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1. Introduction

Property rights, or rather their absence, have played an important role in the literature on
natural resource economics. Originating with ground-breaking work by Gordon (1954),
economists have analyzed exploitation of resources when property rights are absent, unclear
or ill-enforced. For obvious reasons, marine resources attracted a lot of attention in early
periods. In the late 1970s, the UN announced that countries could declare sovereign rights
within a 200 miles zone, anticipating the 1982 Law of the Sea Convention. These exclusive
fishing zones captured most economically viable fisheries, hence the issue of open access
appears less pressing today than, say, 30 years ago. However, economics of ‘open access’ or
‘poaching’ is still at the core of the research field. The reason is simply that while de jure
open access is rare nowadays, many renewable resources are de facto still exploited under
conditions resembling open access. This obviously applies to many fisheries worldwide but
also to management of wildlife and conservation of endangered species, especially in
developing countries.

Economists have pre-dominantly applied one particular model to analyze steady states
and dynamics of open access resources (Wilen 1976). A simple system of two differential or
difference equations, dubbed the Gordon-Schaefer (G-S) model, has proven to be sufficiently
general to study exploitation of such diverse species as lobsters (Bell 1972), herring (Bjorndal
and Conrad 1987), whales (Amundsen et al. 1995), and elephants (Bulte and van Kooten
1999b). It is an open question, however, whether the G-S model is applied because of its
analytical tractability, or because it provides an appropriate description of reality. In this
paper we demonstrate that relaxing some of the (implicit and) restrictive assumptions
underlying the traditional G-S model has dramatic effects.

The main objective of this paper is to explore the consequences of assuming a more

realistic specification for open access harvesting. Specifically, we consider a convex-concave



production (harvest) function, argue why such a specification is plausible and draw parallels
with ecological models of predation. While retaining the conventional assumption of entry
and exit of firms in the extractive industry proportional to profit (see Berck and Perloff 1984
for a model of open access with rational expectations), we demonstrate that the dynamics are
more complex than predicted by the G-S model. Also, the traditiona result of a unique and
stable steady state to describe open access outcomes in the long run may be false. Rather,
multiple equilibria may exist and ‘jumping’ from one steady state to another may be triggered
by small changes in economic parameters. We present anecdotal evidence on species

abundance supporting this result, and discuss some implications for management.

2. Traditional analysis of poaching and open access

Following Ciriacy-Wantrup and Bishop (1975), economists usually distinguish between
common property and open access resources. Common property refers to the case where a
well-defined group of resource owners is able to exclude entry by others. Such a group may
or may not be able to regulate exploitation efficiently (Baland and Platteau 1996). Open
access, on the other hand, is about the case where property rights do not exist (the high seas),
or are too expensive to enforce. If the government or (group of) private resource owner(s)
cannot control access by third parties (poachers), the situation may thus be characterized as
open access. In what follows the terms “‘poaching’ and ‘open access’ are used interchangeably.
Assume a single population of a single species, whose growth is described by the following
guadratic (or logistic) function:

(1) G(x) = yx(kx),

where x measures abundance of the stock, y is the (scaled) intrinsic growth rate of the

population and k is the population’s carrying capacity. The population is subject to open



access exploitation, and harvesting (h) is modeled by the well-known Schaefer production
function:

(2) h=gEx,

where q is a species—dependent catchability coefficient measuring how easy it is to catch the
species in question and E is aggregate harvesting effort (Schaefer 1957). The equation of
motion of the population is therefore:

(3) dx/dt = G(x) — h = [y(k-x) — gE]x

To solve for the resource stock and effort level, differential equation (3) is supplemented with
an equation that describes poachers’ behavior. It is usually assumed that entry will occur as
long as individual poachers will find it profitable to do so (accounting for the full opportunity
cost of their time) and that exit will occur when poachers are earning a loss. Profits are
typically defined as follows:

(4) Tt=ph-cE = E[pgx —c],

where p is the price per harvested unit that the poacher receives and ¢ measures the full cost
per unit of effort. Equation (4) is readily extended to include (expected) fines when poachers
face a certain probability of being caught and sentenced (Milner-Gulland and Leader-Williams
1999a,b). Assuming that adjustment is not instantaneous, the development of effort over time
isgiven by:

(5) dE/dt = @rt= gE[pax —c],

where @ is an adjustment coefficient.

The system of differential equations (3) and (5) is the famous Gordon—Schaefer model,
and may be used to analyze the open access steady state and approach dynamics of effort and
the resource stock. Due to free entry, profits will dissipate in the long run. Setting the right—

hand side (RHS) of (5) equal to zero yields an expression for the equilibrium resource stock:



(6) x= c/paq.

Next, upon setting the (RHS) of (3) equal to zero, we find an expression for equilibrium
harvest effort:

(7) E=(a)(k-x).

Drawing the dx/dt=0 and dE/dt=0 isoclines in a phase plane in E-x space illustrates that a
unique and stable steady state may exist (e.g., Conrad 1995). Assuming that an interior
solution exists, it is described by x* =c/pq and E*=()/q)[k—(c/pq)]. Consistent with intuition,
the resource stock is declining in the price of the resource and its catchability coefficient, and
increasing in the cost per unit of effort.

Depending on the initial values the resource-effort system approaches the equilibrium
either monotonously or as a counter—clockwise spiral (i.e., the equilibrium is a stable focus).
Using a system of differential equations, open access extinction is prevented because the
harvest cost per unit of output will approach infinity as the stock gets depleted. Open access
extinction may occur, however, when there exists a delay in the response of entry and exit to
profit levels.

While elegant and of great pedagogical value, the fundamentals of the Gordon—-Schaefer
model have been debated and falsified in both the ecological and economic literature (see
below). Nevertheless, the G-S model is still used extensively to model open access and
poaching. Indeed it would be no exaggeration to claim that this simple specification
dominates the current literature on resource management with imperfect property rights. This
is exemplified by the fact that the basic model has recently been applied to study resource
exploitation in relation to such diverse issues as trade (Brander and Taylor 1997a,b),
management and regulation (Homans and Wilen 1997), metapopulations (Sanchirico and

Wilen 1999), and ecological interactions between mangrove forests and fisheries (Barbier and



Strand 1998). It is no surprise, therefore, that Brown (1999) concludes the following about
the Schaefer production function:
“this production function .. is remarkable for the rare times it has been modified in the
literature to satisfy economist’s concern for diminishing returns in the factors of
production. The form of equation [2] has attractive pedagogic features and is kept for

that reason.”

3. Open accessas Holling type I 11 predation

Consider a species that is subject to poaching or open access exploitation. To motivate the

need for an extension of the Gordon—Schaefer model as presented in section 2, we mention a

number of considerations that may characterize actual exploitation but are disregarded by the

G-S model:

e marginal harvest costs increase in harvesting levels, for example because potential
members of poaching expeditions have to be “teased out” of increasingly profitable
occupations (such that the opportunity cost of labor increases when aggregate harvesting
goes up);

» the harvested species is subject to downward sloping demand, thus yielding lower prices
as supply expands (even though prices for individual agents are likely exogenous);

» there are diminishing returns to the wildlife stock as an input because of gear saturation;

» the species is not spread evenly over the terrain but tends to cluster in small migrating
groups (or is spatially heterogeneous);

» the species is but one out of a number of species that poachers could choose to pursue and
turn their special attention to, depending on the relative profitability of harvesting, but

‘incidental’ killing (i.e., as a bonus) at low prey densities may occur.



These considerations may be incorporated in an extended version of the Gordon-Schaefer
model. Endogenous prices and increasing marginal costs are readily captured by defining
functions p(h) and c(E) with p’<0 and ¢’>0, ¢’’>0—as opposed to constant p and c. The
potential issue of gear saturation may be tackled by defining a more general production
function than the one presented in (2). To capture the complexities posed by the remaining
two assumptions, however, we need to define a production function that is (much) more
complex than the Schaefer specification. Indeed, for spatially heterogenous populations Clark
(1990, p.225) demonstrates that “there will be no general direct relationship between

aggregated effort, stock abundance and catch.”*

Therefore, we will choose a different route in
what follows.

Rather than specifying a spatial relation between (multiple) prey density, harvest effort
and output, we define a reduced form poaching function. Due to downward sloping demand,
diminishing returns and/or increasing marginal costs, poaching will eventually level off when
prey densities (and output) increase. A realistic production function will thus be concave
when the variable input x (wildlife abundance) takes high values. What will the production
function look like when this input is only available in small quantities (i.e., when wildlife
stocks are depleted)? Since poaching is in some senses akin to predation, we turn to ecologic
theory on predation to shed light on this issue. One particularly interesting feature of some
predation models is prey switching. Writing about birds feeding on budworms, for example,
Ludwig et al. (1978, p.317) argue that

“birds have a variety of alternative foods, and when one of them is scarce, that

particular prey item is encountered only incidentally. As the prey item becomes more

» We will present some empirical resultsin section 4 for the case of black rhino conservation in Africa. Brown
and Layton (2001, p.38) mention that black “rhinos actually and potentially are spatially distributed.”



common, however, the birds begin to associate reward with that prey and they begin to

search selectively for it."

Hence, predators have the option to switch between alternative prey species, so that predation
rates may increase for a range of prey densities. For some density levels, there is an upward
sweep in the functional response curve because an increase in prey density elicits an increased
amount of hunting after this particular species. Similar considerations may apply to poachers
in amulti-species setting. Different species likely have different feeding and migration habits
and may require somewhat different hunting techniques for maximal profitability. In
heterogeneous habitat, relative levels of abundance for different species will also be different,
suggesting that poachers will choose a particular species as their predominant target, perhaps
treating others as mere bonuses. Hence, while harvesting blue whales may be considered a
bonus in periods when this speciesis rare, hunters may turn their attention to these species and
consider them their main target speciesif stocks become more abundant.?

The combination of an upward sweeping functional response due to prey switching at
low prey densities and the gradual leveling off due to saturation at high prey densities causes a
sigmoid functional response curve. In ecologic theory, a function that specifies such a
functional response is caled a Holling type Il predation function (Holling 1959).%> In
Appendix 1 we demonstrate how a simple Holling type 111 poaching model may be derived

from micro-foundations. However, since there are many aternative ways to derive a convex-

2 Clark (1990, p.313) develops a simple open access model with both fin and blue whales, concluding that
incidental killings of the rare species enhances the risk of extinction if the abundant species is able to support the
fishery. For models of harvesting in the context of ecologicaly interacting species, possibly resulting in
discontinuous shiftsin abundance, see for example Murphy (1967) and Johnston and Sutinen (1996).

® The standard Schaefer production function h=gEx is consistent with the so—called Holling type | functional
response: for a given level of effort (say, one predator or one poaching gang on a one week hunting trip) there is a
proportional linear relation between prey density and predation (or poaching) rate. The Holling type | response,
however, is not at all common in ecological systems (Begon et al. 1996). Much more common is the Holling
type Il functional response, consistent with economists’ understanding of well-behaved concave production
functions (where prey density represents the variable input).



concave production function (think of including congestion externalities, endogenous prices
or avoidable fixed costs), we wish to emphasize the generality of the results by developing a
more general reduced-form relation between offtake h and abundance x. Such a function may

be defined as follows:

2
® =B —-

a?+x?

This specification is not realy in the spirit of the GS model because of the absence of effort,
but it provides the convex—concave features discussed above and is consistent with, for
example, Ludwig, Jones and Holling’s specification of birds feeding on budworms. The

parameters a and [3 have a special meaning. The parameter a measures the level of prey
abundance at which saturation begins to take place. The parameter (3 is the maximum level of

off-take per period, or the saturation level of harvesting. These parameters are not without
economic meaning, but it takes a structural model to shed more light on this issue. Here we

can simply acknowledge that a and 3 are determined by the benefits and costs of hunting the

species in question, and really are implicit functions of price and marginal harvest cost
(including considerations related to expected fines, elasticity of demand, attitude towards risk,
gear saturation etc.).

Assuming logistic growth, the equation of motion for the hunted species is simply:

X2

Q)  x=wx(k-x)-B

CXZ +X2 '
In what follows, we will consider the steady states of this equation in more detail. For this

purpose, set:

X

(10) y(k-x)-PB =0.

G2+X2




Following Ludwig, Jones and Holling, we scale wildlife abundance by defining x=x/a and

multiply by a/p, yielding:

W ik-ay)-—X_=
(11) B(k ax) To 2 0.

We graphicaly solve the cubic relation (11) by plotting the left and right term separately in

Figure 1.
<Insert Figure 1 about here>

Consider the benchmark scenario where there are three possible equilibria, or levels of
abundance where poaching just equals growth: Ry, R; and R;. While R, and R; are stable
equilibria, this is not true for R,. If due to some shock the system is temporarily removed
from this steady state, the population will either grow to Rs or decline until Ry. Our first result
is therefore that, depending on the starting values of the parameters and the initia level of
species abundance (i.e., past exploitation intensity), different steady states may materialize
rather than a unique stable equilibrium as predicted by the G-S model.

The comparative statics of this model are readily analyzed by shifting the relevant

curves. First, consider the effect of increasing the parameter (3 (for example because the price

of output has gone up or because poaching costs have gone down). Increasing (3 implies that

a—’(k —ay) rotates counter—clockwise. If the initial stock of the species under consideration

B
is Ry or Rs, the steady state stock declines, which is consistent with intuition.

Second, the comparative statics of the unstable equilibrium R, are perverse: rising
prices and falling costs have the result of contributing to thicker stocks as A is increased

marginally. This does not mean that rising prices (or falling costs) discourage poaching at the

10



unstable equilibrium. It still holds that aggregate exploitation at the new steady state is greater
than before. This is not inconsistent if we readlize that (1) the unstable steady state R, is
located at x<0.5k [i.e., on the upward sloping part of the growth function G(x)] and (2) that the
poaching function h is less steep than the growth function G(x). Shifting the poaching
function up then increases both stock size and growth (and exploitation, in the steady state).

Finally, the effect of changing parameter a is ambiguous as the linear curve shifts
outward but rotates inwards.”

An important further result of the extended model, and one that we will discuss in
further detail below, is that changes in ecological or economic parameters may trigger ‘jumps’
in species’ abundance. For example, assuming a price increase such that the economic
parameter falls from 3 to [, it is clear that a discontinuity occurs if the initial population was
at a “high steady state” (Rs). As the parameter (3 continues to increase, the steady states R,
and Rs converge and eventually coincide. A marginal further increase in (3 implies that the
high equilibrium is lost such that only one (low) equilibrium exists. For example, from Figure
1 it is readily verified that for the value (' there exists only one steady state, R4, suggesting a
dramatic change in population size. A reverse jump may also occur. Starting from a low
steady state (say, Ry), if we decrease the value of 3 the steady states R; and R, will approach

each other, then coincide and eventually disappear. The system will jump to a high steady
state. Such a jump or discontinuity in dynamical systems is usually referred to as a
“catastrophe.” Catastrophe theory was developed by Thom (1975) and discussed in the

context of economic systems by, for example, Rosser (1999). Jumps in abundance are quite

“In a similar fashion we can consider the effect of changing the “ecological parameters”. If extra (secure) habitat
becomes available, or k takes a higher value, this will have the effect that the stable equilibria will support thicker
stocks as (ay/! B)(k—ay) is rotated clockwise about its right-hand intercept. Again, the comparative statics of

the unstable equilibrium are perverse: extra habitat leads to fewer animals. Finally, for some species it may be
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different from the gradual changes predicted by the Gordon-Schaefer model, but not at all at
odds with actual experiences in conservation biology—-see Farrow (1995) for a discussion of
the plight of the passenger pigeon and Buffalo.

It is possible to derive multiple equilibria models with the possibility of “catastrophic”
jumps, akin to the one above, without abandoning the Gordon-Schaefer framework (I would
like to thank an anonymous referee for bringing this to my attention). Copes (1970) was the
first to demonstrate that the equilibrium supply curve in the G-S model is backward bending,
possibly giving rise to catastrophic results. Intuitively, supply first increases when the price of
the resource commodity goes up, but after the stock has been depleted to the maximum
sustained yield level (or x=k/2 for a logistic growth function), further price increases
(triggering more entry by poachers) will result in a reduction in wildlife stocks and, hence,
equilibrium supply. When demand for the resource commodity has a finite demand elasticity
(the inverse demand curve is downward sloping), it is possible that demand and supply are
equated at multiple levels of wildlife abundance, giving rise to similar results as discussed
above. (For additional insights and analyses, refer to Jones and Walters (1976) and Rosser
(2001).) Note that a downward sloping demand curve is necessary to obtain multiple
equilibria and “jumps” in the G-S setting, while the current analysis also allows for such

results when resource prices are constant.

4. An example: The case of black rhino conservation
Black rhinos provide a famous example of the potential dramatic effects of poaching on
species viability. The population of this animal has been decimated from about 100,000 in

1960 to about 2,500 in the mid—-1990s, representing a 95% reduction in abundance in 40 years

possible to manipulate the in situ growth rate (Grafton and Silva-Echenique 1997). From (11) is obvious that the
comparative statics with respect to y are the same as for k.
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(Dublin and Wilson 1998). Moehiman et al. (1996) discuss some of the genetic and
demographic threats to fragmented and disjunct remnants of a once thriving population. While
habitat conversion has played a role in the rhino’s demise, the insatiable demand for rhino
horn is the foremost cause of its decline. Rhino horn is an ingredient in traditional remedies
to reduce fever, but is also seen as status symbol when used as a handle for curved daggers.
(Black) rhinos were listed as an Appendix 1 species in 1977 by the newly ratified CITES
convention, thus effectively banning legal trade in rhino horn. This ban, however, had little
demonstrable effect on the decline in rhino numbers, with some analysts arguing that the ban
has contributed to the species’ fall in abundance (e.g., Brown and Layton 2001). It is a fact
that illegal killing has been vigorous in the 1970s and 1980s.

Many people are concerned that without further actions the black rhino (and some of
its relatives) will go extinct in the foreseeable future. However, carefully observing recent
trends in rhino numbers suggests that the species is not on a toboggan ride towards absolute
zero. Rather, the population appears to be approaching a new, but low steady state. Indeed,
Dublin and Wilson (1998) argue that there may be reason for “cautious optimism” in the
1990s. The population of black rhinos appears to stabilize and is even slowly increasing in
some places. The reasons for this stabilization are as yet ill-understood. Some interpret it as
proof that the trade ban is finally bearing fruit, whereas others argue that it is “the result of
new approaches to rhino conservation, improved intelligence and the consolidation of the
majority of Africa’s rhinos within sanctuaries, conservancies and other intensively protected
areas” (Dublin and Wilson 1998).

How successful is the G=S model in explaining the demise in rhino abundance over
the past four decades? Demand for rhino horns has shifted outward since 1960, mainly
reflecting rising incomes in consumer areas (oil producing Arab countries and “Asian tiger”

economies). Steadily rising demand has been well-documented (e.g., Milner-Gulland 1993),
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and has tranglated into ever higher prices for rhino horn. The G-S model predicts an inverse
relation between rhino density and horn prices in the steady state (recall that x=c/pq is the
unique solution to the G-S model). Assuming constant catchability coefficient and cost per
unit of effort, the question boils down to whether rhino horn prices have increased enough to
warrant a 95% reduction in rhino density. To explain a fall in the steady state rhino
population from 100,000 to 2,500 animals, prices should have increased by a factor of 40
(assuming poachers have just earned their reservation price at the beginning and end of this
period, or that profits have been eroded by entry). This, however, is almost certainly an
underestimation of the true required price increment. As mentioned above, conservation
efforts have seriously increased as rhino populations throughout Africa were being
slaughtered, effectively increasing the costs of harvesting per unit of output, ¢ (Bulte and van
Kooten 1999a). To compensate for extra enforcement and higher costs, therefore, the price of
rhino horn must have increased even further.

This “prediction’ of the G-S model is not consistent with available evidence on prices
over time (which is admittedly scant, as trade has been underground since the late 1970s).
Brown and Layton mention that “real prices have risen by a factor of six or more since the
ban was anticipated.” Additional data on rhino horn prices are consistent with this quote:
prices have gone up considerably in recent decades but certainly not by a factor of 40 (e.g.,
Milner-Gulland 1993).

One explanation is as follows. A type Il predation response characterizes poaching of
black rhinos, implying that “modest changes” in economic parameters (price increases) may
result in dramatic effects on prey density. Poachers in Africa are typically not exclusively
after rhinos, taking elephants as well (e.g., Milner-Gulland and Leader-Williams 19992a,b).
The possibility of switching between multiple species causes a sigmoid poaching function,

such that a six—fold increase in prices may well result in a 95% collapse in abundance. This

14



explanation is consistent with observations by Milner—Gulland and Leader-Williams for
Luangwa Valley, a protected area in Zambia. While rhinos were being slaughtered on a
massive scale in the 1970s by professional rhino hunters (from 4,000-12,000 rhinos to only a
few hundred animals), they noted that:
“At the 1985 parameter values, the fate of Luangwa Valley rhinos was being determined
by the incentives to hunt elephants. It was profitable to go out specifically to hunt
eephants, but not rhinos. However, as with local hunters, if an organized gang
happened to encounter a rhino, killing it would be very profitable.... The situation in
the Luangwa Valley in 1985 was consistent with these findings: organized gangs were
usually found with ivory, but occasionally with rhino horn as well. Thus the
profitability of ivory actually contributed to the decline in the rhino population, despite

rhinos being too scarce to be worth hunting alone” [Milner-Gulland 1992b, p.201].

Anecdotal evidence thus clearly suggests that behavior of poachers is consistent with type Il
predation as modeled by ecologists.”

Assuming this explanation holds, it is interesting to ask what it takes to restore the
rhino population to its initial level of abundance (see especially Brown and Layton 2001).
One of the major approaches to conservation is trying to shift demand inwards by informing

consumers about the plight of the rhino and/or by searching for substitutes of rhino horn

® There are two alternative explanations for this apparent contradiction. First, it may be the case that poachers
earned positive profits in the 1960s and/or negative profits in the 1990s. When calibrating the G-S model,
analysts usually assume that free entry and exit causes instantaneous dissipation of profits. The zero—profit
condition is then invoked to estimate the (average) cost per unit of effort. However, adjustment may be slow in
reality, depending on cultural and psychological factors. Without additional data it is not possible to confirm or
refute this possible explanation, but it is clear that lack of knowledge about reservation prices is a shortcoming of
most (but not all) empirical work in the tradition of Gordon and Schaefer (see also Brown and Layton 2001).
Second, it may be argued that rhino populations are not stabilizing at the current low level. Instead, we may be
witnessing a temporary phase in the dynamics of the G-S model, and effort and stocks are on a trajectory
spiraling towards the new steady state (which could be considerably higher than the current stock). However,
this is very unlikely. It would imply that current poaching is unprofitable, which is at odds with findings by
Holling and Wilson (1998).
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(Dublin and Wilson 1998). If such measures reduce rhino horn prices by a factor 6, would
this be consistent with population recovery to the 1960 level? We will now show that thisis

not true.

5. The poaching pit

If aprice increase has resulted in a species collapse from R; to Ry, it takes more than areversa
of past price trends to establish a reverse flip from R, to Rs. A type Il poaching function
gives rise to a phenomenon that we may coin the ‘poaching pit’. Once a (possibly small)
change in economic parameters causes a large discontinuous decline in abundance of the prey
species, changing the parameters back to their prior values does not restore the old level of
abundance. The species is “caught” at the low level—a phenomenon known as “hysteresis”.
To illustrate hysteresis in more detail, refer to Figure 1 again, and assume that due to rising
prices the rhino population is currently as low as R, while it was as high as Rs in the 1960s.
Next, suppose that, as a result of conservation programs and active enforcement, the economic
‘parameter’ 3 takes its initial value (or (3 as opposed to '). While this triggers an increment
in the rhino population, the stock will not grow back to the old level Rs. Rather, rhino
abundance will stabilize at Ry, even though the same combination of parameters could also
support a steady state with higher levels of rhino abundance.

The existence of the poaching pit is explained as follows. When rhinos are rare (at
level Ry, as in Zambia in the mid-1980s), poachers will predominantly chase elephants and
only shoot an occasional rhino. If the price of rhino horn decreases, poachers choose to
allocate even less effort to rhino killing and the species starts to make a slow comeback.
Eventually this increment in abundance triggers a response of the poachers, who decide to

change their hunting habits (also see Appendix 1). Specifically, the rhino poaching rate
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increases (i.e., we hit the upward soping part of the poaching function h(x)) because it is now
worthwhile to focus on rhinos. Even though the price of rhino horn has falen, the stock
increment warrants special consideration for this target species, and will prevent the species
from making a true comeback. For the rhino population to return to historic levels of

abundance, the parameter (3 should take values (much) lower than the 1960 value. The linear
curve should rotate clockwise until eventually it crosses the curve y/(1+x?) only once. Then,

the species makes a fast comeback to a stable and abundant steady state.

6. Discussion: Implicationsfor management and enfor cement
In this section we will briefly sketch some of the implications of the extended model for
managers of endangered species subject to poaching. Conservation funds are limited, and
policy makers have to decide which species are worthy of extra consideration and which are
not (Mann and Plummer 1995). Assume that enforcement has the effect of raising the cost per
(effective) unit of effort, perhaps because poachers have to take additional precautions to
avoid being caught (e.g., Bulte and van Kooten 1999a). In a Gordon-Schaefer setting, the
effect of such enforcement on steady state abundance is readily determined by taking a first
derivative of the steady state stock X (=c/pq) with respect to cost per unit of (effective) effort,
c:
(12) dx/dc= (pg)™.
The “marginal benefit” of enforcement, or the increment in steady state stock level thus is
constant and determined only by the price and catchability coefficient. If it is possible to
value the stock increment in monetary units, the optimal level of enforcement is found when
marginal benefits are equal to marginal costs.

The marginal benefit of enforcement for the extended model is more complex,

depending on a broader set of parameters. Assume that we can model the effect of
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enforcement on abundance by considering changes in dx/dB. As with the G-S model,
enforcement translates into higher costs, which, in turn, imply a lower value of (3. In Figure 2
we have plotted the increment in abundance (dx) resulting from decreasing the value of . We
have numerically solved equation (10) for x (assuming the population is initially at a low level
of abundance—such as steady state R4 in Figure 1), and consider the effect of changing 3 on

wildlife abundance.® Enforcement consistently translates into thicker stocks, as with the G=S
model, but the benefits of enforcement at the margin are far from constant (note the

logarithmic scale on the vertical axis).

<Insert Figure 2 about here>

The change in abundance depends on the (relative) slopes of %(k—a)() and x/1+x?),

hence both economic and ecological parameters determine the effect of enforcement (see also

van Kooten and Bulte 2000). The sudden pike at S* occurs when %(k —ay) has rotated

sufficiently upwards such that R; and R; coincide and are on the verge of disappearing. A
marginal decrease in 3 causes the animal population to climb out of the poaching pit and jump
to unique and high steady state.

The marginal benefits of enforcement are highly variable, rendering decision making
more complex than before. Yet, recognizing the underlying complexity of the system allows
managers to make better choices. In particular, policy makers are well-advised to focus their

enforcement effort to conservation of those species whose economic parameter 3 is close to

® Algebraically solving the cubic equation (10) for x is feasible but cumbersome. Details are available from the
author upon request.
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the value 3* (That is, unless the value of the species in question at the margin is negligible, in

which case increments in abundance shouldn’t matter from an economic perspective). In
general policy makers should search for those species at the edge of the poaching pit—either
on the verge of dropping down or close to jumping out—and concentrate their scarce funds to
conservation of those species. This is where enforcement may be expected to yield the

greatest returns.
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Appendix 1. Deriving a Convex-Concave Harvesting Function

To facilitate the notation but without loss of generality, assume the following:

» There exists an arbitrarily large group of poachers, N, harvesting 2 species (in this
sense the model perhaps more resembles unregulated common property than true open
access as defined by Ciriacy-Wantrup and Bishop);

» Poachers allocate their time to specifically “target” either species 1 or species 2.
Incidental Killing of the other species occurs proportional to the other species’
abundance;

» The abundance of species 1, x, is assumed fixed throughout;

» Poachers instantaneously respond to profit differentials between targeting species 1 or
2 by re-allocating their single unit of poaching effort to the species where the

(expected) return is maximized;

Choosing the value of a unit of species 1 as the numeraire, the poacher’s returns to targeting
species 1 are:

(Al) m=agx+pbx

where g, is the catchability coefficient for species 1 when the poacher targets that species and
b, is a bonus (incidental) catchability coefficient for the other species. In other words, when
the poacher sets out to harvest species 1, he encounters some individuals of species 2, and can
harvest those units too. Such units may be sold at a price p,.

Conversely, if the poacher targets species 2, his profits are simply:

(A2) T, =bx +pax,
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Obviously, the notion of “targeting” a species only makes sense if g>b, where i=1,2. Given
this simplified set-up, poachers will target species 1 or 2, depending on the (relative)
abundance of species 2. They are indifferent between targeting species 1 or 2 when species

2’s abundance is defined by:

? (d, —b,) p,

This implies that aggregate harvesting of species 2 is simply described as follows: For
X, > X,, harvesting equals Ngx, and for x, <X,, harvesting equals Nbx,. When the
population of species 2 increases from (X, —&) to (X, + &), aggregate harvesting suddenly
increases by the quantity Q = NX,(q, —b,). Plotted in a graph, these results can be

summarized as follows;

Aqggregate
Harvesting Ng,x,

Q
Nb

2

X %

Figure Al: A simple kinked harvesting function

While most of the results in the paper can be produced by the simple harvest function depicted
in Figure Al, it is straightforward to add certain elements to the model that would enhance the
similarity to the “smoother” reduced—form harvest function implied by (8). For example, by
introducing gear saturation (Clark 1990: 222) or market saturation, the catchability may be

smoothly reduced so that the harvest function gradually levels off (akin to the reduced-form
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harvest function (8), leveling off at ). Similarly, by introducing some heterogeneity among

poachers, the knife-edge result that all poachers “switch” from targeting one species to

another at stock level X, may be mitigated. Thiswill result in a smoother transition between

the two line segments in Figure A1, as also implied by harvest function (8).
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Figure 1. Growth and harvesting with a type |11 poaching response
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Figure 2: Marginal Benefits of conservation with type |11 poaching: the increment in wildlife

abundance resulting from a marginal change in parameter 8
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