibular bodies.
Diceros bicornis has medium body depth, which is deeper than expected for a browser, but it
may be related to dry habitats in which it resides. In dry habitats, vegetation is coarse and grit is
commonly consumed during feeding (Sanson 2006). Diceros bicornis has a more abrasive diet
than the tropical browser D. sumatrensis, so a deeper mandibular body could be related to
slightly higher-crowned dentition in D. bicornis. As the mandibular body seems to be an
accurate feeding ecology predictor, the very deep mandibular body of T. major is suggestive of a
grazing feeding ecology, likely in dry habitats, which is similar to C. simum.

Orbit location anteriorly-posteriorly predicts the feeding ecology of three extant species,
as C. simum has a posterior orbit location and D. sumatrensis and D. bicornis have more anterior
locations. Rhinoceros unicornis, however, has the most anterior orbit location, which is contrary
to expectations of a medial orbit location for a mixed feeder with sub-hypsodont dentition.
Similar to R. unicornis, T. major also has an anterior orbit location. Rhinoceros unicornis and T.
major share similar character states, so the anterior orbit locations may be an indication of
similar feeding ecologies, as mixed feeding conditions do not necessarily fall between browsers
and grazers (Janis 1995).

The depth and size of the anterior maxilla does not accurately predict the feeding
ecologies of the extant rhinos, as all the species have deep anterior maxillae. T. major has a

shallow and small anterior maxilla not similar to any of the extant rhinos. This noticeable
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difference in the anterior maxillae appears to be related to horn size and support. The extant
rhinos have large, strongly curved nasal bones supported by deep and broad maxillae around the
infraorbital foramen. The thin, straight nasals of T. major are connected to the maxillae with less
structural support. As there are no noticeable anterior maxilla differences among the extant
rhinos, no feeding ecology inferences for T. major are made based on this character.

The character states of the anterior orbit and anterior maxilla among the species are likely
linked functionally. The graph of ontogenetic maxilla expansion for each species (Appendix 3)
shows that in adulthood, C. simum has the broadest maxilla, D. sumatrensis and D. bicornis have
intermediately broad maxillae, and R. unicornis and T. major have the most contracted maxillae.
The extensive facial contraction in R. unicornis and T. major could be related to similarities in
feeding ecology or weapon use. In R. unicornis, intraspecific combat is primarily mediated with
tusks (Laurie 1982, Dinerstein 1991), and the same has been suggested for T. major based on
similarities in tusk dimorphism (Mihlbachler 2005). Perhaps an anteriorly located orbit would
aid vision during tusk combat. However, regardless of the shared anterior maxilla contraction in
R. unicornis and T. major, the known functional influences of these characters in perissodactyls
do not confidently infer the feeding ecology of T. major.
5.1.3 Masseter Muscle

Five characters, the posterior maxilla and jugal, the anterior jugal, the mandibular angle,
the mandibular ramus, and mandibular condyle height, are related to the function and size of the
masseter muscle. A broader posterior maxilla and jugal reflect a greater attachment area for the
deep masseter, and these characters are accurate ecological predictors for the extant species.
Both D. sumatrensis and D. bicornis have narrow areas while R. unicornis and C. simum have

broad areas. Somewhat contrary to expectations is R. unicornis, with the broadest area, broader

119



than C. simum. Bales (1996) proposed that the smaller masseter and exaggerated temporalis in
C. simum are related to its strongly inclined occiput. Bales (1996) suggested that the temporalis
is so exaggerated in order to support a large mandible while feeding with a downward head
orientation. In this orientation, the masseter does not have as much work in the vertical
component compared to rhinos with a horizontal feeding orientation, so the masseter of C. simum
is not large for a grazer. The very broad jugal in T. major is suggestive of grazing or mixed
feeding and seems to be an accurate predictor for the extant rhinos with close to horizontal head
orientations

A further anterior extension of the jugal reflects a greater attachment area for the
superficial masseter, and this character also accurately predicts the feeding ecologies for the
extant rhinos. Ceratotherium simum has the furthest anterior jugal extension relative to the orbit,
and D. sumatrensis and D. bicornis have the most posterior jugal extensions; R. unicornis falls in
between C. simum and the browsers as expected. Teleoceras major has an anterior jugal
extension slightly further than C. simum, past the anterior orbit. As the anterior jugal extension
accurately predicts the feeding ecologies for the extant rhinos, T. major has a character state
suggestive of a grazer.

A strong curvature of the mandibular angle and a large size of the mandibular ramus
reflect a greater attachment area for the deep and superficial masseter, and these characters
seems to be accurate predictors of feeding ecology for the extant rhinos. Rhinoceros unicornis
has a large and strongly convex angle and a large ramus, and D. sumatrensis and D. bicornis
have somewhat small and convex angles and small rami as expected. Ceratotherium simum has
a small and weakly convex angle and a small ramus, but again Bales (1996) explained the small

masseter size in C. simum. As the mandibular angle seems to be an accurate predictor, the
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character states of a strongly convex angle and large ramus for T. major indicate a grazing or
mixed feeding condition similar to R. unicornis.

An increased distance of the mandibular condyle from the cheek teeth results in a greater
moment arm and mechanical advantage of the masseter muscle (Radinsky 1984, Homberger and
Walker 2004). When a visual height of the condyle from the occlusal plane is used as an
estimator of this moment arm, this character seems to be an accurate feeding ecology predictor
for extant rhinos. Ceratotherium simum has an intermediate condyle height, higher than the
browsers D. sumatrensis and D. bicornis as expected. Rhinoceros unicornis has a higher condyle
than all other extant species, again demonstrating its overall large masseter as a mixed feeder.
Teleoceras major has an intermediate condyle height, similar to the grazer C. simum, which is
suggestive of a grazing feeding ecology.

Overall, the masseter characters accurately predict feeding ecology in the extant rhinos
with horizontal head orientations. The skull morphology of C. simum is divergent, with smaller
attachment areas for the masseter due to its proposed decreased functional requirements for
mastication. As T. major has a horizontal head orientation, the estimated masseter size and
attachment areas suggest the feeding ecology of a grazer or mixed feeder.

5.1.4 Temporalis Muscle

Two characters, braincase length and occipital height, are related to the size and function
of the temporalis muscle. A greater braincase length, which was estimated using the PCL
measurement, reflects a larger temporalis muscle, and this character accurately predicts the
feeding ecologies of the extant rhinos. Ceratotherium simum has a short PCL, while R.
unicornis, D. sumatrensis, and D. bicornis have a long PCL. The short PCL for T. major was

most similar to C. simum, which is suggestive of a grazing feeding ecology.
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A greater occipital height also reflects a larger temporalis muscle, and this character is an
accurate predictor for three of the extant species. Ceratotherium simum has the lowest occiput
while D. sumatrensis and D. bicornis have higher occiputs. Rhinoceros unicornis has the highest
occiput, which is contrary to expectations of a mixed feeder having an intermediate occipital
height. Functional character states indicate that R. unicornis has large temporalis and masseter
muscles, which may be indicative of a mixed feeder. Perhaps in rhinos, mixed feeders need
large temporalis and masseter muscles to meet the functional requirements of a grazer and a
browser. Keeping the results for R. unicornis in mind, T. major has a low occipital height
similar to C. simum, which is suggestive of a grazing feeding ecology.

The results of C. simum having a small temporalis muscle seem contradictory in light of
the visually apparent large temporal fossa. A few reasons could explain the statistical results for
the temporalis muscle. First, the measurements that were used may not truly reflect actual
temporalis size. For example, the PCL posterior landmark was the opisthion, not the temporalis
origination area along the occipital crest. The PCL anterior landmark was the glenoid fossa,
which is close to, but not along, the temporalis insertion area of the coronoid process. Another
possibility is that C. simum does in fact have a small temporalis muscle relative to overall body
size. The functional measurements were normalized to total skull length to prevent significant
size differences among the species from biasing the results. For example, the maximum skull
lengths for each species used in this study were: T. major 497.5 mm, R. unicornis 527 mm, D.
sumatrensis 416 mm, C. simum 640.5 mm, D. bicornis 548.5 mm. Although C. simum does
have a large occiput in appearance, C. simum also has the largest overall skull.

With the results suggesting that C. simum does in fact have the large temporalis

conditions of grazers, the masseter of C. simum appears to be small. Despite the small masseter
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size in C. simum, the extant species with horizontal head orientations have functional character
states coinciding with feeding ecologies. Teleoceras major has a considerable amount of grazer
characters, so the suggested feeding ecology for T. major is a grazer.

5.2 ONTOGENETIC INFERENCES

5.2.1 Horns and Tusks

Differences in the timing of nasal horn development were found among the rhino species.
The appearance of the dorsal nasal pronouncement occurred earliest in African rhinos (Age Class
1), slightly later in R. unicornis (Age Class 3), and latest in T. major (Age Class 5). Nasal
rugosity appeared in Age Class 8 in extant rhinos and in Age Class 10 in T. major. These
differences in nasal horn development are likely related to differences in nasal horn size and use.
The African rhinos have significantly longer nasal horns than R. unicornis; the nasal horn of T.
major is likely the smallest based on nasal rugosity size. Horns are the sole weapons in African
rhinos, and nasal horn development begins earliest in these species.

In the three rhino species with tusks, di, shedding and tusk eruption occurs in similar age
classes. All Age Class 6 specimens had di, present, and all Age Class 8 specimens but one (T.
major, UNSM 52230) had erupted tusks. Further, the only Age Class 7 specimen in the samples
(D. sumatrensis, AMNH 173576) had empty i, alveoli. Altogether, tusk eruption in T. major, R.
unicornis, and D. sumatrensis seems to occur in Age Classes 7-8.

Comparable timings of tusk eruption (Age Classes 7-8) and horn rugosity development
(Age Class 8 in the extant rhinos) suggest similar importance in function and maturity. The
estimated chronological age for Age Classes 7-8 in D. bicornis is 5-8 years old (Hitchins 1978).
This age estimate for tusk eruption and horn rugosity development coincides with the age of

maturity in males and the age of first parturition in females, between 5-8 years (Owen-Smith
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1988). Dinerstein (1991) also noted the coincidence of tusk eruption with attainment of breeding
age in R. unicornis males. Although nasal development in T. major occurred later and was
possibly of secondary importance in competition and defense, tusk development did coincide
with breeding age, as in R. unicornis and D. sumatrensis. These age estimates suggest a
relationship between weapons and sexual maturity in rhinos, as males require weapons to
compete for mating rights, and females require weapons for defense of their young.

The importance of weapon development for combat and defense is especially evident
given the mortality profiles Mihlbachler (2003) reported for T. proterum from Florida localities.
Comparing T. proterum bone accumulations with those previously reported for D. bicornis,
Mihlbachler (2003) showed similar mortality spikes for each species. The first mortality spike
occurred around 3-5 years old (approximately Age Classes 5-6), which was estimated to
correspond with mother-calf separation before maturation. Full body size is not yet achieved
during this time of susceptibility to predation (Mihlbachler 2003), and significant horn and tusk
development has not yet occurred. The second mortality spike occurred around 6-15 years old
(approximately Age Classes 6-12), which corresponded with the attainment of maturation in
young adults but not necessarily breeding rights in males. This is a time of aggression and
competition for reproduction (Mihlbachler 2003); the development of weapons for combat and
defense coincides with this age.

5.2.2 Sexual Dimorphism

Sexual dimorphism in extant rhino specimens was not apparent. First, there were no
apparent qualitative differences in morphological development. Second, although the tusks were
not measured, tusk size was not visually dimorphic and there were no perceptible developmental

differences in tusk eruption. Third, only one skull dimension, TCL in R. unicornis, was found to
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be dimorphic, with the females being significantly larger than the males. Dimorphism
documented in R. unicornis indicates that males often have significantly larger skull, tusk, and
postcranial dimensions than females (Groves 1982, Dinerstein 1991). The curious dimorphism
find in R. unicornis in this study is likely related to a small sample size, as only 4 male and 3
female adult specimens were included.

In the T. major sample, only two adult males were included, which are identifiable based
on visually apparent tusk size dimorphism (Voorhies and Stover 1978). Several adults from this
sample were included in the sexual dimorphism study by Mead (2000), who found adult males to
be significantly larger than females in several cranial, mandibular, postcranial, and tusk
dimensions; males also had prolonged limb growth. Further differences in tusk development
between sexes have been identified in Teleoceras. Mihlbachler (2005) found that Teleoceras
proterum male tusks erupted later in life than in females, and male tusks also had prolonged
growth. Comparable dimorphic tusk development has not been found in R. unicornis or D.
sumatrensis, and Mihlbachler (2005) attributed this degree of dimorphism in T. proterum to
higher levels of competition relative to extant rhinos.

Although development of dimorphism in rhinos was not elucidated in this study, previous
work by Groves (1975) on C. simum and by Dinerstein (1991) on R. unicornis, give indications
of the timing of dimorphism. Cranial dimension dimorphisms in C. simum and body size
dimorphisms in R. unicornis were found to appear around four to five years of age, beginning
slightly before the onset of maturity. Future sexual dimorphism research in the extant rhinos and
Teleoceras may show similar developmental patterns coinciding with horn and tusk development

and maturity.

125



5.2.3 Non-Molariform Dentition

For mandibular dentition, pl is shed early in C. simum (Age Class 8) and late in R.
unicornis, D. sumatrensis, and D. bicornis (Age Class 10). The p2 is also shed in Age Class 10
in T. major. For maxillary dentition, P1 is shed early in C. simum and D. sumatrensis (Age Class
8) and late in T. major, R. unicornis, and D. bicornis (Age Classes 10-11). Premolar shedding is
associated with eruption of adult teeth, as in Age Class 8 specimens the p2, p3, and m2 were
recently erupted, and in Age Class 10 specimens, m3 was recently erupted. Anterior premolar
shedding in rhinos therefore makes room for new molariform teeth that are important in
mastication.

The lower i2 tusk and upper 11 honing incisor combination is the synapomorphy for
Rhinocerotidae, and matching 12 and i1 become reduced or nonexistent (Radinsky 1966).
Although C. simum and D. bicornis do not possess this functional incisor combination in
adulthood, these incisors are occasionally present in ontogeny. Diceros bicornis commonly
possesses small, nub-like upper and lower incisors in all ages, in the same locations as in Asian
rhinos and T. major. Hitchins (1978) noted the common appearance of up to two pairs of
mandibular and maxillary incisors in D. bicornis, most common early in ontogeny. Some C.
simum specimens have questionable incisor presence based on shallow incisor alveoli. In both T.
major and R. unicornis specimens, small, lower incisors medial of i2 are present in all ages,
which are interpreted as rudimentary il. R. unicornis specimens also have small upper incisors
located lateral of 11 early in ontogeny, interpreted as rudimentary 12. With D. bicornis, T. major,
R. unicornis, and possibly C. simum all possessing rudimentary incisors, incisors may have a
function such as in scratching, mating, or feeding in infancy, or they could be vestigial incisors

that are non-functional.
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5.2.4 Skull Development

Extant rhinos and T. major have similar ontogenetic patterns in dorsal cranial
developmental changes. In Age Classes 1-2, all species have rounded crania except for C.
simum, which has a lengthened and angular cranium. All species undergo distinct cranial
lengthening in Age Classes 3-5, making crania easily distinguishable to species. Co-occurring
with cranial lengthening is occipital crest pronouncement and temporal line appearance. The
temporal lines become visible early in T. major and R. unicornis (Age Classes 3-4) and late in C.
simum and D. bicornis (Age Class 6).

In Age Class 5, the occiput and frontal plate begin to widen and develop angularly into
adult morphologies, and different developmental patterns follow. The Asian rhino crania widen
more proportionately, while African rhino crania widen with continued lengthening. Through
Age Classes 3-6, T. major has morphological similarities with both Asian rhinos (rounded
occiput) and African rhinos (frontal plate). Teleoceras major also has distinct characters early in
ontogeny that are not found in extant rhinos, such as laterally flared zygomatic arches and short,
pointed nasals; these characters are present in T. major through ontogeny.

In all species, nasals, frontal plate, and occiput continue to change in Age Classes 7-9,
and in Age Class 10 adult morphology is reached with little change afterward. Morphological
changes in Age Classes 10-15 are slight exaggerations to the nasals, zygomatic arches, frontal
plate, and occiput. The occipital and temporal crests also become more pronounced through Age
Classes 10-15.

Cranial suture development is similar across rhino species. Parietal-occipital and frontal-
parietal sutures close in Age Classes 6-8. Facial sutures close in Age Classes 10-12. Nasal-

frontal and jugal-zygoma sutures disappear in Age Classes 10-12 in extant rhinos, but these

127



sutures were not closed in T. major specimens. This apparent lack of suture closure is likely due
to fracturing of peripheral fossil bones common in T. major specimens.

Dorsal cranial ontogenetic changes in extant rhinos and T. major are similar to those
described in Chilotherium wimani by Deng (2001). Deng (2001) described similar occipital and
parietal shape changes, occipital and temporal crest pronouncement timings, and suture closings
in C. wimani. Unfortunately, descriptions and depictions of the lateral skull were not provided
for a comparison of characters related to feeding ecology used in this study.

Comparisons of the lateral skull suggest that development of primary muscle attachment
areas (mandibular angle, zygomatic arch, and occiput) and dentition area (mandibular body) are
distinct among species. Early in ontogeny, T. major stands out with its enlarged mandibular
angle and zygomatic arch. These masseter attachment sites in T. major continually expand
through ontogeny, remaining significantly larger than in other species. All species appear to
have considerable increases in jugal broadness in Age Classes 5-7, and the mandibular angle
appears to change consistently across species. Although R. unicornis reaches mandibular angle
morphology similar to T. major in adulthood, T. major has the most developed angle and
zygomatic arch earliest in ontogeny.

Ceratotherium simum also stands out with its enlarged and posteriorly oriented occiput
early in ontogeny. The occiput in C. simum expands through ontogeny, remaining larger and
more posteriorly oriented than the other species. Rhinoceros unicornis and D. bicornis have
changes in occipital height and angle beginning in Age Class 3. In T. major, the occipital angle
does not begin to change until Age Classes 4-5, and occipital height does not noticeably change

until after Age Class 5.
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The deep mandibular bodies of C. simum and T. major appear to follow different
developmental patterns compared to the shallower mandibular bodies of R. unicornis, D.
sumatrensis, and D. bicornis. In C. simum, the mandibular body is deep early in ontogeny, but
other species including T. major have thin mandibular bodies at similar ages. Ceratotherium
simum and other extant rhinos have consistent increases in body depth through ontogeny, but T.
major reaches the deep body proportions of C. simum around Age Class 10, which suggests
different mandibular body developmental patterns in T. major and C. simum.

Despite early developmental differences in the mandibular angle, zygomatic arch,
occiput, and mandibular body, all species show similar exaggerations in robustness in Age
Classes 10-15. Adulthood is thus characterized by increases to species-specific morphologies
achieved earlier in ontogeny. Perhaps having larger attachment areas and more developed
muscles early in ontogeny are a selective advantage for the mastication of coarse vegetation.
5.2.5 Thin-Plate Splines

The thin-plate splines depicted developmental shape differences related to muscle
attachment areas, dentition, and horns. The most similar ontogenetic change across all species is
consistent posterior and ventral occipital contraction. Similar contraction seems counterintuitive
as species develop large occiputs with differing morphologies and orientations. However,
braincase develops with negative allometry in mammals (Emerson and Bramble 1993), which is
thus demonstrated in the thin-plate splines. Another similarity is consistent mandibular ramus
expansion in all species. Rhinoceros unicornis, however, does have stronger expansion, which is
explained by its small ramus early in ontogeny and its large ramus in adulthood. All species

demonstrate zygomatic arch expansion through ontogeny except for C. simum. Ceratotherium
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simum has zygomatic expansion only in adulthood as C. simum has a long zygomatic throughout
ontogeny.

Nasal, maxilla, and mandibular body developments exhibit the greatest differences
among species. Nasal expansion is consistent through ontogeny in the species, but the degree of
expansion varies among rhinos. African rhinos have weak nasal expansion, and Asian rhinos
and T. major have strong nasal expansion. Weaker nasal expansion in the African rhinos is
likely related to their large nasal size early in ontogeny. Maxilla and mandibular body expansion
through ontogeny also is present in all species, but C. simum and T. major have weaker and
stronger expansions, respectively. These maxilla and mandibular body differences in C. simum
and T. major are related to the areas for dental housing, being deep in C. simum throughout
ontogeny and becoming deep in T. major in adulthood.

5.2.6 Principal Component Analysis of Landmarks

PCL1 for each species explained the most variation in four characters: the occiput,
zygomatic arch, mandibular angle, and nasals. These areas undergo the most morphological
change among species, but the zygomatic arch in D. sumatrensis and C. simum and the
mandibular angle in C. simum were not primary areas for PC1. Little ontogenetic change occurs
in these areas for these species, which is displayed by the consistently weak mandibular angle
and long zygomatic arch in C. simum, and by the consistently thin zygomatic arch in D.
sumatrensis. The occiput and nasals, as well as the zygomatic arch and mandibular angle, are
viewed as areas that develop the most in rhinos.

PC2 explained variation, and therefore considerable ontogenetic change, in mandibular
body depth for T. major, R. unicornis, and D. bicornis, and occipital height for T. major, R.

unicornis, and D. sumatrensis. For the mandibular body, C. simum and D. sumatrensis showed
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less ontogenetic change in depth, retaining deep and shallow bodies, respectively, throughout
ontogeny. For the occiput, C. simum and D. bicornis showed less ontogenetic change in
occipital height throughout ontogeny, which is somewhat unexpected for D. bicornis. However,
PC3 is a significant component for D. bicornis that explained significant occipital height change,
so D. bicornis has slightly less occipital changes compared to T. major, R. unicornis, and D.
sumatrensis. One further character with significant ontogenetic variation is anterior cranial
depth. Teleoceras major had considerable anterior cranial depth variation in PC2, as did C.
simum in PC3, which could be related to increased maxillary depth for high-crowned upper
dentition.

5.2.7 Canonical Variate Analysis of Landmarks

CV1 appears to group species based on developments in length of the entire skull. The
primary CVs depicted skull areas with the most variation among species’ ontogenies as a whole,
not just in infancy or adulthood. Occipital orientation, mandibular angle curvature, and facial
length were the primary distinguishing characters among species for CV1. Overlapping
intermediate CV1 scores for D. sumatrensis and D. bicornis indicate similar ontogenetic paths,
as do high CV1 scores for T. major and R. unicornis.

CV2 appears to group species based on feeding ecology. In CV2, the primary
distinguishing characters were mandibular body depth, occipital height, and jugal length, which
are related to differences between grazers and browsers. The low CV2 score for C. simum and T.
major are indicative of grazing conditions, and the high and intermediate scores in D. bicornis,
R. unicornis, and D. sumatrensis are indicative of browsing and mixed feeding conditions.

In CV3, two of the characters with the most variation, mandibular angle size and

mandibular condyle height, were related to feeding ecology. Although there is less separation
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among species, the similarities in C. simum and R. unicornis, and in D. bicornis and D.
sumatrensis, indicate that C\V3 groups the extant species based on feeding ecology.
Ceratotherium simum and R. unicornis have grazing character states for the mandibular angle
and mandibular condyle, while D. bicornis and D. sumatrensis have browsing character states.
CV3 has little interpretative ability because no other species have intermediate scores and the
mixed feeder, R. unicornis, has high scores.
5.2.8 Skull Allometry

Allometric coefficients for cranial, mandibular, and dental variables indicate several
growth patterns among the extant rhinos and T. major that can be explained by functional
morphology and feeding ecology. T. major and C. simum, with likely grazing ecologies, have
similar growth allometries for MCL and TCL. As MCL estimates anterior zygomatic arch size,
isometric MCL growth in both species suggests that both species may retain consistent growth of
a masseter attachment area for feeding on coarse vegetation. Likewise, negative allometric MCL
growth in the browsers and mixed feeder suggests that continued expansion of the anterior
zygomatic arch is not necessary because large masseter muscles are not required for mastication
of softer vegetation. Ceratotherium simum and T. major also have isometric TCL growth while
the browsers and mixed feeder have negative allometric TCL growth. As grazers tend to have
lengthened skulls, perhaps consistent overall skull growth in C. simum and T. major is to retain
functionally efficient grazing proportions.

Similarities in occipital growth allometry also provide comparisons in feeding ecology
between grazers and browsers. Ceratotherium simum and T. major have negative allometric
growth for OH, which indicates less vertical adult occipital growth. In comparison, positive

allometric OH growth in the browsers and mixed feeder suggests increased adult occipital
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growth to develop a large temporalis muscle for browsing. PCL provides further occipital
developmental trends that are both shared and distinct among species. This character is likely
related to brain size, as all species have negative PCL allometry. The mammalian brain develops
early in ontogeny, resulting in negative allometric growth postnatally compared to the rest of the
skull (Emerson and Bramble 1993). Differences in the degree of negative PCL allometry exist
among species, and morphological occipital developmental differences are verified by assessing
vertical and horizontal allometric components together. Ceratotherium simum and D.
sumatrensis have the highest negative PCL allometry, R. unicornis and D. bicornis have the
lowest negative PCL allometry, and T. major has intermediate negative PCL allometry. Skull
allometries for C. simum indicate more posterior than vertical occipital development. The
opposite conditions are found in R. unicornis and D. bicornis, with more vertical than posterior
occipital development. High scores in both directions for D. sumatrensis, and low scores in both
directions for T. major, indicate intermediate occipital conditions. The occipital allometry scores
confirm occipital morphological changes in the rhino species.

Similarities in ZW allometries group the species geographically with T. major being
more similar to Asian rhinos. Asian rhinos and T. major have isometric ZW growth and African
rhinos have negative allometric ZW growth. Asian rhinos and T. major have broad posteriorly
flared arches that increase through adulthood, but African rhinos have slightly flared arches with
less noticeable developmental changes. Although Joeckel (1990) found correlations between
occiput size and zygomatic width suggesting a relationship with the temporalis muscle, these
differences in ZW morphology and development may instead be related to masseter size.
Morphological assessments reveal that T. major and R. unicornis have large masseter muscles

that pass through laterally flared arches. Another reason for zygomatic arch differences between
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Asian and African rhinos is related to weapon display. African rhinos possess two large horns
that are visually apparent, sometimes over 1000 mm in length. Asian rhinos fight primarily in
tusks, which are not as visually apparent as large nasal and frontal horns, so perhaps flared
zygomatic arches are related to threat display in rhino species with large tusks.

ACL allometries reflect differences in nasal horn development and structural support
between extant rhinos and T. major. The most positive ACL allometry in T. major suggests later
structural nasal development from a weak anterior face early in ontogeny. Extant rhinos have
less positive allometry compared to T. major, which suggests stronger nasal horn support early in
ontogeny. Conversely, similarities in SW allometries for all species except C. simum indicate
that SW is not necessarily related to the presence or absence of the frontal horn. There are no
score differences between species possessing a frontal horn (D. sumatrensis and D. bicornis) and
those without a frontal horn (T. major and R. unicornis). Ceratotherium simum does not have a
noticeably narrower frontal region compared to other species early in ontogeny, but C. simum
does have a very wide frontal region in adulthood. Positive SW allometry in C. simum indicates
that the frontal region develops more in C. simum than in other species.

Most allometric similarities among species were of the mandible and dentition. Both
MXDL and MNDL had positive allometry for all species, which is consistent with large adult
teeth steadily added to the dental rows. Isometric ML growth for all species is likely a
combination of positive allometry in MXDL and MNDL and negative allometry in RL. The
ramus is likely negatively allometric because it must be large early in ontogeny for efficient
mastication regardless of feeding ecology. Low negative RL allometries in C. simum and T.

major verify little morphological change of the mandibular ramus in these species.
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The dental variable with the most variation among species was MNAPW, which is
related to muzzle shape. Negative MNAPW allometry in C. simum indicates that its mouth
opening is very broad early in ontogeny. Positive MNAPW allometry in D. bicornis suggests
that early in ontogeny its mouth opening is narrow, and positive allometry is needed to reach
adult proportions. MNAPW isometry in T. major and R. unicornis suggests little ontogenetic
shape change to maintain the function of deciduous and adult lower incisors. MNPPW is also
related to muzzle shape, which is negatively allometric with few differences among the species.
Shape differences in the oral cavity among species are therefore a result of ontogenetic changes

to the anterior muzzle.
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CHAPTER 6. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

The present study reveals that several functional characters found in perissodactyl grazers
and browsers are accurate feeding ecology predictors in extant rhinos. Teleoceras major is
proposed to be a grazer based on its high number of grazing characters, such as a deep
mandibular body, a large posterior maxilla and jugal, an anterior jugal extension, a large and
strongly curved mandibular angle, and a low and short occiput. Teleoceras has previously been
hypothesized as a grazer based on its high-crowned dentition and shortened limbs for low-grass
grazing, and the results of this study support this hypothesis.

A few functional character states did not coincide with feeding ecology in extant rhinos,
bringing to light the complexities of morphological assessments. The premolar row length to
molar row length ratio, a variable often used for examining feeding ecology affinities, yielded no
differences among extant rhinos. Character states of the mandibular ramus and occiput produced
results contrary to feeding ecology expectations for C. simum and R. unicornis. Ceratotherium
simum was found to have small masseter attachment areas and large temporalis attachment areas,
which is likely related to its strongly inclined head orientation. In R. unicornis, the combination
of a high, browsing occiput and a large, grazing mandibular ramus demonstrates its mixed
feeding ecology.

Functional characters that were accurate predictors in extant rhinos can be useful for
investigating feeding ecology of other extinct rhinos. Tracking functional characters across the
nine Teleoceras species may reveal changes or specializations in feeding ecology temporally as
well as geographically. Similar functional assessments can be completed for Eurasian
teleoceratins, which have a range of proposed feeding ecologies with differing skull

morphologies and body types. In further feeding ecology assessments, dental row lengths and
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masseter and temporalis attachment areas could be measured differently to more accurately
reflect functional dimensions.

Ontogenetic comparisons in the extant rhinos and T. major reveal both shared and distinct
patterns in rhino weapon development. Tusk eruption and nasal horn rugosity appearance occur
with the onset of sexual maturity, indicating the importance of weapons in male competition and
female defense of offspring. In T. major, late nasal horn rugosity development and negative
allometry of the anterior face suggest a more important role of the tusks. In the extant rhinos,
thin-plate spline nasal expansions and nasal horn pronouncement timing indicate early nasal
development in the African rhinos, likely related to the nasal horn being the primary weapon
used in combat and defense. Flared zygomatic arches in the Asian rhinos and T. major as adults
are proposed as a display in tusk fighting rhinos.

Rhino species share several morphological skull developments in ontogeny, such as early
cranial lengthening followed by occipital and frontal widening. Cranial sutures close in similar
age classes, and pronouncement of the temporal and occipital crests occurs synchronously across
all species regardless of cranial morphology. Each species’ adulthood is characterized by
exaggeration of the nasals and the temporalis and masseter attachment areas.

Species’ ontogenies are primarily distinguished by changes in the occiput, zygomatic
arch, mandibular angle, and mandibular body, which are all characters related to feeding
ecology. The ontogenetic PCA of shape variables displayed the greatest overall changes in the
occiput, zygomatic arch, and mandibular angle for each ontogeny. The ontogenetic CVA of
shape variables grouped species according to feeding ecology with the most variation in

mandibular body depth, occipital height, and jugal length. Skull allometries further link
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developmental morphology to feeding ecology, as C. simum and T. major share similar
zygomatic arch and occiput allometries, as do R. unicornis, D. sumatrensis, and D. bicornis.

Morphological descriptions and thin-plate splines further reveal developmental
differences in muscle attachment areas and dental housing areas, especially in grazers. The
occiput, mandibular body, maxilla, and zygomatic arch all develop early with less ontogenetic
change in C. simum. The mandibular ramus and zygomatic arch also develop early in T. major,
but the maxilla and mandibular body develop significantly more in adulthood than in other
species. Early developments of areas related to masseter and temporalis muscle attachment and
dental housing are interpreted as adaptations for grazing in C. simum and T. major.

The comparative methods used in this study can be applied to a range of extinct rhino
species to assess development and feeding ecology. The partially complete ontogenetic skull
sequence of the Miocene Chilotherium wimani, which has a similar morphology and proposed
feeding ecology as Teleoceras, may elucidate further developmental patterns related to grazing
rhinos. Other extinct rhino species with only a few immature specimens may contribute to
developmental trends shared among extant rhinos and distantly related lineages. Inferences from
this study regarding weapon development and maturity, and cranial and mandibular changes and
feeding ecology highlight the potential of ontogenetic comparisons. Ontogenetic investigations
provide an innovative approach to understanding the evolution and development of the

Rhinocerotidae.
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APPENDIX 1. MEASUREMENT STATISTICS FOR CALIPERS

Digital Calipers

Measurement | ACLR | ACLL OH DW MXPLR | MXPLL | MXMLR | MXMLL
Minimum 117.65 117.2 146.09 48.84 119.93 113.77 140.23 142.63
Maximum 118.34 120.3 149.98 52.69 122.29 114.81 140.72 144.14
Mean 118.008 | 118.908 | 148.19 | 51.056 | 121.152 | 1145 140.538 | 143.622
SD 0.24468 | 1.22204 | 1.45405 | 1.46555 | 0.96634 | 0.42556 | 0.20584 | 0.64732
Ccv 0.20734 | 1.02772 | 0.98121 | 2.87048 | 0.79763 | 0.37167 | 0.14647 | 0.45071
Measurement | MXAPW | MXPPW | MNPLR | MNPLL | MNMLR | MNMLL
Minimum 142.71 72.28 97.01 96.32 139.72 139.25
Maximum 144.96 73.44 99.01 97.51 140.56 140.81
Mean 143.56 72.862 97.87 96.74 140.218 140.154
SD 0.97080 | 0.48303 | 0.74354 | 0.49462 | 0.30963 | 0.56376
Ccv 0.67623 | 0.66294 | 0.75972 | 0.51129 | 0.22082 | 0.40225
Manual Calipers
Measurement | TCLR TCLL | PCLR | PCLL | MCLR | MCLL SW Z\W
Minimum 516 516 211 213 218 215 260 325
Maximum 523 518 215 218 219 218 262 327
Mean 518.2 517.2 212.8 215.2 218.2 216.6 260.8 325.8
SD 2.86356 | 0.83666 | 1.48324 | 1.92354 | 0.44721 | 1.14018 | 0.83666 | 0.83666
CcVv 0.55260 | 0.16177 | 0.69701 | 0.89384 | 0.20496 | 0.52640 | 0.32081 | 0.25680
Measurement MLR MLL RLR RLL CW MXDLR | MXDLL | MNDLR | MNDLL
Minimum 444 449 178 185 305 245 243 234 233
Maximum 448 453 182 186 306 247 245 237 235
Mean 446 450.8 179.6 185.2 305.6 246 244.4 235.2 234.2
SD 1.58114 | 1.64317 | 1.51658 | 0.44721 | 0.54772 1.0000 0.89443 1.09545 0.83666
Ccv 0.35452 | 0.36450 | 0.84442 | 0.24148 | 0.17923 | 0.40650 | 0.36597 | 0.46575 | 0.35724
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APPENDIX 2. SPECIMEN COUNTS FOR STATISTICAL ANALYSES

Asymmetry Specimen Counts

Species Group TCL% | PCL% | MCL% | ACL% | ML% | RL%
T. major Ages 0-4 4 5 6 5 4 5
Ages 5-7 5 5 5 5 5 5
Ages 8-9 3 3 3 3 3 3
Ages 10-17 13 13 13 10 13 13
Ages 0-17 25 26 27 23 25 26
R. unicornis Ages 0-4 3 3 3 3 3 1
Ages 5-7 2 2 2 2 2 2
Ages 8-9 1 1 1 1 1 1
Ages 10-17 8 8 9 9 8 8
Ages 0-17 14 14 15 15 14 12
D. sumatrensis | Ages 0-4 1 1 1 1 1 0
Ages 5-7 1 1 1 1 1 1
Ages 8-9 1 1 1 1 1 1
Ages 10-17 4 3 3 4 4 4
Ages 0-17 7 6 6 7 7 6
C. simum Ages 0-4 7 7 7 7 7 6
Ages 5-7 2 3 3 3 3 3
Ages 8-9 3 3 3 3 3 3
Ages 10-17 5 5 7 7 7 7
Ages 0-17 17 18 20 20 20 19
D. bicornis Ages 0-4 6 6 7 7 7 6
Ages 5-7 3 3 3 3 3 3
Ages 8-9 3 3 3 3 3 3
Ages 10-17 13 13 13 13 11 11
Ages 0-17 25 25 26 26 24 23
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Species Group MXPL% | MXML% | MXDL% | MNPL% | MNML% | MNDL%
T. major Ages 0-4 5 0 5 3) 0 3)
Ages 5-7 5 4 5 5 5 5
Ages 8-9 3 3 3 3 3 3
Ages 10-17 13 13 13 13 13 13
Ages 0-17 26 20 26 26 21 26
R. unicornis Ages 0-4 1 0 1 1 0 1
Ages 5-7 2 1 2 2 1 2
Ages 8-9 1 1 1 1 1 1
Ages 10-17 9 9 8 9 9 9
Ages 0-17 13 11 12 13 11 13
D. sumatrensis | Ages 0-4 0 0 0 0 0 0
Ages 5-7 1 1 1 1 1 1
Ages 8-9 1 1 1 1 1 1
Ages 10-17 4 4 4 4 4 4
Ages 0-17 6 6 6 6 6 6
C. simum Ages 0-4 7 0 7 7 0 7
Ages 5-7 3 3 3 3 3 3
Ages 8-9 3 3 2 3 3 3
Ages 10-17 6 7 6 7 7 7
Ages 0-17 19 13 18 20 13 20
D. bicornis Ages 0-4 6 0 6 6 0 6
Ages 5-7 3 2 3 3 3 3
Ages 8-9 3 3 3 3 3 3
Ages 10-17 13 13 12 13 13 13
Ages 0-17 25 18 24 25 19 25
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Sexual Dimorphism Permutation T-Tests Specimen Counts

Species Sex TCL PCL | MCL | ACL SW OH ZW ML RL Cw
R. unicornis Male 4 4 4 4 4 4 4 4 4 3
Female 3 3 3 3 3 3 3 3 3 3
C. simum Male 3 3 3 3 3 3 3 3 3 3
Female 3 3 3 3 3 3 3 3 3 3
D. bicornis Male 4 4 4 4 4 4 4 4 4 4
Female 4 4 4 4 4 4 4 4 4 3
Sexual and Subspecific Shapiro-Wilk Specimen Counts
Species TCL PCL | MCL | ACL SwW OH ZW ML RL Cw
R. unicornis 7 7 8 8 8 7 8 8 8 7
C. simum 6 6 7 7 7 6 7 7 7 7
D. bicornis 13 13 13 13 13 13 13 13 13 12
Functional Characters Specimen Counts
Species PCL | OH | RL | MXPL/MXML | MNPL/MNML | DW/PPW | APW/PPW
T. major 14 14 14 14 14 12 14
R. unicornis 8 8 8 9 9 8 9
D. sumatrensis 4 4 4 4 4 4 4
C. simum 8 8 8 9 9 7 8
D. bicornis 14 14 14 14 14 7 14
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Cranial PCA Missing Specimen Counts

Species Specimens | TCL | PCL | MCL | ACL SwW OH ZW
T. major 26 0 0 0 0 3 0 0
R. unicornis 14 0 0 0 0 0 2 0
D. sumatrensis 7 0 0 0 0 0 0 1
C. simum 19 0 0 0 0 0 2 0
D. bicornis 25 0 0 0 0 0 0 0
Mandibular and Dental PCA Missing Specimen Counts
Species Specimens | ML RL CwW | MXDL | MNDL | MNAPW | MNPPW
T. major 25 0 0 1 0 0 0 0
R. unicornis 12 0 0 1 0 0 0 0
D. sumatrensis 6 0 0 0 0 0 0 0
C. simum 19 0 1 0 0 0 1 0
D. bicornis 24 0 0 2 0 0 0 0

Species Specimens
T. major 13
R. unicornis 11
D. sumatrensis 6
C. simum 11
D. bicornis 12

Geometric Morphometric Specimen Counts
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Maxilla Expansion of the Anterior Orbit (A) and Nasal Incision (N) in T. major Ontogeny

Maxilla Expansion of the Anterior Orbit (A) and Nasal Incision (N) in R. unicornis

Ontogeny

APPENDIX 3. MAXILLA EXPANSION IN ONTOGENY

AgeClass| M2 M1 P4 P3 P2 Pl
2 A N
3 A N
4 A N
5 A N
6
7
8 A N
9 A N

10 A N
11 A N

12 A N
13

14 A N
15 A N

AgeClass | M2 M1 P4 P3 P2 P1
1 A N
2
3 A N
4
5 A N
6 A N
Z
8 A N
9
10
11 A N
12 A N
13 A N
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Maxilla Expansion of the Anterior Orbit (A) and Nasal Incision (N) in D. sumatrensis
Ontogeny

AgeClass | M2 M1 P4 P3 P2 P1
2 A N
3
4
5
6
7 A N
8 A N
9
10 A N
11 A N
12
13 A N

Maxilla Expansion of the Anterior Orbit (A) and Nasal Incision (N) in C. simum Ontogeny

AgeClass| M2 M1 P4 P3 P2 Pl
1 A N
2 A N
3 A N
4 A N
5 A N
6 A N
7 A N
8 A N
9 A N
10 A N
11 A N
12 A N
13
14 A N
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Maxilla Expansion of the Anterior Orbit (A) and Nasal Incision (N) in D. bicornis
Ontogeny

AgeClass| M2 M1 P4 P3 P2 Pl
1 A N
2
3 A N
4 A N
5 A N
6 A N
7 A N
8 A N
9
10 A N
11 A N
12 A N
13 A N
14 A N
15 A
16
17 A N
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APPENDIX 4. ONTOGENETIC SEQUENCES OF SPECIES’ SPECIMENS

* indicates captive specimens with no dental inconsistencies. ** indicates captive specimens

with dental inconsistencies, resulting in exclusion from the ontogenetic sequence.

T. major Ontogenetic Sequence

Age Class

Specimen

2

UNSM 27817
UNSM 52245
UNSM 27814

UNSM 27810

UNSM 52279
UNSM 51101

UNSM 52231
UNSM 52374
UNSM 52222
UNSM 52234
UNSM 52219

UNSM 52230
UNSM 52232

UNSM PI1136

10

UNSM 52223
UNSM 52238

11

UNSM 52228
UNSM 52273
UNSM 27808
UNSM 52272
UNSM 52283

12

UNSM 52286
UNSM 27807
UNSM 52289

14

UNSM 52373
UNSM 52288

15

UNSM 52218

R. unicornis Ontogenetic Sequence

Age Class

Specimen

1

AMNH 274636
USNM 574963

AMNH 70445

AMNH 119475

USNM 464963

o[ |Oo1|Ww

AMNH 54456

UNSM ZM13844**

11

FMNH 140883**
USNM 336953
AMNH 35759

12

AMNH 54454
FMNH 57822
FMNH 25708

13

FMNH 57639*
FMNH 25707

D. sumatrensis Ontogenetic Sequence

Age Class Specimen
2 AMNH 54764
7 AMNH 173576
8 FMNH 63878
10 USNM A49561
USNM 269392
11 AMNH 54763
13 AMNH 81892
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C. simum Ontogenetic Sequence

Age Class

Specimen

1

AMNH 51918

2

AMNH 51927
AMNH 51882

USNM 164588
AMNH 51916
AMNH 51881

AMNH 51872

AMNH 51870

AMNH 51862

AMNH 51930

AMNH 51931

© |o(N[ov|jo| >

AMNH 54125
AMNH 51865

AMNH 125413

11

AMNH 29174
AMNH 51890

12

FMNH 51471
AMNH 51858
AMNH 51856

14

AMNH 51854

D. bicornis Ontogenetic Sequence

Age Class

Specimen

0

USNM 182019
USNM A34717

USNM 182030

AMNH 113779
USNM 162932
USNM A34718

USNM A34720

USNM 240884

FMNH 33490

USNM 199708

USNM A34719
USNM 161925

FMNH 60784**

USNM 161924

FMNH 85429
FMNH 127848

12

FMNH P14823
FMNH 127849
FMNH 22366
FMNH 166520**

13

FMNH 34278
USNM 54004

14

FMNH 121646*
FMNH 127851

15

FMNH 57809*

17

USNM 182195
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APPENDIX 5. ASYMMETRY INDEX STATISTICS

Asymmetry Index Statistics for Right-Left Measurements
Statistic | T. major | R. unicornis | D. sumatrensis | C.simum | D. bicornis
Min -3.0303 -2.12766 -1.49626 -0.497512 -3.67347
Max 3.125 2.91262 1.01523 1.2848 1.41129
TCL Mean -0.68812 0.120832 -0.0691285 0.289925 | -0.00580282
Median | -0.697674 0 0 0.253787 0.191939
Variance | 1.98504 1.7727 0.689646 0.273296 0.896638
Min -15.1713 -2.42424 -4.87805 -2.41546 -3.21101
Max 8.02597 5.14019 0 2.39521 4.34333
PCL Mean -2.78681 0.876003 -1.95119 -0.485316 0.339234
Median -2.5658 0.69483 -1.96263 -0.789843 0.578035
Variance | 34.5988 5.40117 2.91223 1.98528 4.18409
Min -4.81283 -6.10329 -2.24719 -5.58688 -6.93069
Max 10.1695 0.526316 4.25532 5.15873 5.40541
MCL Mean 2.48679 -2.16148 0.293258 0.179512 -0.529476
Median 1.93548 -2.39044 -0.588256 0.324773 -0.708154
Variance | 10.1802 3.39832 5.87656 7.82958 10.0289
Min -13.5532 -6.14971 -5.70932 -3.65854 -8.12875
Max 12.2378 5.20559 5.74454 3.48837 5.50247
ACL Mean 3.18556 0.90299 -0.108535 -0.622138 0.335315
Median | 3.68346 0.809429 0.00954381 -1.27133 0.275401
Variance | 29.9907 7.17365 13.4613 4.29886 9.28965
Min -5.62061 -2.29885 -1.02564 -1.83824 -2.7933
Max 6.81319 0.980392 0.719424 2.27273 1.87793
ML Mean 1.99066 -0.545578 -0.285794 0.389621 -0.328311
Median 2.52874 -0.472831 0 0.289811 -0.218341
Variance | 8.10656 0.770573 0.410248 1.1827 1.43125
Min -3.52941 -4.5977 -0.549451 -4.82759 -4.2328
Max 4.21053 2.80374 3.06748 3.63636 3.40909
RL Mean 1.13424 -0.895739 1.19361 0.0677789 0.262883
Median 1.88841 -1.18849 1.28051 0.460829 0.370206
Variance | 4.85426 455778 2.67677 3.81537 4.03767
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Statistic | T.major | R. unicornis | D. sumatrensis | C. simum | D. bicornis
Min -7.2814 -6.85476 0.587927 -13.3291 -2.98258
Max 6.77259 18.28 1.3539 0.931499 12.932
MXPL Mean 0.3735 -0.123267 0.90447 -2.7231 0.438777
Median 1.59684 -1.83541 0.838027 -0.963408 | -0.583583
Variance | 16.4392 58.2001 0.111751 29.0524 17.9907
Min -4.42139 -2.74582 -1.52629 -2.48447 -7.96046
Max 3.52941 6.91824 2.67799 1.25 3.75
MXML | Mean -0.164108 1.21595 0.805335 -0.211822 | -0.357123
Median | -0.628931 | 0.474618 1.03482 0 -0.383489
Variance | 6.4306 9.09683 3.17612 2.3406 8.48145
Min -5.08475 -1.8315 -2.33645 -5.42636 -1.32743
Max 39.1635 10.0358 0.606061 1.77305 4.58015
MXDL Mean 3.01571 1.15068 -0.298907 -0.562686 | 0.674233
Median | 0.711744 0.380228 0.26738 0 0.544197
Variance | 125.097 12.2786 1.9183 7.1216 2.17192
Min -11.5817 -6.21081 -3.23657 -0.747178 | -5.93928
Max 16.9 3.54914 -0.232558 1.68861 2.15401
MNPL Mean 0.882607 -1.06574 -1.92032 0.56683 -1.01271
Median | 0.123191 -0.341164 -2.10608 0.614191 | -0.118671
Variance | 64.7067 8.01747 1.63187 0.831788 6.58746
Min -4.04911 -2.61486 -0.0367647 -4.69175 -3.70871
Max 4.54545 8.05934 4.45509 3.82166 2.02435
MNML [ Mean -1.19857 1.2409 1.44699 -0.343354 | 0.138078
Median | -1.91083 0.860872 0.684825 -0.47866 0.533483
Variance | 6.35046 11.0313 4.39221 8.72397 2.97467
Min -3.65854 -2.8 -1.87793 -2.18341 -1.14504
Max 5.30612 2.54237 1.13636 1.40845 3.87931
MNDL Mean |0.0827717 | -0.110158 -0.611159 -0.115404 0.55928
Median 0 -0.706714 -0.851533 0 0.398406
Variance | 6.67543 2.5601 1.69314 1.20163 1.64959
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APPENDIX 6. FUNCTIONAL CHARACTER STATISTICS

Statistic | T. major | R. unicornis | D. sumatrensis | C. simum | D. bicornis
Min 0.36760 0.41487 0.42308 0.39344 0.40058
Max 0.42955 0.43653 0.45006 0.41256 0.43487
PCL Mean | 0.39422 0.42246 0.44023 0.40348 0.41950
Median | 0.39381 0.42020 0.44389 0.40400 0.42110
Variance | 0.00039 0.00005 0.00015 0.00006 0.00011
Min 0.21896 0.31177 0.24478 0.23581 0.24605
Max 0.29762 0.39563 0.31314 0.27765 0.30184
OH Mean | 0.26147 0.34572 0.28350 0.25195 0.27728
Median | 0.26913 0.33937 0.28804 0.25011 0.27526
Variance | 0.00064 0.00059 0.00086 0.00022 0.00028
Min 0.31194 0.33170 0.28695 0.31953 0.28259
Max 0.41866 0.40830 0.42118 0.40000 0.37259
RL Mean | 0.37440 0.38173 0.35572 0.35502 0.32043
Median | 0.37458 0.39205 0.35738 0.34111 0.31240
Variance | 0.00059 0.00066 0.00464 0.00099 0.00091
Min 0.56066 0.84710 0.71301 0.73000 0.66402
MXPL / Max 0.93339 1.01814 1.18504 1.24171 1.27592
MXML Mean | 0.68123 0.92957 0.85068 0.93322 0.87953
Median | 0.66528 0.92194 0.75234 0.84701 0.87568
Variance | 0.00887 0.00319 0.05003 0.04400 0.01989
Min 0.41338 0.67757 0.64340 0.76380 0.68656
MNPL / Max 0.75474 0.83565 1.16792 1.36092 0.88392
MNML Mean | 0.50411 0.74019 0.84048 0.96107 0.76074
Median | 0.49525 0.74849 0.77531 0.80253 0.73746
Variance | 0.00748 0.00226 0.05152 0.06626 0.00417
Min 0.25696 0.43529 0.60649 0.30940 0.17393
DW / Max 0.38808 1.03934 0.80513 0.74986 0.54500
MXPPW Mean | 0.32602 0.58687 0.68066 0.60022 0.28049
Median | 0.32419 0.44977 0.65551 0.70281 0.24652
Variance | 0.00155 0.04871 0.00755 0.03260 0.01497
Min 0.32572 0.45175 1.07235 0.47940 0.36358
MXAPW / Max 0.66785 1.48216 1.83275 1.95334 2.19009
MXPPW Mean | 0.48248 0.79473 1.45223 1.22634 0.75185
Median | 0.48272 0.55864 1.45191 1.43219 0.43816
Variance | 0.00730 0.17364 0.10746 0.35507 0.41978
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APPENDIX 7. CRANIAL PCA EIGENVALUES AND VARIANCE

T. major. Joliffe cut-off value: 0.00514200

PC | Eigenvalue | % Variance | Cumulative %
1 | 0.04683190 91.078 91.078
2 | 0.00240805 4.683 95.761
3 | 0.00125502 2.441 98.202
4 | 0.00042267 0.822 99.024
5 | 0.00034768 0.676 99.700
6 | 0.00014346 0.279 99.979
7 | 0.00001105 0.021 100.000

R. unicornis. Joliffe cut-off value: 0.01238800

PC | Eigenvalue | % Variance | Cumulative %
1 | 0.11961000 96.942 96.942
2 | 0.00224923 1.823 98.765
3 | 0.00093724 0.760 99.525
4 | 0.00034913 0.283 99.808
5 | 0.00015657 0.127 99.934
6 | 0.00007101 0.058 99.992
7 | 0.00001033 0.008 100.000

D. sumatrensis. Joliffe cut-off value: 0.01218100

PC | Eigenvalue | % Variance | Cumulative %
1 | 0.11847300 97.258 97.258
2 | 0.00205474 1.687 98.945
3 | 0.00090612 0.744 99.689
4 | 0.00028504 0.234 99.923
5 | 0.00005964 0.049 99.972
6 | 0.00003441 0.028 100.000
7 | 0.00000000 0.000 100.000
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C. simum. Joliffe cut-off value: 0.00694960

PC | Eigenvalue | % Variance | Cumulative %
1 | 0.06426160 92.467 92.467
2 | 0.00429381 6.179 98.646
3 | 0.00046296 0.666 99.312
4 | 0.00026771 0.385 99.697
5 | 0.00017026 0.245 99.942
6 | 0.00002685 0.039 99.981
7 | 0.00001323 0.019 100.000

D. bicornis. Joliffe cut-off value: 0.01902700

PC | Eigenvalue | % Variance | Cumulative %
1 | 0.18714200 98.357 98.357
2 | 0.00136083 0.715 99.072
3 | 0.00084489 0.444 99.516
4 | 0.00065493 0.344 99.860
5 | 0.00018387 0.097 99.957
6 | 0.00006403 0.034 99.991
7 | 0.00001743 0.009 100.000

159




APPENDIX 8. CRANIAL AND MANDIBULAR PCA VARIABLE LOADINGS

PC1. Negative mandibular and dental PC1 loadings in red for D. sumatrensis indicate its PCA

does not reflect growth allometry.

T.major | R. unicornis | D. sumatrensis | C. simum | D. bicornis
TCL 0.3716 0.3466 0.3269 0.3902 0.328
PCL 0.291 0.3066 0.3441 0.3416 0.2986
MCL 0.3792 0.3502 0.3452 0.3844 0.3417
ACL 0.5199 0.4078 0.4335 0.4399 0.3489
SW 0.3608 0.3621 0.3492 0.4166 0.3614
OH 0.3042 0.4944 0.4442 0.3302 0.5758
ZW 0.3746 0.3485 0.3851 0.3274 0.3204
ML 0.3542 0.3284 0.02091 0.3332 0.3712
RW 0.1782 0.03616 0.6663 0.1449 0.3189
CW 0.2879 0.2749 -0.05897 0.3143 0.269
MXDL 0.5236 0.5583 -0.4985 0.5739 0.4972
MNDL 0.5333 0.6054 -0.5241 0.586 0.3911
MNAPW | 0.3654 0.3383 -0.133 0.1738 0.4804
MNPPW | 0.2605 0.1504 -0.106 0.2575 0.2391
PC2
T.major | R. unicornis | D. sumatrensis | C. simum | D. bicornis
TCL -0.1236 -0.2869 -0.01982 -0.2139 -0.05074
PCL 0.1417 -0.1865 0.1344 -0.09998 -0.2292
MCL 0.03442 -0.2726 -0.316 -0.191 0.1788
ACL -0.4227 0.2071 -0.2026 -0.2342 0.3385
SW 0.5842 -0.398 0.2655 0.02958 0.6399
OH -0.5162 0.758 0.6532 0.9206 -0.6167
ZW 0.4208 -0.1809 -0.5861 -0.06805 | 0.09276
ML -0.1493 -0.2959 -0.1171 -0.2297 -0.05385
RW -0.037 -0.8951 -0.2096 -0.638 -0.6554
CW 0.687 -0.07362 -0.4104 -0.2601 0.4665
MXDL -0.2922 0.1114 -0.1605 0.1024 0.2432
MNDL -0.3996 0.251 0.1713 0.5278 0.4198
MNAPW | 0.389 -0.1658 -0.8327 -0.3787 -0.3034
MNPPW | 0.3287 -0.05511 -0.1594 -0.2002 -0.1498
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APPENDIX 9. MANDIBULAR PCA EIGENVALUES AND VARIANCE

T. major. Joliffe cut-off value: 0.00640170

PC | Eigenvalue | % Variance | Cumulative %
1 | 0.05966970 93.210 93.210
2 | 0.00182768 2.855 96.065
3 | 0.00137833 2.153 98.218
4 | 0.00057679 0.901 99.119
5 | 0.00036009 0.562 99.682
6 | 0.00017446 0.273 99.954
7 | 0.00002953 0.046 100.000

R. unicornis. Joliffe cut-off value: 0.00325500

PC | Eigenvalue | % Variance | Cumulative %
1 | 0.02948480 90.584 90.584
2 | 0.00180839 5.556 96.140
3 | 0.00074949 2.303 98.442
4 | 0.00034658 1.065 99.507
5 | 0.00009940 0.305 99.813
6 | 0.00003920 0.120 99.933
7 | 0.00002169 0.067 100.000

D. sumatrensis. Joliffe cut-off value: 0.00163390

PC | Eigenvalue | % Variance | Cumulative %
1 | 0.01450560 88.776 88.776
2 | 0.00121731 7.450 96.226
3 | 0.00039887 2.441 98.667
4 | 0.00019945 1.221 99.888
5 | 0.00001822 0.112 100.000
6 | 0.00000000 0.000 100.000
7 | 0.00000000 0.000 100.000
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C. simum. Joliffe cut-off value: 0.00975020

PC | Eigenvalue | % Variance | Cumulative %
1 | 0.09032210 92.636 92.636
2 | 0.00445459 4.569 97.205
3 | 0.00117632 1.207 98.411
4 | 0.00101888 1.045 99.456
5 | 0.00033633 0.345 99.801
6 | 0.00013125 0.135 99.936
7 | 0.00006221 0.064 100.000

. bicornis. Joliffe cut-off value: 0.01069900

PC | Eigenvalue | % Variance | Cumulative %
1 | 0.09454580 88.369 88.369
2 | 0.00611472 5.715 94.084
3 | 0.00271645 2.539 96.623
4 | 0.00225911 2.112 98.735
5 | 0.00089615 0.838 99.572
6 | 0.00040590 0.379 99.952
7 | 0.00005139 0.048 100.000
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APPENDIX 10. GEOMETRIC MORPHOMETRIC PCA STATISTICS

T. major
PC | Eigenvalue | % Variance | Cumulative %
1 10.00176201 42.024 42.024
2 | 0.00061199 14.596 56.620
3 | 0.00050295 11.995 68.615
4 | 0.00030804 7.347 75.962
5 | 0.00028094 6.700 82.662
6 | 0.00018798 4.483 87.146
7 | 0.00017410 4.152 91.298
8 | 0.00014901 3.554 94.852
9 |0.00011787 2.811 97.663
10 | 0.00007094 1.692 99.355
11 | 0.00002705 0.645 100.000
R. unicornis
PC | Eigenvalue | % Variance | Cumulative %
1 ]0.00211281 50.429 50.429
2 | 0.00091369 21.808 72.237
3 | 0.00039925 9.529 81.766
4 | 0.00024816 5.923 87.689
5 | 0.00022628 5.401 93.090
6 | 0.00010747 2.565 95.655
7 | 0.00007753 1.851 97.505
8 | 0.00004508 1.076 98.581
9 | 0.00003657 0.873 99.454
10 | 0.00002287 0.546 100.000
D. sumatrensis
PC | Eigenvalue | % Variance | Cumulative %
1 10.00181273 53.356 53.356
2 | 0.00070081 20.628 73.983
3 | 0.00036294 10.683 84.666
4 | 0.00034407 10.127 94.793
5 | 0.00017689 5.207 100.000
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C. simum

PC | Eigenvalue | % Variance | Cumulative %
1 |0.00126222 48.556 48.556
2 | 0.00044791 17.230 65.786
3 | 0.00026220 10.087 75.872
4 10.00017113 6.583 82.455
5 | 0.00013942 5.363 87.818
6 | 0.00011767 4.527 92.345
7 | 0.00010131 3.897 96.242
8 | 0.00004345 1.671 97.914
9 | 0.00003744 1.440 99.354
10 | 0.00001680 0.646 100.000

D. bicornis

PC | Eigenvalue | % Variance | Cumulative %
1 |0.00138682 34.086 34.086
2 | 0.00098458 24.200 58.286
3 | 0.00053790 13.221 71.507
4 | 0.00041537 10.209 81.716
5 | 0.00029670 7.292 89.009
6 | 0.00018158 4.463 93.472
7 | 0.00011284 2.773 96.245
8 | 0.00007617 1.872 98.117
9 | 0.00004498 1.105 99.223
10 | 0.00001999 0.491 99.714
11 | 0.00001164 0.286 100.000

164




VITA

Mark Daniel Hagge was born August 23, 1981, in Indianapolis, Indiana, to parents
Michael and Lynne. Mark grew up in Green Bay, Wisconsin, and aside from fighting with
Aaron, his older brother, Mark also became fascinated with dinosaurs. While attending the
University of Wisconsin-Madison, Mark decided to pursue his long interest in extinct creatures.
For three summers during his undergraduate studies, Mark worked at the Hagerman Fossil Beds
National Monument in Hagerman, ldaho, collecting, preparing, and staring at fossils. It was
during this time that Mark decided to pursue mammalian paleontology. Mark graduated from
the University of Wisconsin-Madison in December 2004 with a Bachelor of Science degree in
geology and zoology. Mark continued his paleontological pursuits at Louisiana State University
in 2005. While working toward a Master of Science degree in geology in Baton Rouge,

Louisiana, Mark met his future wife, Jen Booth.

165



