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One cannot assume that resemblances between the mechanical devices of human technology and those produced by the evolution-
ary process reflect either specific copying of nature by people or some particular point of functional superiority. A third alterna-
tive is that the two mechanical contexts derive quite different advantages from a given arrangement. While this latter might appear 
unlikely, one can argue that it underlies such things as the use of conical shapes, helical tensile structures, spheres and cylinders, 
beams and columns of relatively low torsional stiffness, and geodesic shells.  

1. Introduction 

Despite profound differences in scale, in materials, in manufactur-
ing methods, and in the basic design process, the mechanical de-
vices we humans build quite commonly resemble those we find in 
nature. We stiffen structures by corrugating them just as does a 
scallop’s shell. We inject and extrude through tubes that resemble 
the fangs of many venomous snakes and spiders. Our hollow col-
umns follow the same logic as those of many plant stems, arthro-
pod legs, and vertebrate long bones. One can continue a list of 
mechanical similarities almost indefinitely. How can we explain 
them?  
 Two rationales come immediately to mind. The first, that we 
humans have deliberately copied, using nature as model for our 
technology, turns out – as I have argued elsewhere (Vogel 1998) –
 to be less important than ordinarily believed. Some devices are 
indeed bioemulatory;, decent evidence for copying exists for such 
disparate items as barbed wire, streamlined bodies, earphones, and 
rayon. But their diversity is more impressive than their number. 
The second, that the common context of the two mechanical 
worlds implies similar solutions to analogous problems, certainly 
underlies most of the resemblances between them. After all, things 
made by both nature and people must work under the gravitational 
force of the same planet, in ways determined by the same rules  
of physics and mathematics, and constrained by the  
 
 
 
 

same properties of ubiquitous substances such as air and  
water.  
 A third possible rationale for resemblance has received much 
less attention than these previous two. Similarity may be essen-
tially fortuitous; that is, the two systems might find a given design 
or device attractive for entirely different reasons. An aspect of its 
behaviour may recommend it to one; another aspect of its behav-
iour may press it on the other. While the matter might initially 
seem to be no more than something needed to fill out a set of logi-
cal alternatives, I would argue that it is far from trivial in practice, 
and that its examination exposes with especial clarity key differ-
ences between how we make things and how nature does so.  

2. Cones  

Consider the conical objects found among both human and natural 
designs. Some are immediately obvious –teepees, dunce caps, ice 
cream cones, paper cups, limpet shells, rhinoceros horns. Some are 
hidden – the wheel bearings of our cars, the tool-holding holes of 
metal lathes, the compression fittings between pipes. Some aren’t 
obviously conical – the horns of sheep and goats, the shells of 
snails and nautili, the screw-in couplings of drain pipes and garden 
hoses. Conical shapes unquestionably appeal both to nature and 
to human designers. What underlies that appeal?  
 Cones turn out to have two splendid features for mechanical  
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applications. For one thing, identical cones nest within each other 
to form mutually reinforcing stacks. The way we ship and store 
edible cones for icecream and paper cones for drinking water 
makes fine use of this tidy stacking. For another, either extending  
the edge or thickening the wall of a cone increases its size without 
changing its shape – a cone that grows by these schemes retains 
the same taper, the same ratio between its height and the width of 
its base. A snail grows by such edge extension, and Egyptian 
pyramids (really just squared-off cones) or a Babylonian ziggurat 
can be enlarged by such simple incremental addition.  
 Nesting in stacks isn’t just a convenience for transporting iden-
tical items. Something with a conical outside will fit snugly into 
something with a conical inside, as long as their cones have the 
sametaper. Press them together harder and the connection gets 
tighter.That adjustable snugness underlies the use of conical rollers 
as bearings for the wheels of our cars – as opposed to ball bearings 
or cylindrical rollers. It’s also why we give a slight taper to the 
threads used to screw pipes into their fittings – opposite diame-
ters converge at a barely-noticeable 3· 6° (Oberg et al 1984). By 
contrast, ordinary screws and nuts are cylindrically-grooved. Thus 
the connection gradually tightens as a pipe and coupling are forci-
bly screwed together. As long as the threading tool has the right 
taper, pipes can be cut off and rethreaded quite casually.  
 Lathes, familiar to every machinist if not to most of us, make 
fine use of a similar device. Both their large drills and their chucks 
for small drills have conical back ends. These fit into the hole in 
the tailstock (the opposite end from the motorized headstock) as 
the male halves of a pair of nesting cones. Three degrees (across 
their diameters) is typical of these conical tapers; because of this 
slight taper, when the drill pushes back against the tailstock it 
tightens the fit – they’re said to be “self holding”. But if the drill 
suddenly jams in the work, it can spin non-destructively in the 
tailstock. Not only are such nesting cones relatively easy to ma-
chine, but the angle of taper isn’t sensitive to the changes in size 
that accompany heating and cooling.  
 Cylinders, by contrast, behave quite differently. Manufacturing 
tolerance determines how tightly the pieces of a telescoping radio 
antenna will fit together, and wear makes them loosen. Nor will 
identical cylinders nest together. Corks for one-time use, as in 
wine bottles, are cylindrical. Corks for repetitive use, as in chemis-
try laboratories and in an earlier generation of Thermos bottles, are 
conical. Conical corks will do almost as well after long use as when 
new,and stoppers in a dozen sizes suffice to fit every flask. Coni-
cal ground glass stoppers are almost completely interchangeable, 
but we often number the ground glass cylinders and pistons of 
hypodermic syringes to facilitate non-promiscuous remating after 
they get a communal washing. So there’s no great mystery about 
why modern mass-production technology often selects cones 
where cylinders look at first glance like the more obvious choice.  
 Organisms occasionally take advantage of the way identical 
cones nest together. One kind of mollusc, a slipper limpet aptly 
named Crepidula fornicata, lives in a nested stack. A limpet ar-
rives (as a swimming larva) at a rock, settles down, and grows into 
a juvenile with a low, conical shell. But larval limpets prefer lim-

pet shells, when available, to rocks as surfaces for attachment. So 
a second limpet commonly settles on the first and grows into a  
juvenile, while the first grows into a mature male. A third limpet 
then lands on the second, the second matures as a male, and the 
first metamorphoses into a female. And so on, with the lowest 
shells becoming just passive supports that no longer house living 
animals. The fit of male upon female provides proper reproductive 
proximity, new space on a rock need only rarely be won, and the 
stack grows up and away from any other creatures that crowd its 
periphery and protrude into the flows that provide it with food. 
But the case is unusual.  
 The other advantage of cones, to remind ourselves, is growth by 
incremental addition without change of shape. Adding to the end 
of a cylinder or a rectangular solid makes it relatively skinnier 
while a cone suffers no such alteration. That seems to be the key 
feature that makes cones attractive to nature. Most conspicu-
ously, it facilitates the growth of almost all shelled molluscs. Most 
may not look quite conical, but that’s only because besides strict 
cones, a more general cone-like form retains its shape as it grows. 
Thus if one adds material preferentially to one side of the free edge 
of a hollow cone, one gradually transforms it into a spiral. It may 
be a flat, two-dimensional spiral, as is a Nautilus shell; or it can be 
a spiral with a little helical extension to one side, as are the shells 
of snails, whelks, and periwinkles; or it can form a very low spiral, 
as are the half-shells of clams.  
 All these are spirals of the particular kind – so-called logarith-
mic or equiangular spirals. A logarithmic spiral gets wider exactly 
in proportion to how far it has lengthened – just like a cone except 
that the thing now wraps around itself. The general equation for 
such a spiral is 

r = eaθ  

– the radius, r, of the spiral increases at a rate determined by a as 
it swings around through an ever-increasing angle θ. (Positive a’s 
produce left-hand spirals, increasing in diameter with counter-
clockwise turning; negative a’s produce right-hand spirals.) The 
larger the cone that’s enlarged by edge and surface addition, the 
more material it takes to do the enlargement, since the larger cone 
has more edge. But the requirement for material scales conven-
iently, retaining its proportionality with the volume already pre-
sent. Cones and spirals interconvert easily –thus pastry chefs 
often take high, narrow cones and wrap them into spirals. Note, 
though, that spirals don’t so inevitably nest together.  
 Why this great elaboration of cones and logarithmic spirals 
among the molluscs? Most likely that great phylum can’t do much 
better when it comes to growing its hard parts. Molluscs can’t 
molt periodically like arthropods or take advantage of that splen-
did vertebrate invention, a living skeletal system that can grow 
internally. But molluscs aren’t the only creatures that use this 
basic shape. Cones and spirals turn up in the minute shells of 
many protozoa, in flowers and other parts of plants, and in tusks 
and horns. The paired half-shells of brachiopods, a group that 
figured large during the Palaeozoic but now persist as just a few 



J. Biosci. | vol. 25 | No. 2 | June 2000 

Rhino horns and paper cups 

 

193 

species of tinyanimals, closely resemble the half-shells of bivalve 
molluscs – both live within the geometrical constraints on growth 
by edge and surface addition without change in shape. No common 
ancestor shared the design; in fact the half-shells of a brachiopod 
are morphologically top and bottom rather than the left and right 
sides of a mollusc.  
 Mammalian horns are logarithmic spirals, while antlers are not. 
Horns, which grow outward from the skull, enlarge by addition at 
their bases, just as do mollusc shells; and they form either simple 
cones or flat or helical spirals. An antler forms beneath a thin layer 
of skin, is shed annually, and gets replaced by a larger one. Grow-
ing this way imposes no such geometric constraint, and very few 
antlers are cones or spirals. On the other hand, periodic shedding 
can’t be cheap. Among the artiodactyls, cows, sheep, and goats 
have horns; deer, elk, and moose have antlers.  
 Nature’s inordinate fondness for logarithmic spirals –often 
looking persuasively conical – caught the eye of three different 
biologists in the early 1900’s. James Bell Pettigrew (1908) saw in 
them some evidence of a divine designer, Theodore Andrea Cook 
(1914) envisioned a general principle of design, and the better 
remembered D’Arcy Thompson (1917) viewed them as part of a 
kind of mathematical perfection in nature. We treat them as some-
thing less grand if no less interesting – the morphogenetic conven-
ience of a system that doesn’t have unlimited information for 
specifying form.  
 Once in a while we humans take advantage of this characteristic 
of cones, enlarging our conical structures by incremental addition 
to edges and walls. The ziggurat towers of the Babylonians and 
Assyrians were conical, with stepped terraces or with pathways 
spiralling up to the top. One could gradually enlarge one’s ziggurat 
without scaffolding or functional alteration. But we build most of 
our conical dwellings – teepees, for instance – once and for all. 
When we do enlarge our houses, we don’t care much about main-
taining their original shapes. In one case, at least, we reverse the 
process, incrementally subtracting from the walls and thus un-
growing a cone. That happens every time we sharpen a pencil –
 can you imagine a sharpenable pencil with a non-conical end?  
 Have the separate worlds of human and natural design hit on 
the same shape for the same reason? While at first glance that 
might appear to be the case, reality is more subtle and instructive. 
As noted, almost all the common cases of nesting cones involve 
items of human design –Crepidula provides a nice tale, but it 
represents no widely used scheme in nature. Nesting is mostly our 
game. By contrast, almost all growing cones occur in nature’s  
designs – ziggurats have never been in the architectural main-
stream, and wooden pencils are an isolated instance. Growing by 
edge addition is mainly nature’s ploy.  
 Each world of design finds one advantage compelling while 
remaining largely indifferent to the other. And the two worlds 
have contrasting preferences. For human technology, that ability 
to nest proves enormously valuable; since we don’t grow our arti-
facts, incremental addition rarely matters. In nature, most things 
get big by growing, most materials are soft, and even the hard 
parts are rarely press-fit together. If the contrast carries a lesson it 

is that recognition of nature’s affection for cones should not in and 
of itself induce us to design conical objects. Motivation is what 
matters, and we can’t assume that what’s good for nature will fit 
our needs as well. Nor should we allow ourselves to be misled by 
any notion of nature’s greater sophistication or longer experience.  
 

3. Helices, spheres and cylinders, non-cylindrical columns, 
geodesic shells  

This lesson extends beyond cones and spirals. Nature’s goals 
aren’t our goals, nor are her means our means. A good design in her 
mechanical world – not even a “technology” in a strictly literal 
sense since it does nothing intentionally – may hold no advantage 
in ours. Or, as here, a shape that works well for both may do so 
for quite different reasons. Nor does the point rest entirely on this 
one example. Cones aren’t the only instances where coincidence 
between nature’s designs and our own proves purely coincidental.  
 Both systems use helices. The most common human-made ones 
are twisted ropes. If the strands of a rope are twisted, then pulling 
on the rope as a whole causes the individual strands to press to-
gether more tightly and therefore to slip against one another less. 
In that way short fibres can be made – spun – into long, strong, 
ropes. No second material need stick the fibres together; indeed 
binding them may render a rope abnormally susceptible to trans-
verse cracking and other modes of failure. Humans have been doing 
this rope trick for many thousands of years and probably discov-
ered it on more than one occasion. Cordage immediately suitable 
for human use is rare in nature, but short fibres suitable for twist-
ing into ropes abound. We don’t just make ropes this way – the 
scheme underlies all the short-fibre threads from which we weave 
cloth. Making practical thread of even the long strands produced 
by silkworms involves some spinning.  
 Nature, by contrast, doesn’t make ropes or threads this way. 
Hers either use fibres long enough to run the full length of the 
tensile structure, as in silk cocoons and webs, or else shorter fibres 
get joined to form a long structure with a second component, a 
glue. The molecules of one of her most common tensile materials, 
collagen, turn out to be long, triple helices. So our tendons and the 
walls of our arteries do use helical material to withstand tension. 
But the strength of collagen depends in no way on the same kind 
of resistance to mechanical shearing between strands; any special 
significance attaching to the helical form of collagen needs another 
explanation.  
 And nature’s fondness for helices does have another explana-
tion, one first proposed by a physicist, Horace Crane, back in 
1950. Instructing a system to make a helix, he noted, requires very 
little information. In a helically-twisted stack, each component fits 
into place exactly the same way as does every other one. And one 
can argue that development is, in a sense, an information-starved 
process, making complex three-dimensional structure from a sim-
ple linear code. Indeed, many important intracellular structures 
turn out to be just such simple helices built of monotonous re-
peats of some basic monomeric units in equivalent positions –
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 microtubules, microfilaments, some muscle proteins, and others. 
Some can be made to self-assemble in vitro from a solution of their 
monomers in the right chemical environment – the desired way is 
simply the only way they can go together. None uses shear  
between fibres to resist being pulled upon in the manner of our 
threads and ropes.  
 Our ball bearings, wheels, and rotating shafts take advantage of 
the smooth and steady way spheres and cylinders roll, behaviour 
that depends on their specific and constant radii. Gears, pulleys, 
flywheels, and capstans form no minor collection of cylindrical 
rolling devices, and they just begin the list of our hard rollers. 
Spheres may be slightly less ubiquitous, but they’re far from rare. 
Complex mechanical devices seem almost unimaginable without 
spheres and cylinders rolling around.  
 While spheres and cylinders are common enough in nature, only 
rarely do they roll. They’re typically used for pressurized ves-
sels – tanks and conduits. Such vessels are cheapest to make if 
they have the same curvature everywhere, which spheres and 
cylinders do. “Cheapest” here applies equally to informational 
economy and material economy relative to volume. Pressurize an 
enclosed  
volume with a membrane of uniform thickness without further 
instructions and one gets (depending on the conditions) a sphere, 
ellipsoid, or cylinder. Deviating from these basic shapes costs –
 any place where the radius of curvature is greater will feel a 
greater tension tending to cause further bulging (an aneurysm) or 
to split the wall; so the greater radius of curvature will demand a 
proportionately thicker wall. For thin-walled cylinders, the rule, 
often called “Laplace’s law”, is that transmural pressure equals 
wall tension divided by radius of curvature. For spheres, that 
pressure is twice the wall tension divided by the radius.  
 Nature’s water-filled balloons, organisms or their parts that use 
hydrostatic stiffening in what are called “hydroskeletons”, include 
many unicells, lots of worms, the tiny feet of starfish, the bodies 
of squid, and most mammalian penises. Beyond these, virtually all 
blood vessels and other internal fluid conduits are cylinders with 
pressure differences across their walls; usually but not universally, 
pressures are greater inside. Our technology likes the rolling 
behaviour of spheres and cylinders with their constant radii, 
nature likes the wall-tension equalizing behaviour of these shapes 
of constant curvature. Both, though, recognize that cylinders make 
good shafts and struts when these are subjected to torsion, face 
failure by buckling, or have to withstand flexural loads from any 
direction. Thus bicycle frames, architectural columns, tree trunks, 
and long bones share both their cylindrical cross sections and the 
rationale for adopting them.  
 We commonly use struts and beams in shapes that resist bend-
ing quite well but that are much less effective at  
resisting twisting. An I-beam, for instance, resists twisting only 
about half as well as does a cylinder, relative to their respective 
resistances to bending. And our various U- and L-channeled struts 
share that lack of torsional stiffness. We ordinarily circumvent it 
by using such beams in pairs or groups so their communal action 
resists torsional loads. Thus the deck of a bridge may be sup-

ported by two or more I-beams but never by a single one. Occa-
sionally we simply tolerate some torsional flexibility. Thus when 
we mount street signs atop channeled poles, we make them pro-
trude equally to the right and left; winds thereby  
impose no torsional loading that might make the signs oscillate 
about their vertical axes. 
 Nature also uses structures that resist bending more than twist-
ing. Hers more often take the form of cylinders with lengthwise 
grooves instead of I-beams, although some of the neural and hemal 
spines (“ribs”) extending above and below fish backbones come 
close in cross section to I-beams. But she most often uses such 
structures individually for applications where some specific virtue 
emerges from their relatively greater torsional flexibility. Thus 
each of the feathers that form the tips of the wings of birds has a 
groove along its shaft, a groove that allows it to twist more easily. 
That means it can twist one way when the wing moves upward 
and the other way when the wing moves downward again, as the 
aerodynamics of flapping flight demands. At the same time, the 
feather resists bending, as it must. After all, in flight a bird (or 
airplane) quite literally hangs its body from its wings. Insect wings 
do much the same thing, passively twisting one way on the up-
stroke and the other on the downstroke. In this way they may 
avoid what might be difficult  
problems of coordinating phasic muscles where wingbeat  
frequencies run into the hundreds per second. Tree trunks, leaf 
petioles, and daffodil stems also have high twisti- 
ness to bendiness ratios. For these, twisting in the wind appears 
to be a device to achieve orientations that  
incur lower drag – flexibility under torsional loading  
reduces the bending loads they must sustain (Etnier and Vogel 
2000).  

 One other difference distinguishes the way nature’s structures 
and ours respond to flexural and torsional loads. How something 
bends and twists depends on the material of which it is made as 
well as on how that material is arranged. So using a non-circular 
cross section isn’t the only way to decrease a structure’s resis-
tance to twisting. We ordinarily use materials that, however di-
verse in other ways, provide little room for adjustment of relative 
resistance to bending and twisting – we depend almost entirely on 
cross-sectional geometry. While nature does tinker with cross 
sections – lengthwise grooves are common among both animals 
and plants – she does much more with materials. Using both mate-
rial and geometric factors permits the ratio of torsional to flexural 
stiffness to vary by more than an order of magnitude, considerably 
wider than the roughly three-fold variation among our structures. 
So in practice a lengthwise groove both raises the ratio somewhat 
and alerts us to the high likelihood that specialized material ar-
rangements are at work raising it considerably further.  
 When we build geodesic domes we take advantage of the effi-
cient way they allow a large, stiff, and strong structure to be built 
with short, light, struts. We don’t make great use of them, perhaps 
on account of some basic incompatibility with our predominantly 
rectilinear designs. One might expect geodesic structures to occur 
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widely among organisms, between their material efficiency and the 
fact that nature need not escape any preexisting bias toward recti-
linear forms. But they’re rare, even among such obvious candi-
dates such as the spicular skeletons of sponges. Perhaps getting 
high stiffness at low cost matters less among natural designs, 
which seem to place a lower premium on stiffness, as opposed to 
strength. Sponges, for instance, have adequate strength to with-
stand typhoons, but they’re notably low in stiffness.  
 Nature does build domes – egg shells, nut shells, cranial cases, 
and so forth – but they’re not geodesically strutted. The crucial 
feature of most of her domes is their uniform resistance to impact 
or puncture, as when hit or bitten, something a strutted membrane 
fails to achieve. Where she does use geodesic assemblies is in viral 
shells, and here what matters is much more likely to be the same 
kind of informational economy we noted for helices. Multiples of 
a single basic component can be designed to self-assemble into 
standard shells. Once again, the same device reflects different im-
peratives.  
 Yes, nature’s designs often resemble ours on account of similar 
underlying constraints or functional imperatives. Yes, we can learn 
useful lessons about design from analyzing her designs. And, yes, 
we can sometimes even make useful devices that copy hers. But 
nature speaks an unfamiliar language, and a literal translation –
 simple, slavish copying with its tacit assumption of similar  
imperatives – is all too likely to misinterpret her messages and all 

too unlikely to produce practical products. The utility of a design 
has meaning only in the context in which it lies, and the mechanical 
technology created by us humans differs profoundly from the 
mechanical world of the rest of nature.  
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