
Citation: Ruggeri, E.; Klohonatz, K.;

Durrant, B.; Sirard, M.-A.

Identification and Preliminary

Analysis of Granulosa Cell

Biomarkers to Predict Oocyte In Vitro

Maturation Outcome in the Southern

White Rhinoceros (Ceratotherium

simum simum). Animals 2024, 14, 3538.

https://doi.org/10.3390/

ani14233538

Academic Editor: Dawn Bresnahan

Received: 11 November 2024

Revised: 3 December 2024

Accepted: 5 December 2024

Published: 7 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Identification and Preliminary Analysis of Granulosa Cell
Biomarkers to Predict Oocyte In Vitro Maturation Outcome in
the Southern White Rhinoceros (Ceratotherium simum simum)
Elena Ruggeri 1,* , Kristin Klohonatz 2, Barbara Durrant 1 and Marc-André Sirard 3

1 Reproductive Sciences, Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance,
Escondido, CA 92027, USA; bdurrant@sdzwa.org

2 Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA 19104, USA; kristin.klohonatz@pennmedicine.upenn.edu

3 Département des Sciences Animales, Université Laval, Quebec City, QC G1V 0A6, Canada;
marc-andre.sirard@fsaa.ulaval.ca

* Correspondence: eruggeri@sdzwa.org

Simple Summary: Granulosa cells play an essential role in oocyte meiotic competence acquisition
by supplying nutrients and metabolites to oocytes and secreting paracrine signals that regulate
oocyte maturation. Identifying biomarkers in granulosa cells to measure an oocyte’s ability to mature
in vitro noninvasively predicts success or failure prior to maturation. This technique also offers the
opportunity to develop treatment strategies to overcome potential maturation failures. This study
aimed to evaluate potential biomarkers associated with follicle development, meiotic competence,
cell death and atresia, and embryonic genome activation in granulosa cells from oocytes that did or
did not mature after in vitro fertilization in the southern white rhinoceros. This study determined
eight potential biomarkers associated with the success or failure of an oocyte to mature. Two genes
were correlated with follicle development, three genes with meiotic competence, and three genes
with cell death and atresia. This is the first study in which in vivo granulosa cells were used as a
diagnostic predictor of oocyte maturation competence in the southern white rhinoceros. It represents
a critical evaluation needed to improve assisted reproductive technologies in this species.

Abstract: In recent years, biomarkers in granulosa cells (GC) have been determined and associated
in several species with oocyte maturation, in vitro fertilization success, and embryo development
outcomes. The identification of biomarkers of oocyte competence can aid in improving assisted
reproductive technologies (ARTs) in the southern white rhino (SWR). This study aimed to identify
biomarkers present in SWR GC associated with oocytes that either did or did not mature in vitro.
We evaluated follicle development (FD), meiotic competence (MC), cell death and atresia (CDA),
and embryonic genome activation (EGA). Our objective was to design biomarkers to predict oocyte
in vitro maturation results in the SWR. RNA was isolated from GC obtained during ovum pick up
(OPU) for qPCR analysis. Overall, 22 genes were assessed, and nine were differentially expressed
between GC from oocytes that did or did not mature in vitro (FD-GDF9 and mTOR; MC-GGPS1,
JMY, and NPR2; CDA-COL4A1, MACIR, and TMPO; EGA-NFYA). From these data, we determined
that GC can be used as a predictor for oocyte in vitro maturation outcome in the SWR. Our results
provide crucial information needed to improve in vitro maturation and ARTs in this species.

Keywords: wildlife; assisted reproductive technologies; oocytes

1. Introduction

Oocyte competence is the ability of the oocyte to complete both nuclear and cytoplas-
mic maturation, achieve fertilization, develop to the blastocyst stage, and terminate with
a successful live birth [1]. Granulosa cells (GCs) play an essential role in oocyte meiotic
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competence acquisition by supplying nutrients and metabolites to oocytes and secreting
paracrine signals that regulate oocyte maturation [2–4]. Understanding the mechanisms
by which GCs influence oocyte developmental competence can help identify predictors of
fertility as well as contribute to improving assisted reproductive technologies.

Traditional oocyte quality assessment has been based on morphology, but in recent
years a multitude of biomarkers in granulosa cells and cumulus–oocyte complexes (COCs)
have been determined and associated with oocyte maturation, in vitro fertilization success,
and embryo development outcome [1,5,6]. The identification of noninvasive biomarkers
of oocyte competence is one of the foremost targets of current research in reproduction
and can aid in improving the development of in vitro matured oocytes [5]. In humans,
biomarkers associated with competent oocytes have been identified and can be used for
embryo selection [7–9].

FSH and LH stimulation regulate many of the GC biomarkers. Reduced response
to these gonadotropins has been shown to downregulate genes associated with atresia
and apoptosis, resulting in a compromised maturation process [10]. Therefore, different
gene expression patterns in GCs may correlate with morphological and physiological
characteristics, follicular environment, and fertility potential.

GCs are an easily accessible material that is often discarded during ovum pickup
(OPU); hence, they are ideal samples with which to develop biomarker panels to establish
oocyte competence potential. Transcriptomic, microarray, and gene expression analysis
of GCs have been regarded as a tool for assessing oocyte quality and viability [11]. Fur-
thermore, GCs have shown the ability to predict embryo development and pregnancy
success [5,12]. Biomarkers of granulosa cells coupled with individual oocytes could be
used in the assisted reproduction field to indicate which embryos have the best chance of
implanting and concluding in a live birth. Although there is no one single gene transcript
that appears to be capable of predicting which embryos produced by IVF will lead to
live birth, numerous biomarkers in GC have been identified based on the endpoint to
be evaluated, including oocyte nuclear maturation, fertilization, blastocyst morphology,
implantation, and live birth. Although the most desirable endpoint for transcriptomic
studies is live birth, several studies examined the gene expression profiles of GC influencing
oocyte maturation and fertilization, as a proxy for live birth, as these are two mandatory
steps that lead to embryo development and implantation [5,13]. By defining the expression
profiles of specific genes in GCs associated with embryonic outcome we can develop treat-
ment strategies to compensate for poor-quality oocytes deficient in specific genes during
follicular development.

The southern white rhinoceros (SWR) is the closest relative to the functionally extinct
northern white rhinoceros (NWR) [14]. Several groups worldwide have been working
to develop assisted reproductive technologies for this species [15–19], mimicking well-
established protocols and approaches effective in domestic species and humans. Our
group has been largely focusing on studying SWR granulosa cells as a tool to study
in vivo follicle dynamics and in vitro oocyte maturation requirements [18,19]. Because
GC is an easily accessible material discarded after OPU, it represents a good biological
sample for diagnostic research. By studying GC in SWR, it is possible to understand the
molecular components driving oocyte competence acquisition in this species and aid in
ARTs improvement. In addition, treatment strategies may be developed to compensate for
poor oocyte quality due to the deficiency of specific proteins during follicular development.

This work aimed to identify biomarkers in GC from the SWR associated with oocyte
in vitro maturation outcome. We evaluated GC collected from follicles that yielded oocytes
that matured or did not after in vitro maturation culture. To reach our objective, we evalu-
ated four major biological processes associated with oocyte maturation and developmental
failure or success: follicle development, meiotic competence, cell death and atresia, and
embryonic genome activation (EGA). For these analyses, we selected candidate genes from
the literature in domestic species and humans as well as our previous work focused on
GC transcriptome in the SWR [17]. For follicle development, the following eight genes
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were evaluated: collagen type I alpha 1 chain (COL1A1) [20], growth differentiation factor 9
(GDF9) [21], lysine acetyltransferase 8 (KAT8) [19], luteinizing hormone receptor (LHR) [22],
mechanistic target of rapamycin (mTOR) [23], progesterone receptor (PGR) [24], tumor
necrosis factor (TNF) [19], and tumor protein p53 (TP53) [25,26]. Cell death and atresia were
assessed by measuring the following six genes: F-box and WD repeat domain containing 11
(FBXW11) [17], geranylgeranyl diphosphate synthase 1 (GGPS1) [27], junction mediating
and regulatory protein p53 cofactor (JMY) [28], mevalonate kinase (MVK) [29], natriuretic
peptide receptor 2 (NPR2) [30], and neuregulin 1 (NRG1) [30]. For meiotic competence,
we evaluated the following three genes: collagen type IV alpha 1 chain (COL4A1) [31],
macrophage immunometabolism regulator (MACIR) [17], and thymopoeitin (TMPO) [32].
For embryonic genome activation, we evaluated five genes: BCL2 related protein A1
(BCL2A1) [33], chaperonin containing TCP1 subunit 3 (CCT3) [34,35], heterogeneous nu-
clear ribonucleoprotein A2/B1 (HNRNPA2B1) [36,37], MYC proto-oncogene (MYC) [38–40],
and nuclear transcription factor Y subunit alpha (NFYA) [18,41,42]. This study aimed to
enhance our understanding of the supportive function of GCs in the SWR, leading to more
targeted studies to improve oocyte maturation and embryonic development, with the
overarching goal of advancing rhinoceros conservation efforts and ARTs improvements.

2. Materials and Methods
2.1. Animal Management and Ovum Pickup (OPU)

All procedures, experiments, and methods were reviewed and approved by San
Diego Zoo Wildlife Alliance’s Institutional Animal Care and Use Committee (SDZWA
IACUC; protocol number 21-016). The parous 12-year-old female southern white rhinoceros
in this study was confirmed by regular ultrasound to be free of reproductive pathol-
ogy. This female underwent ovarian stimulation before transrectal OPU as previously
described [17,19,43].

Before OPU, the rhino received synthetic chlormadinone acetate (CMA) at 3 mg/day
for 18 days (days 0–17). Forty-eight hours after CMA withdrawal (day 19), she re-
ceived 1.8 mg of deslorelin [gonadotropin-releasing hormone (GnRH) analog] followed by
2.5 mg of deslorelin 48 h later (day 22; 4.3 mg total) via intramuscular injection. OPU
was performed on Day 24. The female was anesthetized using a combination of etorphine
(3.8 mg), medetomidine (49.6 mg), azaperone (30.5 mg), and butorphanol (49.6 mg) ad-
ministered intramuscularly via remote drug delivery system. During initial positioning to
facilitate intubation, propofol was administered intravenously (1000 mg). Anesthesia was
antagonized with 248 mg atipamezole and 191 mg naltrexone administered intramuscularly
resulting in a recovery without complications.

Following fecal removal, rinsing, and disinfection of the rectum, OPU was achieved
using a customized, ultrasound-guided probe housing two double-lumen needles. Ovarian
follicles were measured via ultrasound, then aspirated and flushed repeatedly with a warm
(37 ◦C) flushing solution (Vigro) containing 12.5 I.U./mL of heparin. Follicular fluid and
granulosa cells were separated based on follicle stage/size. Granulosa cells from dominant
follicles (18–26 mm) were selected for this study.

2.2. Granulosa Cells Collection and RNA Isolation/Quantification

Next, OPU oocytes were retrieved from the collection fluid, evaluated and placed
into in vitro culture. Free-floating mural granulosa cells (GC) were collected and pipetted
directly into RNAlater (Thermo Fisher Scientific, Waltham, MA, USA) for 24 h at 4 ◦C.
Multiple aliquots of GC from each follicle were then stored at −80 ◦C. For RNA isolation,
the granulosa cells were thawed, mixed in equal parts with cold PBS (Sigma Aldrich,
St. Louis, MO, USA) and centrifuged at 3000× g for 10 min. The supernatant was dis-
carded, and the pellet was resuspended in cold PBS. The samples were centrifuged again at
3000× g for 5 min to remove all remnants of RNAlater and the supernatant was discarded
again. Total RNA was isolated from granulosa cells using an Arcturus PicoPure RNA Isola-
tion Kit (Thermo Fisher Scientific, Waltham, MA, USA) per the manufacturer’s instructions.
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Two follicles (biological replicates) were used for each group: polar body and no polar
body outcome after in vitro maturation. Oocyte nuclear maturation completes primary
meiotic division by extruding the first polar body, hence the polar body presence indicates
metaphase II arrest and meiotic maturation completion. For each biological replicate, there
were three individual technical replicates from individual GC tubes. Therefore, there
was a total of n = 6 per group. Granulosa cells were incubated with extraction buffer for
30 min before centrifugation to remove debris and extracellular material. The cell extract
was incubated with ethanol, then bound to, and washed on preconditioned purification
columns. Total RNA was recovered into elution buffer and quantified using a Qubit
4 Fluorometer (Thermo Fischer Scientific, Waltham, MA, USA). After quantification, the
samples were evaluated on a 4150 TapeStation System (Agilent Technologies, Santa Clara,
CA, USA) to determine RNA quality.

2.3. cDNA Synthesis and Quantitative Real Time Polymerase Chain Reaction (qPCR)

Reverse transcription was performed using a QuantaBio qScript cDNA Synthesis Kit
(VWR). Total RNA (3 ng/µL) was added to each reverse transcription reaction with 4 µL of
reaction mix, 1 µL of reverse transcriptase, and nuclease-free water to reach a total reaction
volume of 20 µL. cDNA synthesis was performed at 22 ◦C for 5 min, 42 ◦C for 30 min,
85 ◦C for 5 min and held at 4 ◦C.

Twenty-two genes were chosen for qPCR analysis based on the biological processes
selected for this study. The genes selected based upon follicle development were collagen
type I alpha 1 chain (COL1A1), growth differentiation factor 9 (GDF9), lysine acetyltrans-
ferase 8 (KAT8), luteinizing hormone receptor (LHR), mechanistic target of rapamycin
(mTOR), progesterone receptor (PGR), tumor necrosis factor (TNF), and tumor protein p53
(TP53). The genes selected for meiotic competence were F-box and WD repeat domain con-
taining 11 (FBXW11), geranylgeranyl diphosphate synthase 1 (GGPS1), junction mediating
and regulatory protein p53 cofactor (JMY), mevalonate kinase (MVK), natriuretic peptide
receptor 2 (NPR2), and neuregulin 1 (NRG1). The genes associated with cell death and
atresia were collagen type IV alpha 1 chain (COL4A1), macrophage immunometabolism
regulator (MACIR), and thymopoeitin (TMPO). The genes selected based upon their role
in embryonic genome activation were: BCL2 related protein A1 (BCL2A1), Chaperonin
containing TCP1 subunit 3 (CCT3), heterogeneous nuclear ribonucleoprotein A2/B1 (HN-
RNPA2B1), MYC proto-oncogene (MYC), and nuclear transcription factor Y subunit alpha
(NFYA).

Our recent work on granulosa cells transcriptome analysis [17] provided a more
complete and in-depth annotation of the northern white rhinoceros genome using SWR
transcripts [44] that allowed the identification of genes not previously recognized in the
southern white rhinoceros genome as biomarkers during oocyte development (COL1A1,
JMY, MVK, FBXW11, NRG1, GGPS1, NPR2, TMPO, MACIR, COL4A1, BCL2A1, HN-
RNPA2B1, CCT3, MYC, and NFYA). Forward and reverse primers were designed using
Primer3 version 4.1.0 (https://primer3.ut.ee, accessed on 11 March 2024) with a product
size between 75–200 base pairs (bp), a primer length between 18–22 bp, a primer annealing
temperature between 58–62 ◦C, and a GC content between 50–60%. Genes were selected
based upon cell function, previous publications [19,43], or were identified as potential
biomarkers for oocyte competence [17]. Genes, categories, and primer sequences are listed
in Table 1.

https://primer3.ut.ee
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Table 1. This table contains the gene name, category, and forward and reverse primers used for
quantitative real-time PCR.

Gene Category Forward Primer (5′-3′) Reverse Primer (5′-3′)

COL1A1 Follicle development GCATGGCCTGATTAGCAGTG GCAGTTAGGTTCGCGTGTTC
GDF9 Follicle development ACCAGGTGACAGGAACCGT CAGCTCTAGGGAGAGTCTTGC
KAT8 Follicle development CCTCCTGACACGTCACAGAC ATCGCTGTGGTGGAAGTGAC
LHR Follicle development TGGAAGTGATAGAGGCGAACG GTTCTGGAAGGCATCAGGGT

mTOR Follicle development GGCAGCATTAGAGACAGTGGA AATCGGGTGAATGATCCGGG
PGR Follicle development TCCCACGAACGTAGAGAGGC TGAACAGTCCCCAATGTGGC
TNF Follicle development GCCCATGTTGTAGCAAACCCT AGGAGCACATGGGTGGAAGA
TP53 Follicle development AGGTACGTGTTTGTGCCTGT TCACGCCCACGAATCTGAAG

FBXW11 Meiotic competence GCACACAGAGACCTGGCATC GGTACGTTTCCACGTTGCCT
GGPS1 Meiotic competence ATACCGCTTGTCAGGCCATC ATCCATGCCAATCCCCCTCT

JMY Meiotic competence GAACTTGCCATGCTACGACG CTTTGGGGAGAAAGGAGCAGA
MVK Meiotic competence TATACCCCGAGTTCCTGGCA CTTGGCTGCTCAGTCCGTTA
NPR2 Meiotic competence GGCACCCTGAGAAAGCATCC GGGTGGTTGATAGGTTAGGGC
NRG1 Meiotic competence TTACTTCGTGGAACCCGTGG GAGGGGCCTTTCAGATGACC

COL4A1 Cell death and atresia TCCGTTTGCTTGCTTTGCTC TCAGGGTTTGAAGCTCCGTC
MACIR Cell death and atresia AAATCACAGGTACTCGGGGG GTCAGCAACAACCAAGCAGA
TMPO Cell death and atresia TCGCCCTAAGCCTAACATCTG GTGGCAGTGGCTCACATAGA

BCL2A1 Embryonic genome
activation CCAAATCTGGCTGGCTGACT GGCAGTTTTCCCAAGATGGA

CCT3 Embryonic genome
activation TCTTTGCTGGACCCCTGAAG AGGAGCAAGCCTGTTGGAAA

HNRNPA2B1 Embryonic genome
activation GGCTAAGGAAAAGGTAGGGGC ATGGTAGGGGATTGGGGAAGA

MYC Embryonic genome
activation TCCTCTTCTTATTGGCGGCT TCTAAGGGGAAGGGATGGGA

NFYA Embryonic genome
activation ATACCTGCATGAGTCTCGGC GGTACAAGTCTTCTCACCTGC

Synthesized cDNA was utilized for quantitative real time PCR (qPCR). Bio-Rad iTaq
Universal SYBR Green Supermix was used for each reaction. Each qPCR reaction contained
1.17 ng of cDNA, 2 µL of primer mix, 10 µL SYBR Green Supermix, and water to reach a total
volume of 20 µL. Samples were loaded into 96 well MicroAmp Fast Optical Reaction Plates
(ThermoFisher Scientific) and were run and analyzed in duplicate using QuantStudio6.
Real Time PCR cycle conditions were per the manufacturer’s protocol: initial denaturation
at 95 ◦C for 5 min, 40 cycles of denaturation at 95 ◦C for 15 s and annealing/extension at
60 ◦C for 60 s and melt curve analysis at 65–95 ◦C for 15 s at 0.05 ◦C per second. Cycle
threshold (CT) values were normalized to an internal control, glutathione peroxidase 7
(GPX7).

2.4. Statistical Analyses

All statistical analyses were performed and graphed with GraphPad Prism (Graph-
Pad Software version 10.4.0). For qPCR analyses, normalized CT values were utilized for
statistical comparisons. An unpaired two-tailed student’s t-test was utilized using the
Benjamini–Hochberg method to control for false discovery rates (FDR). For all statistical
analyses, samples were considered statistically different at p ≤ 0.05. All data were trans-
formed to 2−∆CT for graphical representation (relative expression). Fold changes were
calculated as log2 (PB/no PB). If the fold change was positive, it indicated that gene expres-
sion was higher in PB. If the fold change was negative, it indicated that gene expression
was higher in no PB. PB represents GC from oocytes that matured after IVM by extruding
the first polar body. No PB represents GC from oocytes that did not mature after IVM;
therefore, no polar body was observed.
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3. Results

Overall, 22 genes were evaluated for the following categories: follicle development,
meiotic competence, cell death and atresia, and embryonic genome activation. Of these
genes, nine were differentially expressed in in vivo granulosa cells collected before in vitro
oocyte maturation (IVM), that ultimately culminated in polar body extrusion after IVM.

3.1. Granulosa Cell Biomarkers Linked to Follicle Development

Eight different genes (COL1A1, GDF9, KAT8, LHR, mTOR, PGR, TNP, and TP53)
associated with follicle development were evaluated in in vivo granulosa cells. Of these
eight genes, two were differentially expressed in granulosa cells from oocytes that did
or did not mature by extruding a polar body after in vitro maturation (GDF9 and mTOR;
p < 0.05). Both genes had higher expression values in samples from oocytes that matured
(Figure 1).
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Figure 1. Fold changes in genes associated with follicle development in granulosa cells associated
with oocytes that did or did not mature in vitro. A positive fold change indicates gene expression
was higher in cells from oocytes that matured (PB) while a negative fold change indicates gene
expression was higher in cells associated with oocytes that did not mature (no PB) after in vitro culture.
* p ≤ 0.05.

3.2. Granulosa Cell Biomarkers That Lead to Meiotic Competence

Of the eight genes selected for this category, two (GGPS1 and JMY) demonstrated
significantly higher expression in in vivo granulosa cells from oocytes that matured after
in vitro maturation culture and one (NPR2) showed significantly more expression in in vivo
granulosa cells from oocytes that did not mature (Figure 2).
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Figure 2. Fold changes in genes associated with meiotic competence in granulosa cells associated
with oocytes that did or did mature in vitro. A positive fold change indicates gene expression
was higher in cells from oocytes that matured (PB) while a negative fold change indicates gene
expression was higher in cells associated with oocytes that did not mature (no PB) after in vitro culture.
* p ≤ 0.05.

3.3. Granulosa Cell Biomarkers Prophesying Cell Death and Atresia

Three different genes (COL4A1, MACIR, and TMPO) associated with cell death and
atresia were evaluated in in vivo granulosa cells. All three of these genes were differentially
expressed in granulosa cells from oocytes that did not mature after in vitro maturation
culture (Figure 3).
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Figure 3. Fold changes in genes associated with cell death and atresia in granulosa cells associated
with oocytes that did or did mature in vitro. A negative fold change indicates gene expression was
higher in cells associated with oocytes that did not mature (no PB) after in vitro maturation culture.
* p ≤ 0.05.
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3.4. Granulosa Cell Biomarkers Predicting Embryonic Genome Activation

Figure 4 contains the genes and fold changes associated with embryonic genome
activation. Of the five genes selected for this category, NFYA was the only one significantly
more expressed in in vivo granulosa cells from oocytes that did not mature after in vitro
maturation culture.
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Figure 4. Fold changes in genes associated with embryonic genome activation in granulosa cells
associated with oocytes that did or did mature in vitro. A negative fold change indicates gene expres-
sion was higher in cells associated with oocytes that did not mature (no PB) after in vitro maturation.
* p ≤ 0.05.

4. Discussion

The goal of this study was to determine if granulosa cells (GC) collected in vivo can
predict oocyte maturation in vitro in the southern white rhinoceros (SWR). Evaluating
GC offers a non-invasive method to study the bidirectional communication between GC
and the oocyte, a very important aspect for oocyte competence acquisition and prediction
of embryo developmental potential. This novel approach has not been evaluated in this
species and it could provide a beneficial tool to (1) determine if the pre-OPU ovarian
stimulation protocol supports oocyte meiotic resumption and (2) supplement maturation
media formulation and realistically predict maturation outcomes.

First, we evaluated genes associated with follicle development obtained from our
previous studies [17–19]. Although eight genes were considered for this category, mTOR
and GDF9 were the only two remarkably altered in granulosa cells obtained from oocytes
that matured in vitro. Mammalian target of rapamycin (mTOR)-dependent pathways are
prerequisites for processes that promote the completion of meiosis and are essential for
the maintenance of oocyte genomic integrity, sustaining ovarian follicular development,
and embryo development [23]. The expression of mTOR is associated with signaling
components in GC and folliculogenesis [45]. mTOR signaling regulates GC proliferation in
response to FSH stimulation [46] and directly regulates meiotic processes [23,47]. Growth
differentiation factor 9 (GDF9) was more highly expressed in granulosa cells from oocytes
matured in vitro compared to those that did not mature. GDF9 is an important oocyte-
derived factor that regulates ovarian function in female reproduction, modulating both
the fate of granulosa cells and the developmental competence of the egg. High levels of
GDF9 are associated with oocyte maturation and embryo quality [21]. In our data, mTOR
and GDF9 expression in GC obtained from follicles associated with oocytes that matured
in vitro showed a positive correlation. We can therefore conclude that these two genes are
biomarkers for the potential successful in vitro maturation of rhinoceros oocytes.
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Through granulosa cell sequencing [17], we identified potential biomarkers associ-
ated with meiotic competence. Of the six biomarkers evaluated, three were significantly
differentially expressed. GGPS1 and JMY exhibited significantly greater expression in the
GC from oocytes that matured in vitro, and NPR2 was more highly expressed in GC from
oocytes that did not mature. GGPS1, geranylgeranyl diphosphate synthase 1, is a crucial
enzyme in the mevalonate pathway, which is responsible for cholesterol biosynthesis, cell
growth and differentiation, and protein synthesis [27]. Cholesterol has an essential role in
mitochondrial function, which is critical during oocyte maturation [48,49]. Steroidogenesis
is driven by cholesterol biosynthesis and LH elevation, as seen in late folliculogenesis,
which then results in decreased levels of cholesterol, which activates genes associated
with cholesterol biosynthesis (i.e., GGPS1) [48,49]. The literature shows that females with
decreased GGPS1 exhibit poor quality oocytes and meiotic abnormalities due to impaired
mitochondrial function [27,48]. These data support our findings that GGPS1 levels were
decreased in GC associated with oocytes that did not mature in vitro, compared to those
that matured. This indicates that GGPS1 could be an effective early marker present in
in vivo GC associated with the oocyte’s ability to mature in vitro.

Junction mediation and regulatory protein p53 cofactor (JMY) was decreased in oocytes
that did not mature. This gene is highly involved in actin nucleation during oocyte
polarization and affects the microtubule and microfilament cytoskeleton by activating Arp
2/3 [50–52]. It has been observed that if JMY is not expressed the spindle fails to migrate
to the cortex, and the oocyte arrests with a centrally located spindle [53]. Therefore, JMY
is required to be high during the early stages of oocyte maturation and folliculogenesis,
but decreases before ovulation, as observed in our previous study [17]. The oocytes and
granulosa cells for this study were collected from dominant follicles, which is the stage
before the decrease in JMY (in pre-ovulatory follicles). JMY is a possible candidate to
determine an oocyte’s developmental potential, as it changes its expression during follicle
development. Finally, natriuretic peptide receptor 2 (NPR2) works synergistically with
natriuretic peptide precursor type C (NPPC) to ensure proper cumulus expansion during
oocyte development and guarantee meiotic arrest [54]. During folliculogenesis, FSH levels
increase as the follicle continues to develop. Increasing FSH levels result in decreasing NPR2
levels [55,56]. Final NPR2 downregulation occurs due to the LH/amphiregulin/EGFR
signaling pathway, which is highly active in late antral (dominant) follicles [57]. In addition,
in culture, amphiregulin also downregulates the NPPC/NRP2 pathway and could be used
to initiate meiotic resumption and oocyte maturation in vitro [57]. In our data, NPR2 was
higher in GC associated with oocytes that did not mature in vitro, suggesting that these
oocytes were still inhibited from resuming meiosis. GGPS1, JMY, and NPR2 could be
used as gene candidates to assess meiotic competence, a complex yet fundamental process
required to successfully develop assisted reproductive technologies (ARTs).

Genes involved in cell death and atresia were also evaluated in our study. The
following genes were chosen from previous studies performed in our laboratory [17–19].
All three genes evaluated (COL4A1, MACIR, TMPO) were consistently highly expressed
in granulosa cells from oocytes that did not mature; hence, their expression was directly
associated with oocyte maturation failure. Collagen type IV alpha 1 chain (COL4A1) is
a collagen gene found in the basement membrane of ovarian follicles [58]. In healthy
growing follicles, COL4A1 expression decreases as folliculogenesis progresses, resulting in
the proliferation of GC and follicle remodeling [59]. In addition, high levels of COL4A1
are exclusive to atretic follicles [2]. In humans, oocytes that undergo recurrent oocyte
maturation failure (ROMA) have low levels of PIWI-interacting RNAs (piRNAs), that down
regulate genes involved in the oocyte’s extracellular matrix [60,61]. One gene in particular
affected by the piRNAs is COL4A1 [60]. Decreased piRNAs result in increased COL4A1
and ultimately the developmental arrest of the oocyte during maturation [60]. Another
gene of interest associated with negative oocyte maturation outcome was macrophage
immunometabolism regulator (MACIR). Previous studies have shown MACIR was highly
expressed in oocytes that did not mature after in vitro culture [17]. MACIR (formally
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known as C5ORF30) is associated with tissue damage and modulates the immune response,
regulating macrophage function [62–64]. In addition, studies have shown that in cattle
granulosa cells, MACIR is upregulated in follicles undergoing late-stage atresia [26]. Finally,
thymopoeitin (TMPO), also known as lamina-associated polypeptide 2 (LAP2) [65], was
also upregulated in granulosa cells from oocytes that did not mature in vitro. According
to previous studies, TMPO should decrease throughout follicle growth progression [2,32],
resulting in low levels of LIN28A [66,67]. LIN28A levels should remain low until after
meiosis resumption, and in mice, high LIN28A levels have been directly associated with
MII-arrested oocytes [66,68]. The combination of these three genes, COL4A1, MACIR, and
TMPO being more highly expressed in granulosa cells from oocytes that did not mature
in vitro is an indicator that prior to OPU these oocytes were already primed for failure
to mature. In conclusion, our findings suggest that COL4A1, MACIR, and TMPO could
be excellent candidates to determine if the follicles were undergoing atresia at the time
of ovum pickup (OPU) and if the oocytes collected had already undergone irreversible
atretic commitment. In both horses and cattle, follicle growth begins with increasing FSH
levels due to pulsatile GnRH stimulation [69,70]. This results in multiple follicles growing
but only one reaches the dominant size (18–26 mm in horses [71] and 10 mm in cows [72]).
The subordinate follicles then plateau when a dominant follicle is selected and eventually
all the nondominant follicles begin to undergo atresia [70]. For this study, all oocytes and
granulosa cells were collected from dominant-size follicles, but some oocytes matured
while others did not. This indicates that the oocytes could have been collected after the
plateau phase and some follicles had already started to become atretic. Other studies [73],
report performing OPU 24 h after the last GnRH stimulation, whereas in this study, OPU
was performed 48 h after the last GnRH stimulation. We hypothesize that the timing of
oocyte collection could be one of the factors contributing to the final oocyte maturation
outcome. Modification of the ovarian stimulation protocol and analyzing cells at different
follicle stages are areas of interest to be further addressed.

For the two oocytes that matured in vitro, intracytoplasmic sperm injection (ICSI)
was performed successfully, but both embryos arrested at the four-cell stage. Embryonic
genome activation (EGA) is a crucial event in embryo development when the transcriptional
programming of the embryo is initiated and the developmental control switches from
maternal to zygotic, but the timing is species specific [74,75]. In horses and humans, EGA
occurs between four to six cells [76,77], but in cows it happens between eight to sixteen
cells [78]. It is a mystery when this major genomic event occurs in the SWR, and there is no
literature on this matter. As the domestic horse and SWR are taxonomically close [69], we
can hypothesize that perhaps EGA may occur around the four to six cell stage. This would
support the idea that the two fertilized oocytes could have arrested during their early
embryo development due to EGA failure. Previous work in humans focused on identifying
genes expressed in GC that could be used as biomarkers for oocyte and embryo quality
linked to EGA [6,12,13,79]. Hence, five genes associated with EGA in horses, humans,
and cows [35,36,40–42,75,80] were evaluated in this study. One gene, nuclear transcription
factor Y subunit alpha (NFYA), was more abundant in GC from oocytes that did not mature.
NFYA is the regulatory subunit of the NFY complex, and when it binds to DNA it forms
a histone-like structure promoting chromatin accessibility [41,42]. In addition, NFYA is
essential for activating a subset of genes during the major wave of EGA and it is required
for embryos to develop to the blastocyst stage [40]. NFYA should be highly expressed
in embryos that underwent EGA, and low levels should be observed in arrested early
embryos. Our data showed very low levels of NFYA in GC associated with oocytes that
matured but arrested at the four-cell stage. Unexpectedly, we observed very high expression
levels of NFYA in granulosa cells associated with oocytes that did not mature after IVM.
Although only NFYA was significantly different in our data, it is important to further
evaluate EGA timing and targeting more genes involved in this crucial developmental
point. Gene expression analysis related to EGA in in vivo GC could provide a non-invasive
assessment for identifying the most competent oocytes capable of successful fertilization,
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passing EGA, and completing embryonic development. We hypothesize that perhaps due
to the species specificity of this event, the most critical genes for EGA may be different in
the SWR compared to domestic species and humans.

It is important to note one limitation of this study, which is that all the follicles were
obtained from the same female and one OPU procedure. We attempted to overcome this
by using multiple biological replicates (follicles) with multiple technical replicates within
each specific follicle. As OPU in this species is not often performed, our sample size was
limited, and we hope to generate a greater library of samples to continue evaluating this
biomarker analysis.

In summary, GC collected in vivo can be a valuable non-invasive approach for evalu-
ating the follicle processes associated with oocyte quality and its developmental potential.
By screening in vivo GC for the identified biomarkers, realistic allocation of laboratory
resources can be applied on an individual oocyte basis. In a species with limited oppor-
tunities to collect oocytes, it is important to have a realistic approach and expectation
for scientific investigation. If biomarker analysis predicts the developmental potential
of an oocyte, immediate adjustments to the in vitro maturation system can be applied or
nonviable oocytes can be allocated to investigative research. Continuous analysis of these
easily accessible (and often discarded) granulosa cells will improve the understanding of
multiple aspects of reproductive biology in this species, which will in turn have an impact
on conservation.

5. Conclusions

In conclusion, this study provides novel information on gene expression associated
with oocyte in vitro maturation outcome in the southern white rhinoceros (SWR). This
study offers potential biomarkers for clinical oocyte quality assessment and information
to develop better ovarian stimulation protocols and improve in vitro maturation media
formulation. To our knowledge, this is the first time in vivo granulosa cells have been used
as a diagnostic predictor of oocyte maturation competence in the SWR, a critical evaluation
needed to improve assisted reproductive technologies in this species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani14233538/s1, Supplementary material contains the expression
values used to do statistical evaluation and fold changes.
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