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Abstract  

Habitat loss, due to destruction, fragmentation, or degradation, is the second major 

threat to black rhino populations after poaching. It negatively impacts food quality and 

availability and consequently, decreases the carrying capacity of an area. Studies on 

habitat preferences are vital to improve habitat quality and ensure appropriate 

conservation management and reintroductions. Browse availability affects black rhino 

distribution and unsuitable browse can prevent populations from reaching optimum 

numbers. In the Ngorongoro Conservation Area (NCA), browse availability and quality 

remains uncertain posing challenges in determining the potential carrying capacity. It is 

hypothesized that the NCA’s rhino habitat has declined since the 1960s. Land cover 

changes in several habitats frequented by rhinos have rendered them unsuitable to 

sustain a growing population. Here, a map of the main vegetation types in the NCA for 

2019 was developed and the land cover changes between 1985 and 2020 were 

identified. The results show a replacement of forest with bushland in the highlands 

surrounding the Crater. In the Serengeti plains there was a decrease in grassland cover 

and an increase in shrubland suggesting woody encroachment.  

Additionally, the area between the Olmoti and Ngorongoro Craters was identified as 

ideal rhino habitat for a future population as it contains preferred plant species that are 

unaffected by seasons and is not severely impacted by human factors. However, it is 

also important to note that monitoring through direct observation in such a dense 

habitat would be incredibly challenging. Ideally, the rhinos in this area would be fitted 

with trackers, so anti-poaching patrols could locate them easily with minimal disruption 

to the animals while ensuring the safety of the rangers. The area surrounding Oldupai 

Gorge remained mostly unsuitable and human presence would also raise security 

concerns. Contrastingly, the forage characteristics associated with rhino presence 

identified the area as a potential site for reintroductions. This apparent discrepancy 

underscores the importance of integrating remote sensing techniques with detailed 

fieldwork. Overall, these findings provide valuable insights into identifying unoccupied 

habitat for black rhinos and highlight the need for enhanced conservation efforts to 

safeguard populations amidst changing environmental and anthropogenic pressures. 
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Chapter 1 – Introduction 

1.1 General information about the black rhino 

1.1.1 History, distribution, and status 

In the early 1960s, there were estimated to be approximately 100,000 black rhino 

(Diceros bicornis) across Africa (Emslie, 2020). Illegal hunting, due to an increased 

demand for rhino horn, and habitat loss lead to a dramatic 98% population decline, 

resulting in only 2500 individuals by 1992 (Emslie and Brooks, 1999; Emslie et al., 2016).  

Rhino poaching emerged as a pressing issue during the 1960s and early 1970s. A brief 

reduction in poaching activities from the mid-1990s to 2007 led to the perception that 

the problem had been effectively addressed (‘t Sas-Rolfes, 2011). Between 2000 and 

2007 only 120 rhino were poached in South Africa (Huebschle, 2016). Nevertheless, 

poaching intensified until 2015, fuelled by a surge in illegal demand for rhino horn, but 

since slowdown in certain areas  (‘t Sas-Rolfes, 2011; Rubino and Pienaar, 2017; Emslie, 

2020). The black rhino was listed as a Critically Endangered species in 1996 and it remains 

so even though there had been small increase to  5630 rhinos across 14 countries by 2018 

(Knight, 2019; Emslie, 2020).  

There are currently four recognised subspecies of black rhino: South-western Black Rhino 

D. b. bicornis (N=2390) in Namibia, South Africa and possibly Angola; South-eastern Black 

Rhino D. b. minor (N=2196), South Africa, Zimbabwe, Tanzania, Zambia, Botswana, 

Eswatini, Malawi and possibly Mozambique; and Eastern Black Rhino D. b. michaeli 

(N=1044) in Kenya, Tanzania and Rwanda (Emslie, 2020). The fourth recognised 

subspecies that once occupied the savannas of central-west Africa, the Western Black 

Rhino (D. b. longipes), is now considered extinct and its last known location was in 

northern Cameroon (Emslie, 2020).  
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Table 1.1. Black rhino numbers and distribution across the four subspecies for 2020.  

Subspecies Historic range Current range Map 

D. b. bicornis 

(N=2390) 

Namibia, southern 

Angola, western 

Botswana, and 

southwestern and 

southeastern 

South Africa 

Namibia, South 

Africa and 

possibly Angola 

 

D. b. minor 

(N=2196) 

Southern Tanzania 

Zambia, Malawi 

Zimbabwe, 

Mozambique 

northern South 

Africa; probably 

DRC, Angola, 

eastern Botswana, 

Eswatini. 

South Africa, 

Zimbabwe, 

southern 

Tanzania, 

Botswana, 

Malawi, Eswatini 

and Zambia  

D. b. michaeli 

(N=1044) 

South Sudan, 

Ethiopia, and 

Somalia, through 

Kenya into 

northern-central 

Tanzania and 

Rwanda 

Kenya, Tanzania, 

Rwanda and one 

subpopulation in 

South Africa 

 

D. b. longipes 

(extinct) 

Benin, Burkina 

Faso, Cameroon, 

Central African 

Republic, Chad, 

Niger, Nigeria, 

South Sudan, 

Sudan, Togo. 
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Figure 1.1. Distribution of the black rhino populations (IUCN 2020).  

1.1.2 Threats  

1.1.2.1 Illegal hunting 

Currently, the main threat to black rhino is illegal hunting (poaching) due to high demand 

for rhino horn (Emslie et al., 2016, 2019). Roughly 95% of rhino horn accessible in the 

unlawful business sectors in Southeast Asia is sourced from illicit poaching in Africa 

(Emslie, 2020). The demand for rhino horn originated from various traditional beliefs, 

particularly in some Asian countries, where it is falsely believed to possess medicinal 

properties and is considered a status symbol (Emslie, 2020). Historically, rhino horn was 

used to make decorations for ceremonial daggers (jambiyas), worn in some Middle East 

nations (in the 70s and 80s), and, from 2007 onwards, to supply South East Asian 
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markets (Emslie, 2020). Despite the expansion of rhino populations across Africa, 

poaching has slowed overall growth, and a few populations have even declined (Emslie, 

2020). Black rhino poaching peaked in 2015 and has been declining since but it is 

unknown if this is due to success against poaching or fewer rhinos remaining (Emslie, 

2020). 

1.1.2.1 Habitat loss and change 

Habitat loss is the second major threat to black rhino populations after poaching  (Emslie 

and Brooks, 1999). Habitat loss, due to destruction, fragmentation, or degradation, 

negatively impacts food quality and availability and the suitability of nursery and shelter 

areas, and consequently, decreases the carrying capacity of an area. Fewer resources 

may increase intra and interspecific competition which can drive black rhinos to expand 

their home ranges to fulfil their nutritional needs (Hitchins, 1969; Makacha et al., 1979; 

Mills et al., 2006). Due to their territorial behaviour, black rhinos can become stressed 

and aggressive without enough space and, when forced to remain in high density areas, 

population growth can slow down. Populations in these high-density areas, are then 

more susceptible to loss of genetic diversity, inbreeding, disease and more accessible to 

poachers (Brett, 2001; Fyumagwa et al., 2007).   

Habitat loss is linked directly or indirectly to human activity, namely clearing for 

settlements or agriculture and searching for thatching materials and fuel wood (Masao 

et al., 2015; Hamza K. Kija et al., 2020; TAWIRI and NCAA, 2020). Additionally, habitat 

loss can be caused by invasive species, fire and unsustainable animal populations, which 

are also directly affected by management policies particularly in enclosed protected 

areas (Augustine and McNaughton, 2006; Holdo et al., 2009; Wigley et al., 2014). For 

instance, the Mandusi swamp in the Ngorongoro Crater in Tanzania, was regularly used 

by black rhinos for shelter and browsing, but nowadays, rhinos only visit these places 

sporadically (Klingel and Klingel, 1966; Goddard, 1968; Amiyo, 2006; Mills et al., 2006; 

Gadiye et al., 2016). The presence of elephants contributed greatly to this shift in 

behaviour  - firstly, rhinos tend to avoid elephants to prevent competition for resources 

and secondly, the elephants damaged the vegetation contributing to a decrease in 

preferable browse, specifically, leguminous plants (Amiyo, 2006; Mills et al., 2006; 

Landman et al., 2013). 
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Studies on habitat preferences are vital to improve habitat quality and ensure 

appropriate management of protected areas (Reid et al., 2007; Omari, 2009; Hazarika 

and Saikia, 2012). The ultimate goal is to reach the minimum 5% annual growth in rhino 

populations by optimizing Maximum Productivity Carrying Capacity (MPCC, Emslie, 

2020). Browse availability affects black rhino distribution and unsuitable browse can 

prevent populations from reaching optimum numbers (Goddard, 1968; Lush et al., 

2015). As the habitat changes, the rhino diets are also expected to shift; as such, the 

need for updated site-specific feeding ecology studies is paramount. These studies can 

also be used to predict rhino distribution and so help to identify suitable habitat which 

may not yet be occupied (Buk and Knight, 2012; Lush et al., 2015). Until now the primary 

model for rhino conservation is the use of fenced sanctuaries which have ‘known’ 

Ecological Carrying Capacities (ECCs). With populations rising, particularly in Kenya, 

there is an emerging shift from fenced sanctuaries to intensive protection zones (IPZs) 

which are unfenced areas within protected areas (Okita-Ouma et al., 2007).  

1.1.3 Black rhino ecology 

1.1.3.1 Habitat suitability 

 

Habitat suitability is a major contributor for rapid population growth and a contributor 

to the ECC (Muya and Oguge, 2000). In order to sustain a viable rhino population, 

populations must be managed bellow the ECC to maximize breeding performance, 

decrease death rates and ensure browse availability (Kanini, 2009). This is particularly 

important in small populations which are more vulnerable to environmental changes 

(Heywood et al., 1995). 

Black Rhinos occur in a wide variety of habitats, namely marsh areas, forests or deserts, 

however the highest densities of black rhinos occur in savannah areas and bushvelds, 

mainly due to the higher quantity of nutrient-rich woody species . 

The habitat type affects the size of rhino home ranges (Hitchins, 1969). Rhinos that occur 

in the bushveld have smaller home ranges due a higher concentration of woody species, 

than  in savannah areas (Hitchins, 1969). Nonetheless, thick bush is not necessarily 

better for feeding (Emslie and Adcock, 1994). An area rich in unpalatable woody species 

has little value for black rhinos and is usually used for protection and shelter rather than 

feeding (Kotze and Zacharias, 1993). Studies on habitat preferences are vital to support 
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suitable management to enhance habitat quality (Kanini, 2009; Hazarika and Saikia, 

2012). These studies can also be used to model habitat preferences and help suitable 

habitat which may not yet be occupied (Lush et al., 2015). 

In recent years, remote sensing has emerged as a valuable tool for studying vegetation 

and assessing habitat suitability for species like the black rhino (Adole et al., 2016; 

Woodcock et al., 2008; Wulder et al., 2012). Remote sensing methods are quick, cost-

effective, and provide the opportunity to study both accessible and inaccessible areas, 

as well as to obtain historical data on vegetation cover and land use changes (Broich et 

al., 2011; Woodcock et al., 2008; Wulder et al., 2012). Satellite Earth Observation (EO) 

data has been increasingly used to map and monitor vegetation cover and its 

characteristics, providing insights into habitat quality over time (Adole et al., 2016; 

Woodcock et al., 2008; Wulder et al., 2012). 

For black rhinos, monitoring the quality and quantity of preferable browse is particularly 

crucial, as there is emerging evidence of a decrease in both, leading to a reduction in 

suitable habitats (Amiyo, 2006; Makacha et al., 1979; Niboye, 2010). Remote sensing 

techniques allow researchers to overcome challenges like varying degrees of vegetation 

cover, high background soil signal, and spectral similarities between land cover types 

that are prevalent in savannah environments (Müller et al., 2015; Tsalyuk et al., 2017; 

Zhang et al., 2019). This is particularly crucial in environments where field data collection 

is limited by logistical challenges and costs. 

The use of remote sensing data allows for the detailed assessment of land cover changes 

and the identification of areas where the availability of suitable browse is declining. 

These provide critical information for understanding spatial and temporal patterns in 

habitat suitability, helping to predict areas where intra- and interspecific competition 

may increase (Makacha et al., 1979). Overall, the integration of remote sensing 

technologies facilitates monitoring of habitat quality and contributes to more informed 

management decisions aimed at conserving the black rhino population in dynamic and 

changing environments. 

1.1.3.2 Diet 

Black rhino foraging behaviour affects distribution and habitat preference (Goddard, 

1968; Buk, 2004; Lush et al., 2015; Ngoti, 2017). Black rhinos are selective browsers 

(Emslie and Adcock, 1994; Ganqa et al., 2005; Buk and Knight, 2010) that can eat up to 
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220 species of plants within their home range (Leader-Williams, 1985). Despite this 

variety, a large portion of their diets relies on 3 or 4 plant species, making their diets less 

diverse than the species available, underlining a strong preference for certain species 

(Emslie and Adcock, 1994; Ganqa et al., 2005; Buk and Knight, 2010). Plant nutritional 

value could explain these choices, with preference for high protein and water content 

and low phenol and non-aromatic species (Muya and Oguge, 2000; Ganqa et al., 2005; 

Buk and Knight, 2010). Contrastingly, other studies show no significant nutritional 

difference between browsed species and there is even evidence of black rhinos eating 

species classified as toxic  (Goddard, 1968; Ausland et al., 2000; van Lieverloo et al., 

2009). These latter studies suggest that black rhinos feed on what is available, rather 

than nutritional composition, to avoid searching costs (Muya and Oguge, 2000; van 

Lieverloo et al., 2009; Buk and Knight, 2010).  

1.1.3.3 Social Structure 

The social structure of black rhinos is characterized by a combination of solitary and 

somewhat social behaviours that can vary based on factors such as habitat, food 

availability, and individual needs(Mukinya, 1973). They are generally solitary animals, 

with the only strong social bond being between a cow and calf  (Goddard, 1966; Hitchins, 

1969; Schenkel and Schenkel-Hulliger, 1969; Mukinya, 1973; Frame, 1980). Adult males 

are mostly solitary, have specific home-ranges between 2 to 130 km2 depending on 

season and availability of browse and water (Mukinya, 1973; Frame, 1980). Adult bulls 

are also known to have a consort relationship with oestrous cows (Schenkel and 

Schenkel-Hulliger, 1969). Subadults and young adults frequently form loose associations 

with older individuals and their home-ranges intersect (Klingel and Klingel, 1966; 

Goddard, 1967; Schenkel and Schenkel-Hulliger, 1969).  

Female black rhinos exhibit more social behaviour, occasionally forming loose groupings 

with other females and their offspring (Mukinya, 1973). These associations are not 

strictly organized, and individual rhinos within these groups may change over time as 

they move through overlapping home ranges (Goddard, 1966, 1967; Mukinya, 1973). 

Cows tend to have larger home-ranges than adult bulls, especially when accompanied 

by calves, which can overlap with other cows or certain bulls  (Reid et al., 2007). 
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1.1.3.4 Breeding system 

Black rhinos have a polygynous breeding system wherein dominant males establish and 

defend territories that contain optimal resources for mating, such as rich browsing areas 

and water sources (Garnier et al., 2001; Nhleko et al., 2017). Dominance among males 

is established through aggressive displays and physical confrontations, ensuring access 

to mating opportunities with multiple females within their territories (Owen-Smith, 

1992).  

While black rhino mating is not strictly confined to a specific season, it is usually 

influenced by environmental factors, such as rainfall and food availability, impacting the 

condition and receptiveness of females for breeding. Female black rhinos reach sexual 

maturity between 5 to 7 years of age, while males attain maturity between 7 to 10 years 

(Owen-Smith, 1992; Gedir et al., 2018). 

The gestation period for black rhinos lasts approximately 15 to 16 months and newborn 

calves weigh around 35-40 kg (Owen-Smith, 1992). Inter-calving intervals range 

between 2.5 to 5 years contingent on factors such as resource availability and the 

female's health (Patton et al., 2008; Gedir et al., 2018).   

1.1.4 Rhino populations in East Africa 

The Eastern black rhino (Diceros bicornis michaeli) population in East Africa has faced 

severe challenges, largely attributed to habitat loss, poaching, and human-wildlife 

conflicts. Historically distributed across the region, black rhino numbers declined by over 

90% due to extensive poaching and habitat degradation (IUCN Red List, 2021). 

Conservation efforts to reverse this decline have been extensive, involving 

collaborations between governments, conservation organizations, and local 

communities. Despite progress, illicit wildlife trade continues driven by Asian markets' 

demand for rhino horns, while human settlements and agriculture expansion encroach 

upon rhino habitats, heightening human-wildlife conflicts (D. Maige, NCAA, 2023, pers. 

comm.). Recently, protected areas have exhibited population stabilization and growth 

in East Africa due to anti-poaching measures, translocation efforts, habitat restoration, 

and community involvement (du Toit, 2006; Emslie, 2020).  

Kenya holds over 80% of the world’s Eastern black rhinos - 960 as of 2023 (Kohi and 

Lobora, 2019, ICT Authority). Kenya's current Action Plan has the long-term aspiration 

of cultivating a meta-population of at least 2,000 black rhinos within the next 14 years 
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held within secure and suitable habitats (ICT Authority, 2023). The 2,000-animal 

threshold is acknowledged as the minimum meta-population size imperative for the 

species' sustained existence in Kenya (du Toit, 2006).  

Since 2001, rhino conservation initiatives in Kenya have increasingly prioritized 

population growth through biological management, resulting in an increase in rhino 

numbers and the achievement of the targeted 5% net growth per annum for several 

years in some areas (Anon, 2003, 2012; Okita-Ouma et al., 2007; Amin et al., 2017). This 

success has led to the need to identify additional areas to accommodate surplus rhinos 

and under the 2007–2011 and 2012–2016 Rhino Action Plans Intensive Protection Zones 

(IPZs) within National Parks have been developed together with the extension of existing 

sanctuaries whenever feasible (Okita-Ouma et al., 2007; Anon, 2012; Emslie et al., 2019). 

The underlying premise of these interventions lies in the assumption that adequate 

security measures for rhinos would lead to reduced poaching rates with stringent law 

enforcement serving as a deterrent (Khayale et al., 2020). This approach should be 

complemented by active biological monitoring aimed at assessing the meta-population's 

status and implementing management strategies for population growth, ensuring that 

rhino habitats do not exceed ecological carrying capacities (Khayale et al., 2020). 

1.1.4.1 Rhino populations in Tanzania 

Tanzania has been working on rhino conservation efforts to protect and recover its black 

rhino population and it currently holds slightly over 10% of the world’s Eastern black 

rhinos  (Kohi and Lobora, 2019). The Government, in collaboration with conservation 

organizations and local communities, has implemented anti-poaching measures, 

increased law enforcement efforts, and established protected areas to safeguard black 

rhinos (Mills et al., 2003; Kohi and Lobora, 2019). These efforts aim to mitigate the 

threats faced by black rhinos and promote their recovery. Between the 1970s and 1992 

Tanzania rhino numbers declined 98.4% from over 10,000 to less than 100 individuals 

due to high levels of poaching (Kohi and Lobora, 2019). In the Serengeti National Park, 

the rhino population was nearly completely eradicated, decreasing from approximately 

700 individuals in the 1970s, to just a handful by the 1980s (O’Connor, 2010). At that 

date, Tanzania’s remaining black rhinos existed in three isolated small populations in the 

Serengeti, the Ngorongoro Crater and Selous Game Reserve, although the later was 

comprised of a different subspecies (Makacha et al., 1982; Sinclair and Arcese, 1995). 
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The lack of connectivity between these areas presumably suppressed the genetic 

diversity of the rhinos (Makacha et al., 1982; Emslie and Brooks, 1999).  

There are currently five subpopulations of rhinos in Tanzania, located the Serengeti and 

Mkomazi National Parks, the Ngorongoro Conservation Area (NCA) and  Maswa and 

Grumeti Game Reserves (Kohi and Lobora, 2019). Following increased protection and 

monitoring as well as translocations from other countries, Tanzania’s rhino population 

was estimated to be 161 individuals by the end of 2018 (Kohi and Lobora, 2019). 

However, Tanzania can potentially host the highest rhino population in Africa due to 

extensive suitable habitat and secure protected areas (Kohi and Lobora, 2019). Limited 

or no dispersal between subpopulations, makes metapopulation management key to 

the recovery of the species in Tanzania (Kohi and Lobora, 2019). The NCA rhinos are a 

key source population and are therefore central to the future conservation efforts. They 

are also a major attraction for tourists (the only site where they are regularly seen by 

visitors) and tourism contributes USD 2 billion to Tanzania’s economy (17% of the 

country’s GDP, PwC 2023). The NCA rhinos are, therefore, key for tourism and are a 

‘flagship’ for the successful conservation for the whole NCA and the well-being of its 

people.  

1.2 Ngorongoro Conservation Area 

1.2.1 Background 

The Ngorongoro Conservation Area was initially created as part of the Serengeti 

National Park created by the British in 1951 but was separated off in 1959 when the 

Ngorongoro Conservation Area Authority (NCAA) was established (Gadiye et al., 2016, 

FIgure 1.2). The NCA became a Man and Biosphere Reserve in 1971 and was recognized 

as an UNESCO World Heritage Site in 1979, emphasizing its global significance in terms 

of both natural features and cultural aspects, and highlighting its crucial role in 

biodiversity conservation (Harris et al., 2020). The NCA is renowned for supporting 

significant populations of black rhinoceros, African elephants (Loxodonta africana) and 

a wide range of other herbivores and large predators (Homewood et al., 2001). It 

supports one of the world's largest mammal migrations, which includes 1.5 million 

wildebeest (Connochaetes taurinus), 260,000 of plains zebra (Equus quagga), and 

470,000 Thomson's gazelle (Eudorcas thomsonii)(Sinclair and Arcese, 1995; Lembo et al., 

2011; Larsen et al., 2020).  
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An important feature of the NCA is that it has been managed as a multiple land-use area 

since 1959, a designation intended to maintain coexistence between indigenous 

residents and wildlife (Goldstein, 2004). It accommodates a large human population 

with various ethnic groups and cultural traditions, including Hadzabe hunter-gatherers, 

Datooga, and Maasai pastoralists (McCabe, 2003). Currently, there is a program 

underway to relocate the indigenous residents outside of the NCA (A. Kisingo, MWEKA, 

2023, pers. comm.). 

 

Figure 1.2. Relevant events under the several NCA administrations. 

1.2.2 Vegetation cover in the NCA 

The NCA is comprised of more than 1.5 million ha of savannah habitat (Masao et al., 

2015) and is included in the Greater Serengeti Ecosystem (GSE), within which the ‘great 

African wildebeest migrations’ takes place (Swanson, 2007). The Northern Highlands 

Forest Reserve (NHFR) and the remaining highlands cover 20% and 27% of the NCA 

respectively, the Ngorongoro Crater (NC), 3 % and the bushland and grassland plains 

50% (Swanson, 2007). The suitable grazing areas are essential for wildlife but also for 

the pastoralists livestock (cattle, sheep and goats) which either reside within, or are 

passing through the NCA (Swanson, 2007). The NCA has an open border policy that 

allows grazing livestock for resident and non-resident Maasai, however, the NHFR and 

the Crater floor are restricted areas (Swanson, 2007). Changes in management policies 

over the years may have contributed to the woody encroachment and spread of invasive 
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plant species. The latter are often unpalatable species, (e.g. Gutenbergia cordifolia and 

Bidens shimperi) and have negatively affected rangeland quality, reducing food 

availability for wildlife and livestock (Estes et al., 2006; Mills et al., 2003; Trollope, 1980). 

Controlled burning has been attempted after the drought in 2000 but it remains unclear 

whether it was successful (Oates and Rees, 2013). Currently, the only consistent 

methods of invasive plant control are mowing (Gutenbergia cordifolia and Bidens 

shimperi) before the dry season begins and manual removal of plants (Lippia javanica, 

Macha 2023 pers. comm).  

The NCA vegetation varies with altitude, soil pH, water availability and salinity and 

ranges between highland plains, savannah woodland, forest and savannah grasslands 

(Herlocker and Dirschl, 1972).  The north-west, bordering the Serengeti National Park, 

comprises savannah grassland plains and some woodland areas. In the Ngorongoro 

Crater (NC), the vegetation is mostly of short/medium grasslands, wetlands, and a soda 

lake, Lake Magadi. Next to the lake, there is the Lerai forest, which is thought to be 

slowly disappearing (Mills, 2006). The Lerai forest was dominated by mature Vachellia 

xanthophloea trees, however their demise has not been accompanied by replacement 

by young trees (Amiyo, 2006). A combination of factors, such has high herbivore 

pressure, high salinity, water availability and encroachment of invasive species could 

explain the Lerai forest dieback (Amiyo, 2006; Anderson and Herlocker, 1973; Mills et 

al., 2003).  

The highlands area, which serves as shelter for wildlife, is dominated by woodland, 

forest and bushland, (Swanson, 2007). Vachellia lahai, Albizia gummifera, Cassipourea 

malosana, Croton spp., and Nuxia congesta are the most common species of tree this 

area. Due to the higher altitude, higher rainfall and variable temperature of the Crater 

rim, the vegetation is often described as ‘montane’ (Swanson, 2007). The highlands 

outside of the Highlands Reserve are essential for the Maasai, as they use them to collect 

wood and natural remedies and graze their livestock (Swanson, 2007). These areas also 

supply most of the water resources for the local communities and tourists although in 

recent years there have been concerns about water shortages (Mills et al., 2006; 

Swanson, 2007). 

 

Remote sensing technologies have become increasingly important for monitoring 

vegetation cover and its changes over larger areas like the NCA. While traditional 

methods, such as ground-based surveys and aerial photographs, provide valuable 
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insights into vegetation dynamics, they are often time-consuming, expensive, and 

limited in scope (Adole et al., 2016; Woodcock et al., 2008; Wulder et al., 2012).  

Mapping savannah landscapes presents unique challenges due to the mixed 

composition of grasslands, woody plants, and bare soil, which can result in spectral 

similarities and confusion in classification (Symeonakis et al., 2018). To address these 

challenges, multi-sensor approaches combining optical data with Synthetic Aperture 

Radar (SAR), such as Sentinel-1, are increasingly being used (Borges et al., 2020). SAR 

data are particularly advantageous in areas like the NCA, where cloud cover can obscure 

optical images; they remain unaffected by atmospheric conditions and can effectively 

differentiate between woody and herbaceous vegetation (Venter et al., 2018). In 

addition, the development of machine learning techniques such as Random Forests (RF) 

and Support Vector Machines (SVMs) have enhanced the accuracy of vegetation 

classification in the savannah landscape (Breiman, 2001; Schneibel et al., 2017). These 

methods enable the development of detailed vegetation maps, essential for identifying 

areas experiencing environmental changes, such as woody encroachment or invasive 

species spread, which could impact the habitat quality for both wildlife and livestock. 

Given the pressing need to quantify the extent of land cover changes, Earth observation 

approaches allow for the detection of gradual changes (e.g. shrub encroachment and 

grassland decline), as well as abrupt shifts, (e.g. land clearing, (Verbesselt et al., 2010b, 

2010a). The use of EO data not only helps to identify vulnerable areas but also supports 

effective management strategies in a complex, multi-use area such as the NCA (Harris 

et al., 2020). 

1.2.3 Rhinos in the NCA  

Historically, the population of black rhino in the NCA has been described as the densest 

in Africa (Homewood and Rodgers, 1991) and the largest in northern Tanzania (Oates 

and Rees, 2013). In 1966, the Crater (actually a caldera) and Oldupai Gorge supported 

108 and 69 rhinos respectively (Goddard, 1967). At one point, their abundance was so 

high that they were almost considered a nuisance (Oates and Rees, 2013). Poaching, 

during the 1970s and 80s, reduced the NCA population to just 13 individuals by 1993 

(Kiwia, 1989; Moehlman et al., 1996; Oates and Rees, 2013); by 2004 the population had 

increased to an estimated 19 individuals (Kohi and Lobora, 2019), comprising 3 breeding 

males and 6 breeding females plus senescent individuals, sub-adults and calves (Mills et 

al., 2006). Following an assessment by TAWIRI (Kohi and Lobora, 2019) the NCA rhino 

population has been identified as the largest population (55 confirmed, 11 probable in 
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the Crater) in Tanzania and critical to the conservation of the species in the country (Kohi 

and Lobora, 2019). 

According to Goddard (1967), the black rhino in the NCA comprised of a sedentary, 

isolated population confined to the crater and the Oldupai area. Moehlman et al. (1996) 

viewed the NCA population as an isolated relic, although others, such as Frame (1980) 

and Kiwia (1989), suggested a mixture of resident and transient individuals. Klingel and 

Klingel (1966) suggested that some rhinos migrated out of the crater, likely due to harsh 

conditions during the dry season. Runyoro et al. (1995) noted fluctuations in rhino 

numbers, ranging from zero to 52 before 1974, followed by a significant decline to an 

average of 13 in 1992. Kiwia (1989) highlighted instances where NCAA staff recorded 

zero rhinos during ground counts, despite their known presence. These zero counts 

were likely due to the insensitivity of the census method to detect rhinoceros occurring 

at relatively low densities (Oates and Rees, 2013). Adult mortality between 1993 and 

2003 was estimated at 8%, while neonatal mortality was alarmingly high, ranging 

between 25% and 45% (Mills et al., 2006). 

1.2.3.1 Rhino habitat in the NCA 

Despite being a relatively small area (8,283 km2) the NCA comprises of a wide range of 

habitats that are apparently suitable for black rhino (Goddard, 1968; Mills et al., 2003; 

Swanson, 2007).  However, the available browse quantity and dynamics for black rhinos 

in the NCA remain uncertain, posing challenges in determining the potential carrying 

capacity (Mills et al., 2003). It is hypothesized that the NCA’s carrying capacity has 

declined since the 1960s (Goddard, 1967, 1968; Mills et al., 2003). The structural 

changes in several habitats frequented by rhinos have rendered them unsuitable to 

sustain a population (Makacha et al., 1979; Amiyo, 2006; Niboye, 2010a) . 

Unsuitable habitats and limited browse may promote intra and interspecific competition 

for resources and emigration of rhinos out of the Crater and NCA (Makacha et al., 1979). 

For instance, in the 1960s the Lerai forest and the Mandusi swamp were regularly used 

by black rhinos for shelter and browsing, but nowadays, rhinos only rarely visit these 

places (Klingel and Klingel, 1966; Goddard, 1968; Amiyo, 2006; Mills et al., 2006; Gadiye 

et al., 2016). The presence of elephants contributed greatly to this shift in behaviour 

(Mills et al., 2003; Amiyo, 2006; Landman et al., 2013). Rhinos tend to avoid elephants 

to prevent competition for resources and secondly, the elephants damaged the 
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vegetation contributing to a decrease in preferable browse, specifically, leguminous 

plants (Amiyo, 2006; Mills, 2006; Landman et al., 2013). Inadequate habitat/browse can 

also explain why the rhinos in the NCA were recorded eating wildebeest droppings, an 

unusual behaviour for an herbivore and that suggests nutrient deficiencies (Klingel and 

Klingel, 1966; Goddard, 1968). Additionally, the rhino home ranges also increased 

compared to early studies (Mills, 2006). This increase can be due to unsuitable habitat, 

as the rhinos will need to cover larger areas to reach their nutritional requirements 

(Mills, 2006).  

Ngorongoro Crater 

Most of the NCA rhino population frequent the Crater, which is predominantly 

grasslands, marshes and the Lerai forest (Goddard, 1968; Herlocker and Dirschl, 1972).  

The grassland habitat features medium-height grass, ranging from 0.6 to 1.5 meters tall, 

and the dominant species, listed in order of significance, include Cynodon dactylon, 

Digitaria scalarum, Andropogon greenwayi, and Digitaria milanjiana. Cenchrus 

mezianus and Setaria pallide-fusca occur occasionally in this habitat (Goddard, 1968). 

Sparse patches of herbs are scattered across the grassland, with Solanum incanum, 

Cyathula orthacantha, and Pluchea monocephala (Goddard, 1968; Herlocker and 

Dirschl, 1972). Large areas of the Crater floor have experienced a decline in palatable 

forbs and a spread of tall unpalatable grasses (Mills et al., 2003). 

The marshes in the NCA, the Mandusi and Gorigor swamps, are dominated by 

Aeschynomene schimperi, but less common species, namely Leersia hexandra, Panicum 

repens, Diplachne fusca, are also present (Goddard and Herlocker). Along the swamp’s 

periphery, Sporobolus spicatus, Cyperus laevigatus, Cyperus dives, Cyperus immensus 

also occur (Goddard, 1968; Herlocker and Dirschl, 1972). These swamps appear to have 

decreased in area and lost much of the shrub cover, likely due to herbivore pressure 

(Mills et al., 2003).  

The Lerai forest is an Vachellia xanthophloea woodland that used to support a thriving 

rhino population due to its browse availability and consistent access to water sources 

(Goddard, 1967). The earliest records of change date back to the 1960s when the 

dieback of the Lerai forest was first suggested but very little research has been done 

since (Amiyo, 2006; Mills et al., 2006). Large mature trees in the overstorey have 

disappeared, leading to an observable opening of the crown layer. Factors contributing 
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to this decline include heightened water levels infiltrating the forest due to lake level 

rises and elephant damage (Goddard, 1968). Consequently, increased sunlight 

penetration prompts the rapid colonization of the understorey by Pluchea ovalis, 

Achyranthes aspera, Abutilon longicuspe and Justicia betonica forming a dense bush 

layer measuring 1.8-2.4 metres on the forest floor. This dense growth inhibits the 

regeneration of Vachellia, resulting in very sparse regeneration within the forest 

(Goddard, 1968). Rauvolfia caffra trees and Cyperus immensus reeds grow in the wetter 

locations (Herlocker and Dirschl, 1972). 

Crater rim 

The Crater rim has non-palatable bush species (Lippia javanica, Lantana ukambensis and 

Clausena ansinata) which have encroached prime rhino habitat that previously 

comprised of Vachellia lahai and palatable shrubs and forbs (Mills et al., 2003). The 

eastern side of the caldera is dominated by Lippia javanica and medium-height grassland 

ranging 0.6 to 1.5 meters of Themeda triandra, Sporobolus jimbriatus, and Setaria 

sphacelate (Goddard, 1968). In the northeastern and northern walls of the Crater, there 

is an extensive area of Vachellialahai woodland with scattered Vachellia abyssinica 

which extends partly onto the caldera floor (Herlocker and Dirschl, 1972). The 

understory typically comprises Lippia-Lantana-Solanum over a layer of Cynodon 

dactylon grass (Herlocker and Dirschl, 1972). However, in various locations across the 

northern wall and crater floor, the Vachellia lahai high woodland has deteriorated into 

bush and grass communities (Herlocker and Dirschl, 1972). This decline is attributed to 

multiple factors, namely the demise of large trees due to aging, fire, and elephant 

damage, followed by the suppression of Vachellia lahai regeneration prompted by 

recurring grass fires (Herlocker and Dirschl, 1972). 

Moist evergreen forest 

The moist evergreen forest vegetation can be divided into lower and upper montane 

forest zones. There is not a precise boundary between these zones due to the gradual 

shifts in the composition of this diverse and intricately structured forest (Herlocker and 

Dirschl, 1972). The expansive stands of the lower montane forest zone form an uneven 

semicircular band on the western slopes of the Olmoti crater. Adjacent to this band lie 

Vachellia lahai high woodland, situated approximately at 2,600 meters, while above it is 

the Gymnanthemum-Crotalaria bush. Smaller clusters of this forest can be spotted 

within Mount Makarut's eastern-facing canyons. Additionally, scattered remnants and 
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solitary trees are dispersed amid the extensive area of Gymnanthemum-Crotalaria bush 

across Olmoti, as well as the eastern and northeastern slopes of Empakaai Crater. 

Dominant species within this zone include Croton macrostachyus, Albizia gumrnifera, 

Calodendrum capense, Olea welwitschii, Olea europaea subsp. cuspidata, and Olea 

hochstetteri (Herlocker and Dirschl, 1972). In undisturbed sections of the forest, the 

intertwining crowns of numerous tree species form a dense canopy, allowing minimal 

light penetration from above (Herlocker and Dirschl, 1972). 

Tree species characteristic of the upper montane forest zone include Lasiosiphon 

glaucus and Hagenia abyssinica together with several species normally found at lower 

elevations (Herlocker and Dirschl, 1972). 

Dry evergreen forest 

The dry evergreen forest consists of isolated clusters of Juniperus procera within steep 

canyons at elevations ranging from 2,450 to 2,900 meters, the most extensive example 

being in canyons which nearly reach the peaks of Makarut and Empakaai. On Makarut, 

Juniperus procera stands predominantly maintain a pure composition, while elsewhere 

they are mixed with diverse broadleaved species like Nuxia congesta and Olea europaea 

subsp. cuspidata (Herlocker and Dirschl, 1972). 

 

 

Gymnanthemum-Crotalaria bushland 

Bushland occurs on the west and southwest slopes of Olmoti, along with the eastern 

slopes of Empakaai; it is dominated by Gymnanthemum auriculiferum, Crotalaria 

agatiflora, Pavonia urens irakuensis, and Clutia abyssinica. Scattered areas and 

individual tree relics of moist evergreen forest, namely Nuxia congesta, Lasiosiphon 

glaucus and Bersama abyssinica are also present at higher elevations. A mosaic of 

Gymnanthemum-Crotalaria bush occurs in the area which indicates an intermediate 

stage in secondary succession to moist evergreen forest after severe disturbance 

(Herlocker and Dirschl, 1972).  

The Oldupai region 

In the Oldupai region there is a transition towards a typical thornbush habitat (Goddard, 

1968). The Oldupai Gorge itself is covered in Acacia-Commiphora scrub, mixed with 
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extensive growths of wild sisal Sanseveria ehrenbergii, Euphorbia tirucalli, Salvadora 

persica, and Barleria eranthemoides (Goddard, 1967; Herlocker and Dirschl, 1972). The 

remainder of the region comprises open areas dominated by short grassland and trees 

suc as Vachellia tortilis, Commiphora madagascariensis and Senegalia mellifera 

(Goddard, 1967; Herlocker and Dirschl, 1972). In the 1960s, there was a population of 

rhinos inhabiting the gorge without readily available free water sources which forced 

them to have larger home ranges (Goddard, 1967).  Currently, no rhinos inhabit the 

Oldupai Gorge.  Below the bush layer, medium-height grassland of Pennisetum 

stramineum, Cenchrus ciliaris, and Dactyloctenium aegyptium ranging from 0.6 to 1.5 

metres is present. 

The plains surrounding the gorge comprise open grasslands, not surpassing 0.6 meters 

in height (Herlocker and Dirschl, 1972). Trees, shrubs, or herbs collectively form less than 

2 percent of the total vegetation cover in the area and the dominant species include 

Sporobolus marginatus, Digitaria macroblephara, and the sedge Kyllinga sp. (Herlocker 

and Dirschl, 1972). Sparse patches of herbs, along with local dominants such as Pluchea 

monocephala and Solanum incanum, are scattered across the grassland (Herlocker and 

Dirschl, 1972). 

1.2.4 Geology 

The distribution and characteristics of vegetation types, as well as their utilization by 

wildlife, are significantly influenced by the underlying soil structure and composition 

(Anderson and Herlocker, 1973). Within the NCA, a region predominantly characterized 

by volcanic formations such as alkaline basaltic and trachytic lavas, the landscape 

includes giant calderas formed from highly explosive rift-related activity (Pickering, 

1968; Scoon, 2018). The Serengeti and Ang’ata Salei Plains, covering approximately 3489 

km2 within the NCA, are characterized by fine volcanic ash soils (Homewood and 

Rodgers, 1991). The Ngorongoro Highlands, covering 2690 km2, are associated with an 

extinct volcanic complex situated within the Eyasi half-graben (Homewood and Rodgers, 

1991; Scoon, 2018). Within the Ngorongoro Volcanic complex, which reaches altitudes 

of 2,500–3,500 meters, there are eight distinct volcanoes, three of which feature large 

calderas (Scoon, 2018). Additionally, the Eyasi Scarp and Kakesio regions (~1350 km2) 

comprise of steep scarp slopes descending to the Rift floor, along with rolling plains and 

low ridges(Homewood and Rodgers, 1991). In contrast, the Gol Mountains (~700 km2) 

primarily consist of old rifted and eroded hills composed of Precambrian rock formations 
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(Homewood and Rodgers, 1991). These areas are characterized by crystalline rocks such 

as quartzites, gneisses, granites, and metamorphosed shales, which predate the volcanic 

activity (Mills, 2006). 

1.3 Thesis aims 

This thesis aims to advance the methodologies for monitoring and managing rhino 

populations by developing a robust, Earth-observation-based framework for habitat 

assessment and conservation. This research is crucial given the NCA’s expanding 

population of Eastern black rhinos, particularly considering the area's historical complex 

context, current threats, and ecological dynamics. Although the NCA serves as the focal 

point for this research, the methodologies and findings are designed to be broadly 

applicable to rhino conservation efforts in diverse regions. The primary objectives of this 

research are: 

Establish and analyse current land cover in the NCA: This objective aims to establish the 

current land cover in the NCA using remote sensing methods and ground-truth data. 

This involves mapping and analysing the existing vegetation cover and land use patterns. 

The assessment considers historical changes in land cover, driven by land management 

practices such as the establishment of the NCA as a multiple land-use area, and the 

subsequent effects of woody encroachment and invasive species (Estes et al., 2006; 

Mills et al., 2003). By documenting these dynamics, the research provides a 

comprehensive baseline for understanding habitat changes, their implications for rhino 

conservation, and offer insights into how land management practices influence habitat 

quality and availability (Borges et al., 2020; Venter et al., 2018). 

Develop an earth-observation-based approach for monitoring land cover changes: The 

main aim of the objective is to support the sustainable management of the NCA by 

developing an Earth-observation based approach for monitoring multi-faceted land 

cover changes occurring over the past 35 years. To achieve this, we employed a Landsat-

based monitoring strategy that incorporated regression-based unmixing for the 

accurate mapping of the fraction of the different land cover types, and combination of 

linear regression and the BFAST trend break analysis technique. This framework can be 

applied to various conservation areas to track habitat alterations and guide adaptive 

management strategies (Swanson, 2007; Tsalyuk et al., 2017; Wulder et al., 2016). This 

research provides highly accurate information on long-term land cover changes in the 

NCA that can inform targeted conservation initiatives within the area. Moreover, the 
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identification of specific areas undergoing land changes holds profound significance for 

black rhino conservation and other wildlife species within the NCA. Recognizing these 

shifts in habitat composition is essential for implementing effective conservation 

strategies that address the requirements of critically endangered species and safeguard 

their habitats.  

Evaluate habitat suitability for rhino populations: This objective focuses on using remote 

sensing and field data to assess habitat suitability for black rhinos within the NCA. The 

research aims to analyse factors such as vegetation type, seasonal variations, and 

human impacts to determine habitat quality. By mapping habitat preferences, the study 

identifies potential areas that may not yet be occupied and assesses how seasonal shifts 

and anthropogenic factors influence habitat suitability. This approach helps understand 

the effects of habitat degradation on rhino diets and overall population health, which is 

crucial for developing adaptable conservation strategies (Estes et al., 2006; Oates and 

Rees, 2013). Furthermore, integrating ground-truthing with remotely sensed data 

ensures more precise and reliable results in habitat suitability assessments, highlighting 

the importance of considering both data sources for effective conservation efforts. 

Understand rhino dietary needs and environmental factors: Understanding the dietary 

habits of black rhinos and the factors influencing their foraging behaviour is crucial for 

effective conservation. This research aims to investigate how habitat changes affect 

rhino diets, focusing on key forage species and seasonal variations. Feeding studies are 

vital for understanding rhinos' ecological roles and habitat needs, as they provide 

insights into foraging behaviour and dietary preferences (Buk and Knight, 2010; Emslie 

and Adcock, 1994; Goddard, 1968). By analysing dietary patterns and nutritional 

challenges, the study will help develop habitat management guidelines that promote 

the health and sustainability of rhino populations across various landscapes. 

Additionally, this approach determines the variables affecting rhino presence, identifies 

preferred forage species, and pinpoint areas capable of sustaining future black rhino 

populations, contributing to global conservation efforts and the long-term preservation 

of the species (Kanini, 2009; Muya and Oguge, 2000; Reid et al., 2007). 

By addressing these aims, the thesis provides valuable insights to support the 

development of innovative conservation strategies for the NCA. The research offers a 

comprehensive, Earth-observation-based assessment that informs approaches to 
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address both historical and current threats, enhance habitat quality, and support the 

long-term survival of the Eastern black rhino population. These findings will not only 

improve habitat management practices within the NCA but also provide valuable 

guidance for enhancing rhino conservation efforts globally. 

1.4 Thesis layout 

This thesis is structured to systematically address the primary research objectives 

and contribute valuable insights into rhino conservation through an Earth-

observation-based framework. Each chapter is designed to build on the previous 

one, providing a comprehensive analysis of habitat changes, land cover dynamics, 

and rhino dietary needs. The layout is as follows: 

Chapter 2: Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: 

Optimising the Combination of Sensors and Seasons 

This chapter focuses on optimizing land cover mapping in the NCA using a 

combination of Sentinel-1 and Sentinel-2 satellite imagery collected across three 

different seasons. The study tests how different sensor types and seasonal data can 

be strategically combined to effectively map diverse land cover types within a 

montane savannah system, which includes mixed savannah and woodland 

landscapes and a bimodal rainfall pattern. 

Given the complexity and heterogeneity of savannah environments, this chapter 

aims to improve the accuracy of habitat assessments by determining the most 

effective combinations of sensors and seasonal data. By developing a high-resolution 

and highly accurate land cover map, this research establishes a baseline for future 

analyses of land cover changes, contributing to enhanced monitoring capabilities, 

prevention of biodiversity loss, and more informed conservation strategies in the 

NCA and similar ecosystems. 

Chapter 3: Landsat Time Series Reveal Forest Loss and Woody Encroachment in the 

Ngorongoro Conservation Area, Tanzania 

This chapter focuses on the application of a Landsat-based time series analysis to 

investigate long-term vegetation dynamics and land cover change processes within 

the NCA. To achieve this, the chapter employs a combination of advanced remote 

sensing techniques, including regression-based unmixing to map and quantify the 
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fractional cover of key land cover types such as forest, grassland, shrubland, and 

bushland. This approach used a combination of linear regression and the BFAST 

trend break analysis technique for mapping and quantifying the changes. This will 

help to explain the factors driving changes in the NCA’s landscape, whether natural 

(e.g., herbivory, rainfall variability) or anthropogenic (e.g., land management 

practices, tourism development). The findings will inform conservation management 

strategies that are adaptive to both historical influences and current challenges, 

thereby contributing to more effective conservation efforts for the Eastern black 

rhino and broader biodiversity in the NCA. 

Chapter 4: Identifying Suitable Habitat for Black Rhino in the Ngorongoro 

Conservation Area, Tanzania 

This chapter focuses on evaluating habitat suitability for black rhinos in the NCA by 

combining both remote sensing and field data. The assessment considers various 

factors, including vegetation type, seasonal variations, and the impacts of human 

activities on habitat quality. The research aims to understand how seasonal shifts 

and anthropogenic factors affect habitat suitability and to identify optimal habitats 

for black rhinos across different conditions. 

By integrating ecological dynamics and feeding preferences, this chapter seeks to 

pinpoint key areas that could support current and future rhino populations. It 

highlights the importance of combining ground-truthing with remotely sensed data 

to improve the accuracy of habitat suitability assessments, recognizing that remote 

sensing alone may overlook crucial field variables such as shelter locations. This 

integrated approach is intended to provide a more comprehensive understanding of 

habitat requirements, which can inform targeted conservation strategies and 

enhance the sustainable management of black rhino populations in the NCA and 

other conservation areas. 

Chapter 5: Feeding Habits of a Black Rhino Population in the Ngorongoro 

Conservation Area, Tanzania 

This chapter investigates the dietary habits of black rhinos in the NCA, focusing on 

the impact of habitat changes on their foraging behaviour and nutritional needs. 

Feeding studies are critical for understanding the foraging behaviour and dietary 

preferences of rhinos, contributing to the selection of appropriate sites for 
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conservation management and potential reintroductions. The research uses a 

combination of advanced analytical methods, such as PERMANOVA to evaluate the 

influence of habitat variables, seasons, and regions on rhino presence, and random 

forest modelling to identify the key variables that best classify the presence or 

absence of rhinos. 

By examining factors such as seasonal variations, habitat characteristics, and the 

availability of key forage species, the chapter aims to develop guidelines for habitat 

management that support the health and sustainability of black rhino populations. 

The integration of feeding studies with habitat assessments provides a 

comprehensive understanding of the ecological requirements of black rhinos, 

offering insights that can inform broader conservation strategies. This chapter 

contributes to global conservation efforts by identifying key areas for rhino 

reintroduction and expansion, while also highlighting the importance of combining 

ground-truthing with remotely sensed data to enhance the accuracy of habitat 

suitability assessments. 
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Chapter 2 – Sentinel 1 and 2 data for savannah land cover 
mapping: optimising the combination of sensors and seasons 

This chapter has been published (Appendix 2). 

Abstract: Savannahs are heterogeneous environments with an important role in 

supporting biodiversity and providing essential ecosystem services. Due to extensive 

land use/cover changes and subsequent land degradation, the provision of ecosystems 

services from savannahs has increasingly declined over recent years. Mapping the 

extent and the composition of savannah environments is challenging but essential in 

order to improve monitoring capabilities, prevent biodiversity loss and ensure the 

provision of ecosystem services. Here, we tested combinations of Sentinel-1 and 

Sentinel-2 data from three different seasons to optimise land cover mapping, focusing 

in the Ngorongoro Conservation Area (NCA) in Tanzania. The NCA has a bimodal rainfall 

pattern and is comprised of a combination savannah and woodland landscapes. The best 

performing model achieved an overall accuracy of 86.3% ± 1.5% and included a 

combination of Sentinel-1 and 2 from the dry and short-dry seasons. Our results show 

that the optical models outperform their radar counterparts, the combination of multi-

sensor data improves the overall accuracy in all scenarios and this is particularly 

advantageous in single-season models. Regarding the effect of season, models that 

included the short-dry season outperform the dry and wet season models. Additionally, 

the combination of more than one season is beneficial for the classification, specifically 

if it includes the dry or the short-dry season. Combining several seasons is, overall, more 

beneficial for single-sensor data; however, the accuracies varied with land cover. In 

summary, the combination of several seasons and sensors provides a more accurate 

classification, but the target vegetation types should be taken into consideration.  

2.1. Introduction 
Savannahs are heterogeneous landscapes combining grassland, open canopy trees 

and shrubs. These ecosystems occur in tropical and sub-tropical climate zones, mainly 

in the Americas and Australia, as well as in Africa, where they cover half of the land 

surface (Solbrig, 1996). Savannah ecosystems are important for biodiversity and the 

global carbon cycle and provide essential ecosystem services for some of the world’s 

poorest communities (Pfeifer et al., 2013; Poulter et al., 2014; Symeonakis and 

Higginbottom, 2014; Liu et al., 2015; Schneibel et al., 2017). In recent years, the 

provision of ecosystems services from savannahs has increasingly declined due to 
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extensive land use/cover changes and subsequent land degradation (Symeonakis and 

Higginbottom, 2014; Schneibel et al., 2017). Woody vegetation encroachment or 

densification, attributed to climate change and altered rainfall patterns, can have 

negative impacts on carbon storage, biodiversity, grazing capacity and tourism (Angassa 

and Baars, 2000; Eldridge et al., 2011; Berthrong et al., 2012; Gray and Bond, 2013; 

Stevens et al., 2017; Venter et al., 2018; Zhang et al., 2019). Additionally, management 

policies (e.g. fire management), herbivore pressure and invasive plant species directly 

impact savannah dynamics (Niboye, 2010b; Stevens et al., 2017; Venter et al., 2018). 

Savannahs in southern and eastern Africa are similar in their ecological structure 

and function, sharing similar fauna and flora (Fritz and Duncan, 1994; Beale et al., 2013). 

However, there are key differences in conservation land management. Southern Africa 

adopted a pro-active approach, using fences, culling, fire, and large-mammal 

translocation programs (Beale et al., 2013). Conversely, East Africa’s protected areas are 

often unfenced and follow a ‘hands-off’ approach allowing wildlife to roam freely and 

intervening as little as possible (Newmark, 2008). In this region, around 20% of the land 

is officially protected (IUCN & UNEP, 2009); however, due to population growth driving 

demand for crop and rangeland, pressure on the savannah is increasing. Sustainable 

ecosystems require an understanding of how savannahs work and how losses of 

function can be mitigated or prevented through informed management decisions (Beale 

et al., 2013). Therefore, to improve monitoring capabilities, prevent biodiversity loss and 

ensure savannah ecosystem services, it is essential to produce high-resolution, up-to-

date and highly accurate land cover information (Yang and Prince, 2000; Eisfelder et al., 

2012). 

Over small areas, traditional methods of land cover mapping, e.g. ground-based 

surveys and aerial photographs, are able to provide information on the dynamics of 

savannah vegetation structure and distribution. However, to portray the spatial patterns 

of vegetation change over larger areas, these techniques are time consuming, limited in 

extent and expensive, and therefore, inefficient (Yang and Prince, 2000; Eisfelder et al., 

2012). In the last five decades, satellite Earth observation (EO) data are increasingly used 

to map and monitor vegetation cover and its characteristics (Woodcock et al., 2008; 

Wulder et al., 2012; Adole et al., 2016). The use of EO technologies with open-access 

data archives provide the opportunity to study inaccessible areas and to assess the 

vegetative cover and its evolution through time (Eisfelder et al., 2012). Mapping 

savannah vegetation, however, is challenging due to varying degrees of vegetation 
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cover, high background soil signal and the spectral similarities between land cover types 

(Müller et al., 2015; Tsalyuk et al., 2017; Zhang et al., 2019). In East Africa, in particular, 

high cloud coverage represents an additional challenge (Eggen et al., 2016; Morrison et 

al., 2018). 

For almost 50 years, the Landsat archive has been the workhorse for vegetation and 

land cover mapping and monitoring, mainly due to its unparalleled archive. More 

recently, Sentinel-2 data with improved spatial and spectral resolution have also been 

successfully employed to map African savannah vegetation characteristics (Zhang et al., 

2019). However, optical data come with their limitations, such as the presence of cloud 

coverage and the difficulty in discriminating between woody vegetation and grassland 

(Symeonakis et al., 2018). To address these inherent problems, a number of studies have 

combined Synthetic Aperture Radar (SAR) data (e.g. from the Advanced Land Observing 

Satellite Phased Array type L-band Synthetic Aperture Radar, ALOS PALSAR); or Sentinel-

1, with optical data to improve classifications, as SAR sensors are insensitive to cloud 

cover, discriminate woody vegetation effectively and are, therefore, particularly helpful 

for savannah environments (Mathieu et al., 2013; Naidoo et al., 2016; Higginbottom et 

al., 2018; Symeonakis et al., 2018; Zhang et al., 2019).  

Regardless of the sensors used, most studies focussing on African savannah 

consider either a distinction between woody and non-woody vegetation or represent 

woody vegetation as a gradient (Naidoo et al., 2016; Higginbottom et al., 2018; 

Symeonakis et al., 2018; Zhang et al., 2019). However, such information might not 

always be meaningful as it might obscure important differences between ecologically 

distinct land cover types. Considering the amount and types of data currently available, 

there is an opportunity to develop meaningful, detailed classifications of the savannah 

environment. Within this context, the aim of this study is to create a detailed, high-

resolution and highly accurate land cover map of a montane savannah system: the 

Ngorongoro Conservation Area (NCA) in Tanzania. We used different combinations of 

optical (Sentinel-2) and radar data (Sentinel-1) from different seasons (wet, dry and the 

short-dry season) and compared the classification accuracies to address the following 

research questions: 

1. Can Sentinel-1 and Sentinel-2 seasonal imagery be used to accurately map savannah 

land cover types at the regional scale?    

2. Can the combination of optical and radar data improve classification accuracies?  
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3. How does the combination of data from different seasons influence the accuracy of 

the classification? 

2.2. Materials and Methods 

2.2.1 Study Area 

The NCA, located in northern Tanzania, is a protected area and a World Heritage 

Site that forms part of the Serengeti ecosystem. It covers an area of around 8283 km2 

and includes the famous Ngorongoro Crater, the world’s largest inactive, intact and 

unfilled volcanic caldera (Estes et al., 2006; Swanson, 2007). The NCA boarders Loliondo 

Game Controlled Area to the North, Serengeti National Park to the West, Lake Eyasi to 

the Southwest, the area between Lake Eyasi, Lake Manyara and Manyara National Park 

to the South and agricultural communities to the Southeast (Figure 2.1. b & c). Annual 

rainfall ranges from 450 mm/year in the lowlands to 1200 mm/year in the highlands 

(Boone et al., 2006) There is a distinctive variation in rainfall patterns, consisting of two 

wet seasons from March until May and October to December, and two dry seasons from 

January to February and from June to October ((F. D. L. Hunter et al., 2020), Figure 2.1. 

a). The temperature ranges between 7°C-15°C in the wet season and 11°C-20°C in the 

dry season (Amiyo, 2006).  

 

Figure 2.1. (a) ERA rainfall average in the study area for 2018/2019, (b) location of 

the study area in East Africa, (c) Ngorongoro Conservation Area, Tanzania from 

Google Earth (Digital Globe). 
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The NCA is comprised of more than 15000 km2 of savannah habitat (Masao et al., 

2015) and is included in the Greater Serengeti Ecosystem (GSE), where the great African 

wildebeest migration takes place (Swanson, 2007; Masao et al., 2015). The NCA 

vegetation ranges between highland plains, savannah woodland, forest and savannah 

grasslands (Herlocker and Dirschl, 1972). The northwest part, bordering with the 

Serengeti National Park, comprises savannah grassland plains and some woodland 

areas. Within the Ngorongoro Crater itself, the vegetation comprises mostly of short-to-

medium grasses, wetlands, and a soda lake, Lake Magadi. Southwest of the lake is the 

Lerai Forest, which is degrading and gradually disappearing (Mills et al., 2006). Lerai 

Forest was dominated by mature Acacia xanthophloea trees, which have not been 

replaced by young Acacia trees (Amiyo, 2006). A combination of factors, such as high 

herbivore pressure, high salinity, water availability and encroachment of invasive 

species, could explain the forest’s dieback (Herlocker and Dirschl, 1972; Amiyo, 2006; 

Mills et al., 2006). In the past, Lerai Forest was regularly used by black rhinos for shelter, 

browsing and breeding (Amiyo, 2006; Mills et al., 2006). Due to vegetation changes or 

the presence of other herbivores, black rhinos are now rarely seen in this area (Amiyo, 

2006; Mills et al., 2006). 

The NCA is managed by the NCA Authority (NCAA) as a `multiple land-use area’ to 

promote biodiversity conservation and the interests of the resident Maasai pastoralists 

(Homewood and Rodgers, 1991; Niboye, 2010b). In the last 50 years, the NCA followed 

a ‘hands-off’ management approach. For instance, fire regimes, traditionally 

implemented by the Maasai and used to improve pasture, control bush encroachment, 

and reduce tick populations, were banned in 1974 (Amiyo, 2006). This measure is 

thought to have contributed to woody encroachment, grassland growth and the spread 

of invasive plant species, which consequently favour species like elephant (Loxodonta 

africana) and buffalo (Syncerus caffer caffer) (Amiyo, 2006; Mills et al., 2006; Niboye, 

2010b). Fire was used in 2003 to control invasive plant species as it has been identified 

as an important step towards active management. However, an official fire management 

programme has not been implemented yet (Amiyo, 2006). Cultivation was also banned 

in 1974 when the Maasai pastoralists were relocated out of the Ngorongoro Crater 

(Boone et al., 2006). Nonetheless, in order to support the Masaai communities living 

within the NCAs boundaries, the cultivation ban was partially lifted in 1992, allowing the 

cultivation of 1 acre per household (Amiyo, 2006; Boone et al., 2006). Nowadays, the 

NCAA is looking into more active management approaches to tackle some of the 
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‘wicked’ problems that the NCA is facing (Harris et al., n.d.), e.g.  inbreeding of 

endangered species such as black rhino (Diceros bicornis michaeli), changes in habitat 

suitability, food security and the spread of invasive species. However, there is a lack of 

empirical data on these issues that could be used to support and advise decision making. 

Herlocker and Dirschl (Herlocker and Dirschl, 1972) carried out the first detailed 

land cover study in the NCA in 1960s and distinguished eight land cover types: (1) 

Montane heath; (2) Bamboo forest; (3) Evergreen forest; (4) High woodlands; (5) Low 

woodlands; (6) Medium grasslands; (7) Short grasslands, and (8) Sand dune grasslands. 

Here we combined the nomenclature and descriptions of Herlocker and Dirschl (1972; 

(Herlocker and Dirschl, 1972)) and Pratt and Gwyne (1966) (Pratt et al., 1966), which 

enabled the identification of nine land cover types: 

• Bareland: areas with minimal plant cover that include bare rock, sand, alpine snow 

and ice, saline or alkaline flats or riverine deposits. These areas often experience 

extreme environmental conditions, such as low rainfall, high winds, high salinity and 

toxic or infertile soils that prevent vegetation from developing.  

• Bushland: areas of woody plants, bushes or trees, with a closed shrub canopy 

between 3 to 6 m in height. The closed canopy of bushland thicket has little grazing 

value and makes it challenging for large animals to navigate through (Pratt et al., 

1966).  

• Cropland: areas where natural vegetation has been removed or modified and 

replaced by other types of vegetation that requires human activity to maintain it in 

the long term. Cropland fields may be fallow at certain times during the year. 

• Forest: areas with closed canopy trees of one or more storeys, rising from 7m to 

≥40m in height. Bushes and shrubs dominate the ground making it difficult for 

animals to travel through it.  

• Grassland: areas dominated by grasses <25cm to 150cm tall, sometimes with herbs, 

scarred trees or shrubs, with a high grazing value for both wildlife and livestock.  

Areas may contain some woody cover and may be almost bare during the dry 

season and during drought episodes.  

• Montane heath: Areas with medium sized woody vegetation (< 1m) that can be 

shrubs, grasses, ferns and mosses. Montane heath occurs in environments ≥600 m 

in altitude, usually on mountains, but also on hills with lower and more variable 

temperatures and rainfall.  
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• Shrubland: Areas with medium sized woody vegetation (<6m in (Pratt et al., 1966)), 

generally open canopy, surrounded by grassland or dry land. Some occasional trees 

and bushes are present depending on location.  

• Water: areas that can be lakes, rivers, ponds or reservoirs, which vary with season.  

• Woodland: tree-covered area with trees as tall as 20m and an open canopy 

surrounded by grassland and sometimes shrub but not thicket. These areas are 

sometimes dominated by only a few species of trees. 

2.2.1 Data 

2.2.1.1. Sentinel-2 

Sentinel-2 is an Earth Observation mission from the European Space Agency’s (ESA) 

Copernicus Programme. It consists of two satellites, Sentinal-2A and Sentinel-2B, 

launched in 2015 and 2017, respectively (Zhang et al., 2019). Sentinel-2 carries a Multi-

Spectral Instrument (MSI) that images 13 spectral bands in the visible, near infrared and 

shortwave infrared spectral range (SWIR) at 10 to 60 m spatial resolution. The 

combination of Sentinel 2A and 2B provides a 5-day revisit rate. Sentinel-2 imagery are 

freely available and accessible through the Copernicus API Hub. 

We obtained all Sentinel 2 images that intersected our study area between 

01/01/2019 and 30/09/2019, with less than 75% cloud cover, resulting in 521 images 

(Table 2.1). All image processing was in the Framework for Operational Radiometric 

Correction for Environmental monitoring (FORCE) software version v.2.0 (Frantz, 2019). 

Firstly, Level 1C images were downloaded from the Copernicus API hub. Secondly, the 

raw images were processed to Level 2 using the FORCE L2PS module, applying: 

atmospheric and topographic correction, cloud and cloud shadow masking, data cubing 

and downscaling of the 20 m bands using the ImproPhe algorithm (Zhu and Woodcock, 

2012; Frantz, Röder, et al., 2016; Frantz, Stellmes, et al., 2016). 

Table 2.1. Seasonal temporal windows and number of Sentinel images used in 
each season/ 

Season Start date Target date End date Nº of 
images 

Short-dry 01/01/2019 27/01/2019 28/02/2019 111 

Wet 01/03/2019 17/04/2019 31/05/2019 159 

Dry 01/06/2019 17/09/2019 30/09/2019 251 
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Next, we produced three Best Available Pixel Composites using the L3PS module. 

The temporal windows were chosen according to the general climatological patterns in 

the study area but also the specific rainfall dynamics for the year of study (i.e. 2019): 

March to May for the wet season; June to September for the dry season, and January to 

February for the short-dry season (Table 2.1). These composites score all available 

observations within the temporal window selecting the optimal observation based on 

non-parametric quality scoring. The final products included three composites with 10 

bands each to which a Normalised Difference Vegetation Index (NDVI) band was then 

calculated and added. 

2.2.1.2. Sentinel-1 

Sentinel-1 is an Earth Observation mission from ESA’s Copernicus Programme 

consisting of two satellites, Sentinal-1A and Sentinel-1B, launched in 2014 and 2016, 

respectively (Zhang et al., 2019). Sentinel-1 carries a C-band Synthetic-aperture radar 

(SAR), which is unaffected by clouds and has been successfully employed in savannah 

environments for mapping land cover characteristics (Baumann et al., 2018; Zhang et 

al., 2019). In comparison to the ALOS PALSAR 2 L-band, the C-band is a shorter 

wavelength with a shallower penetration into open savannah vegetation (Mathieu et 

al., 2013). The C-band is better at detecting leaves and grasses and therefore more 

useful for canopy and cropland studies (Mathieu et al., 2013). The L-band is a long wave 

band more suitable for closed canopy forested environments as it successfully detects 

woody vegetation (Mathieu et al., 2013). 

The Google Earth Engine (GEE) computing platform (Moore and Hansen, 2011; 

Gorelick et al., 2017) was used to process the Sentinel-1 data and to calculate the 

metrics from the VV and VH bands (25th, 50th and 90th percentiles and standard 

deviation). The temporal windows used were the same as for the Sentinel-2 processing. 

The final products consisted of three composites, one for each season, with eight bands 

each. 

2.2.2 Classification strategy 

2.2.2.1. Training sample generation 

The training data were collected from high-resolution Google Earth (Digital Globe) 

imagery acquired between 2013 and 2019. For each land cover type, between 300 and 

700 training points were collected, totalling 4430 training points.  
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2.2.2.2. Modelling framework: season and sensor combinations 

In order to determine the best sensor and seasonal combinations to map savannah 

landscapes, we developed 21 models consisting of combinations of three seasons using 

Sentinel-1 and 2 imagery (Table 2.2). 

Table 2.2. The 21 combinations of the models tested. 

Sensor Data included Model 

Sentinel-2 (S2) Dry season s2 1 

Short-dry season s2 2 

Wet season s2 3 

Dry + short-dry seasons s2 4 

Dry + wet seasons s2 5 

Wet + short-dry seasons s2 6 

All seasons s2 7 

Sentinel-1 (S1) Dry season s1 8 

Short-dry season s1 9 

Wet season s1 10 

Dry + short-dry seasons s1 11 

Dry + wet seasons s1 12 

Wet +short-dry seasons s1 13 

All seasons s1 14 

Sentinel-1 and Sentinel-2 

combinations (S1&S2) 

Dry season S1&S2 15 

Short-dry seasons S1&S2 16 

Wet season S1&S2 17 

Dry + short-dry seasons S1&S2 18 

Dry + wet seasons S1&S2 19 

Wet + short-dry seasons S1&S2 20 

All seasons S1&S2 21 

2.2.2.3. Classification validation 

Classifications were carried out in the R statistical Software Environment, using the 

‘RStoolbox’ and ‘randomforest’ packages (Leutner et al., 2018; R Core Team, 2018). The 

land-cover maps were created using the ‘SuperClass’ function (Leutner et al., 2018) and 

random forests (RF) which is a non-parametric machine learning classifier, popular for 
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image classification and land cover mapping (Rodriguez-Galiano et al., 2012; Li et al., 

2015; Symeonakis et al., 2018). In African savannahs, random forest classification has 

successfully been applied in southern Africa (Hüttich et al., 2009; Mishra and Crews, 

2014; Symeonakis et al., 2016; Higginbottom et al., 2018) and eastern Africa (Ng et al., 

2017; Hamza Khalid Kija et al., 2020).  

The final classified maps were validated using a two-stage random sampling 

procedure as suggested by the best practice guidelines (Olofsson et al., 2014). First, an 

initial sample of 675 points (75 per class) was collected using a combination of Google 

Earth pro (version 7.3.3.7786) and ESRI ArcGIS 10.5©. The accuracy was calculated 

together with the size of the area covered by each land cover class from the classified 

map with the preliminary higher overall accuracy (Model 4 in Table 2.2). This provided 

the basis for identifying a suitable validation sample size with a minimum of 100 points 

per class. The area covered by the ‘Water’ and ‘Cropland’ classes was too small and, 

therefore, they were not considered in the validation process. The validation samples 

were 2147 in total, covering the remaining seven classes: 82 for ‘Bareland’; 218 for 

‘Bushland’; 103 for ‘Forest’; 1262 for ‘Grassland’; 56 for ‘Montane heath’; 184 for 

‘Shrubland’ and 242 for ‘Woodland’. 

2.3. Results 

2.3.1. Sentinel-2 and Sentinel-1 seasonal imagery to map savannah land cover 

types 

The multi-sensor and multi-season model, incorporating Sentinel-1 and Sentinel-2 

data for both the dry and the short-dry season (Model 18) was the best preforming 

model, with an overall accuracy of 86.3% ± 1.5% (Figure 2.2 & 3, 2.S1). A land cover map 

produced from this model is shown in Figure 2.2, with the associated confusion matrix 

and accuracy statistics in Table 2.3. Adjusting the mapped areas, using stratified area 

estimation, identified ‘Grassland’ as the predominant land cover type covering 60% of 

the study area (5631±106 km2), followed by ‘Woodland’ (1205 ± 90 km2), ‘Shrubland’ 

(922 ±111 km2), and ‘Bushland’ (842±63 km2). Smaller classes comprised the remaining 

8% of the NCA, with ‘Forest’ accounting for 5% (507 ±44 km2), and ‘Bareland’ and 

‘Montane heath’ combined covering 3% (276±30 km2).  



51 

 

 

Figure 2.2. Output of the best performing model incorporating Sentinel-1 and 

Sentinel-2 data for both the dry and the short-dry season (i.e. Model 18). Locations 

A, B and C are the example subsets that appear in Figure 2.6. 

Table 2.3. Confusion matrix for the best performing model incorporating Sentinel-1 

and Sentinel-2 data for both the dry and the short-dry season (i.e. Model 18).  

 Reference User’s 
accuracy Ba Bu Fo G Mh Sh Wo Total 

M
ap

p
e

d
 

Bareland (Ba) 73 0 0 8 0 1 0 82 0.89 

Bushland (Bu) 0 205 22 9 2 17 16 271 0.76 

Forest (Fo) 0 7 78 0 0 1 0 86 0.91 

Grassland (G) 4 3 0 1203 2 65 19 1296 0.93 

Montane heath 
(Mh) 

0 1 0 1 51 1 2 56 0.91 

Shrubland (Sh) 4 1 0 31 1 77 31 145 0.53 

Woodland (Wo) 0 1 0 9 0 22 173 205 0.84 

Total 81 218 100 1261 56 184 241 2141  

Producer’s 
accuracy 

0.70 0.92 0.84 0.95 0.84 0.49 0.73 
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Models 4, 7, 16, 20 and 21 all achieved accuracies greater than 85%, using different 

season and sensor combinations (Table 2.2, Figure 2.3). These five models, and the best-

performing model, were able to map the majority of the savannah vegetation types, 

with the exception of ‘Shrubland’ (Figures 2.4 & 2.5), with comparable accuracies. 

 

Figure 2.3. The overall accuracies and confidence intervals for the 21 model 

combinations tested. M1 to M7 includes Sentinel-2 models, M8 to M14 includes 

Sentinel-1 models and M15 to M21 includes Sentinel-1 and -2 models. 

In all models, the most reliably mapped class was ‘Grassland’, with maximum 

producer’s and users’ accuracies of 96% and 92%, respectively achieved by Model 21 

(Figures 2.4 & 2.5, 2.S2). The accuracy of the remaining six classes varied considerably 

in several models. ‘Shrubland’, for instance, was mapped poorly by all models, with a 

maximum user’s and producer’s accuracy of 59% and 54%, respectively, achieved by 

Model 16. The ‘Forest’ class was mapped accurately by Sentinel-2 or multi-sensor 

models (eg. Models 7 and 18). However, Sentinel-1-only models were unable to map it 

successfully scoring a maximum user’s accuracy of 38% and producer’s accuracy of 33% 

achieved by Model 11 (Figures 2.4 & 2.5). The remaining classes, namely ‘Bushland’, 

‘Woodland’, ‘Shrubland’ and ‘Montane heath’ were also mapped more accurately by 

Sentinel-2 and multi-sensor models than by the Sentinle-1-only models.  
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Figure 2.4. Producer’s accuracy for different land cover types and models 

according to Table 2.2. 
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Figure 2.5. User’s accuracy for different land cover types and models according 

to Table 2.2.  

2.3.2. The role of C-band SAR 

Comparing the two different sensors, Sentinel-2 models outperform the Sentinel-1 

ones, in all combinations and land cover types (Figure 2.3). Sentinel-1 models have a 

much lower overall accuracies and fail to distinguish most land cover types well, 

especially ‘Montane heath’, which goes completely undetected in Model 9 (Figures 2.4 
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& 2.5). In terms of the spatial configuration of the classified land cover maps, those 

produced by the Sentinel-1 models also show a higher degree of confusion between 

‘Woodland’, ‘Bushland’ and ‘Forest’, and tend to overestimate ‘Shrubland’ (Figure 2.6. 

A4, B4 & C4). ‘Grassland’ was the only land cover type that Sentinel-1-only models were 

able to identify with higher accuracies (>76.8%; Model 10; Figures 2.4 & 2.5). When 

combining Sentinel-2 and Sentinel-1 data, all models scored higher overall accuracies 

when compared to their single sensor counterparts (Figure 2.3). For example, the overall 

accuracy of Model 2 (i.e. Sentinel-2-only, short-dry season) increased from 82.7% 

(±1.6%) to 85.7% (±1.5%) after the Sentinel-1 data was added (Figure 2.3).  

 

Figure 2.6. Example subsets of the study Area: (A, B & C): the area imagery; (A1, B1, 

C1): the land cover map for Model 18; (A2, B2, C2): the land cover map for Model 

16; (A3, B3, C3): the land cover map for Model 4; (A4, B4, C4): the land cover map 

for Model 8. 
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For single season models, adding radar data improved accuracies for nearly all land-

cover types, with few exceptions (Figures 2.4 & 2.5). For instance, adding Sentinel-1 data 

to the short-dry single-season (Model 2), increased the accuracy for most land cover 

types, except for the user’s accuracy of ‘Bushland’ and producer’s accuracy for ‘Forest’ 

(Figures 2.4 & 2.5). For multi-season models, adding Sentinel-1 data only improved the 

overall accuracy slightly (Figure 2.3), and visually the land cover maps are very similar 

(Figure 2.6. A1, B1, C1 & A3, B3, C3). For instance, the overall accuracy for Model 4 (i.e. 

Sentinel-2, dry and short-dry seasons) increased slightly from 85.5% (±1.5%) to 86.3% 

(±1.5%) after the Sentinel-1 data was added; however, this increase is within the 

respective confidence interval (Figure 2.3). Moreover, adding the SAR data to Model 4 

decreased the producer’s accuracy for ‘Bareland’, ‘Grassland’, ‘Forest’ and ‘Shrubland’ 

and decreased the user’s accuracy for ‘Shrubland’ and ‘Montane heath’ (Figures 2.4 & 

2.5). This decrease in the per-class accuracies for some land cover types occurs in other 

models, too: when adding Sentinel-1 data to Model 7 (which combines all three seasons; 

Figures 2.4 & 2.5), a decrease in the producer’s accuracy for ‘Bareland’, ‘Bushland’, 

‘Forest’ and ‘Montane heath’ and a decrease in the user’s accuracy for ‘Forest’ and 

‘Shrubland’ is observed.  

2.3.3. The role of season 

Unlike their Sentinel-1 counterparts, Sentinel-2 single season models with data 

from the short-dry season out-performed dry or wet mono-season ones (Figures 2.3 & 

2.7). Additionally, all single season models, using dry or wet season imagery, produced 

very similar overall accuracies (eg. Model 1 obtained 77.3% and Model 3 obtained 

77.8%; Figures 2.3 & 2.7). Both Sentinel-2 and multi-sensor models incorporating the 

short-dry season, on its own or with other seasons, performed better than other 

combinations (Figures 2.3 & 2.7). In Sentinel-2-only models, combining the short-dry 

season with either the wet or dry seasons, improved all land cover classes, except for 

the producer’s accuracy for ‘Bareland’, in Model 6 and ‘Woodland’, in Model 4, which 

performed better with the short-dry season on its own (Figures 2.4 & 2.5). Regarding 

the SAR-only models, season does not seem to have a clear effect on overall accuracies 

(Figures 2.3 & 2.7). However, when optical and SAR data were combined, the models 

that incorporated the short-dry season, obtained overall accuracies >85.6% - this 

included the best performing model (Model 18; Figures 2.3 & 2.7).  



57 

 

 

Figure 2.7. Overall accuracy results for the 21 models according to season and 

season combinations. 

Combining imagery from more than one season increased model accuracy (Figures 

2.3 & 2.7). For Sentinel-2-only models, using only the dry and short-dry seasons 

produced accuracies of 77.3% ±1.8% and 82.7% ± 1.6%, respectively, while a 

combination of both, increased the accuracy by 2.8% (to 85.5% ± 1.5%; Figures 2.3 & 

2.7). In addition, this combination obtained similar results to the best performing model 

(Figure 2.6. A1, B1, C1 & A3, B3, C3). For Sentinel-1-only models, the dry and short-dry 

season models produced accuracies of 58.5% (±2.1%) and 57.6% (±2.1%), respectively; 

when combined this rises to 63.7% ± 2.1% (Figures 2.3 & 2.7).   

The models that combined more than one season scored lower commission and 

omission errors for most land cover classes (Figures 2.4 & 2.5). For Sentinel-2-only 

models, the combination of dry and short-dry seasons (i.e. Model 4), increased the 

accuracy for most land cover types, with the exception of the producer’s accuracy of 

‘Woodland’ (Figures 2.4 & 2.5). In addition, the combination of wet and short-dry season 

(Model 6) increased the accuracy for nearly all land cover types, except for the 

producer’s accuracy of ‘Bareland’ (Figures 2.4 & 2.5). On the other hand, for multi-

sensor models, combining more than one season increased overall accuracies slightly 

but these varied depending on the land cover type. For instance, the combination of dry 

and short-dry season data in multi-sensor models (Models 15 and 16) decreased the 

user’s accuracy for ‘Bareland’ by 8%, of ‘Shrubland’ by 6%, of ‘Woodland’ by 1% and of 

‘Bushland’ by 5%. Producer’s accuracy also decreased for ‘Bareland’ (7%), ‘Shrubland’ 

(6%) and ‘Woodland’ (3%; Figures 2.4 & 2.5). Despite the statistics, there are areas 

where the opposite holds true, as in the case of the mountains northeast of the Crater 
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(Figure 2.6.C). In that area the inclusion of the dry season data corrected the wrongly 

classified ‘Woodland’ for ‘Bushland’ (Figure 2.6.C1 & C2).  

Interestingly, the combination of all three seasons did not significantly improve the 

overall accuracy for most of the models. However, this combination performed better 

than the combination of data from the dry and wet seasons (Figures 2.3 & 2.7). 

Nonetheless, the three-season models seem to be beneficial for the mapping of specific 

land cover classes (Figures 2.4 & 2.5). Considering only the Sentinel-2 models, the three-

season combination increases the user’s accuracy for ‘Forest’, ‘Bareland’ and ‘Grassland’ 

and increases the producer’s accuracy for ‘Montane heath’, when compared to single- 

or bi-season combinations (Figures 2.4 & 2.5).  

2.4. Discussion 

2.4.1. Can Sentinel-2 and Sentinel-1 seasonal imagery be used to accurately map 

savannah land cover types at the regional scale? 

To improve habitat monitoring, preserve biodiversity and sustain ecosystem 

services, the provision of moderate-resolution land-cover maps across savannah 

environments is essential. Mapping savannahs is a challenging task, due to varying 

vegetation densities, high background soil signal, and the spectral similarities between 

the dominant land cover types (Müller et al., 2015; Tsalyuk et al., 2017; Zhang et al., 

2019). Our results demonstrate that imagery from the Sentinel constellation (optical and 

C-band SAR) has good utility for mapping complex savannah systems at moderate 

resolution. Our best performing model -- using a combination of Sentinel-2 and Sentinel-

1 data from the dry and short-dry seasons -- achieved an overall accuracy of 86.3 ± 1.5%. 

This compares favourably with other studies in savannah environments (e.g. (Mishra 

and Crews, 2014; Higginbottom et al., 2018; Symeonakis et al., 2018; Zhang et al., 2019). 

To investigate the reliability of mapping savannahs using Sentinel imagery that comes 

with an undisputed spatial resolution advantage compared to Landsat or MODIS, we 

examined the role of different sensor and season combinations on mapping accuracies. 

2.4.2. Can the combination of optical and radar data improve classification 

accuracies? 

Our results show models using solely Sentinel-1 data underperformed their 

Sentinel-2 counterparts, for all seasons and all land cover types (Figure 2.3). The best 

Sentinel-2 only model (short-dry season) produced an 85.5% overall accuracy compared 

to 64.5% for the best Sentinel-1 only model (wet season): a non-trivial difference. This 
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agrees with both Lopes et al. (2019; (Lopes et al., n.d.)) and Higginbottom et al. (2018; 

(Higginbottom et al., 2018)) who compared optical with radar imagery in West and 

South Africa, respectively. This could be attributed to SAR-only models incurring errors 

caused by incidence angle variation, speckle, geolocation accuracy and moisture content 

(Higginbottom et al., 2018). The results from Naidoo et al. (2016; (Naidoo et al., 2016)) 

who mapped woody vegetation cover in southern African savannahs show the opposite 

result, but they employed longer wavelength L-band data (ALOS PALSAR), which are 

more sensitive to the dense woody vegetation structure (Müller et al., 2015; 

Higginbottom et al., 2018; Symeonakis et al., 2018). 

The SAR-only models were able to successfully identify only the ‘Grassland’ land 

cover type (accuracies above 76.8%). ‘Montane heath’ on the other hand, obtained 

accuracies as low as 0% in Model 9 and was often confused for ‘Grassland’, likely due to 

textural similarities between the two land cover types and their lack of dense or woody 

plants. Interestingly, the woody classes also scored low accuracies in the SAR-only 

models, with open ‘Woodland’ achieving a maximum of 57.5% (Model 10), ‘Bushland’ 

47.2% (Model 8) and closed ‘Forest’ 37% (Model 10) (Figures 2.4 & 2.5). The relatively 

large number of woody classes in our study area and the land cover nomenclature we 

adopted might explain the confusion between them, as previous research shows that 

combining such classes can improve mapping accuracy from SAR data (Walker and 

Briggs, 2007; Laurin et al., 2013). In addition, Huttich et al. (2011; (Hüttich et al., 2011)) 

suggested that using inter-annual metrics of over one or two years could increase 

accuracies of ‘Shrubland’ and ‘Grassland’ classes. Our results also show that SAR only 

models overestimated ‘Shrubland’, specifically in low vegetated areas (Figure 2.6. A4, 

B4 & C4). This can be attributed to the high surface roughness that produces similar 

signals for trees and shrubs (Zhang et al., 2019; Urban et al., 2020). Zhang et al. (2019; 

(Zhang et al., 2019)) and Urban et. al (2020; (Urban et al., 2020)) , also showed that radar 

data overestimate the presence of woody vegetation, for the Sahel and South Africa, 

respectively. 

Previous research recommends combining SAR with optical data for improved land 

cover mapping (Laurin et al., 2013; Symeonakis et al., 2018; Zhang et al., 2019). Our 

results show that the combination of Sentinel-2 and Sentinel-1 data achieves higher 

overall accuracies when compared to single sensor models. Model 2 (Sentinel-2, short-

dry season), scored an overall accuracy of 82.7%, increased by 3% when Sentinel-1 data 

were added (Figure 2.3). The addition of SAR data increased the accuracies for most 
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vegetation types, with the UA for ‘bushland’ and PA of closed ‘forest’ being the only two 

exceptions. These results are consistent with previous research carried out by Laurin et 

al. (2013; (Laurin et al., 2013)) and Symeonakis et al. (2018; (Symeonakis et al., 2018)), 

finding that combining SAR and optical data also decreased the omission and 

commission errors for all land cover types. Zhang et al. (2019; (Zhang et al., 2019)) 

suggested adding SAR to optical data as they can correct errors particularly in highly 

productive areas (e.g. wetlands, irrigated fields and perineal grasses) which can be 

misclassified as trees. 

Our findings agree with the emerging consensus that multi-sensor approaches to 

land cover mapping perform best. However, we found the benefits of multi-sensor 

approaches were most evident in mono-temporal models. For instance, adding SAR data 

to Model 4 (Sentinel-2 data, dry and short-dry seasons), improved its overall accuracy 

by only 0.8% (Figure 2.3). This slight increase is within the confidence interval of both 

models (Model 4 and Model 18) and produce a very similar spatial configuration of the 

mapped land cover classes (Figure 2.6. A1, B1, C1 & A3, B3, C3). Our results, therefore, 

support those of Higginbottom et al. (2018; (Higginbottom et al., 2018)), who found that 

the multi-sensor approach was only marginally beneficial (~1%), and at fine scales (30m) 

the addition of PALSAR data to Landsat may reduce accuracies. Chatziantoniou et al. 

(2017; (Chatziantoniou et al., 2017)) achieved similar results to ours, suggesting that 

although SAR data are solely impacted by wind, droughts might also influence the data 

quality thereby negatively affecting the overall classification accuracy. Therefore, if 

multi-season data is available, combining more than one sensor might be unnecessary 

and even counterproductive for specific land cover types (e.g. ‘Shrubland’). 

2.4.3. How does the combination of data from different seasons influence the 

accuracy of the classification? 

Savannah mapping studies generally use data from the dry season, due to 

significantly lower cloud contamination and heightened contrasts between woody and 

grassland components (Haro-Carrion and Southworth, 2018; Higginbottom et al., 2018). 

We found only small differences in accuracy, less than 1%, between wet and dry season 

models, for Sentinel-2 and multi-sensor scenarios (Figures 2.3 & 2.7), which agrees with 

Symeonakis et al. (2018; (Higginbottom et al., 2018)). Interestingly, Sentinel-2 imagery 

from the short-dry season, which occurs between January and February was highly 

effective, preforming comparably to the multi-sensor models and outperforming the 

other single season Sentinel-2 models by 5% (Figure 2.7). The short-dry season, which 
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occurs right after the short rains (from October to December), is characteristic of East 

Africa and, to our knowledge, this is the first study to examine its utility in mapping 

savannahs. This season is particularly useful for land cover mapping due to it having 

cloud free data and being wet enough for herbaceous vegetation to be 

photosynthetically active, which is not the case during the dry season (Brandt et al., 

2016). In the Ngorongoro Conservation Area (NCA), during the short-dry season the 

grasses in the North-West of the NCA starts to emerge, attracting the great wildebeest 

migration. Moreover, this season is dry enough to provide noticeable differences in the 

spectral characteristics of woody and herbaceous vegetation (Naidoo et al., 2016).  

We found that models combing dry and wet season imagery outperform their single 

season counterparts in all scenarios (Figure 2.7). However, compared to other model 

combinations, Sentinel-2-only and multi-sensor models were improved by including the 

short-dry season data (Figure 2.7). The dry season (Model 1) and the short-dry season 

model (Model 2) produced an overall accuracy of 77.3% and 82.7%, respectively. Once 

combined, the overall accuracy increased to 85.5% (~2.8%), which is very close to the 

best performing model (Figure 2.3). This agrees with Haro-Carrión and Southworth 

(2018; (Haro-Carrion and Southworth, 2018)) and Symeonakis et al. (2018; (Symeonakis 

et al., 2018)), who also reported higher accuracies when combining bi-seasonal data. 

Adding multi-season data provides additional spectral information and, if available, 

should be preferred for successfully distinguishing between spectrally similar savannah 

vegetation classes (Haro-Carrion and Southworth, 2018). 

Multi-season models generally scored higher overall accuracies; however, multi-

sensor models were less improved. For instance, the increase in the overall accuracy 

from the combination of Models 15 and 16, which include multi-sensor data for the dry 

and short-dry seasons, was ~0.6%. This agrees with Symeonakis et al. (2018; 

(Symeonakis et al., 2018)) who reported the same increase of 0.6% in the overall 

accuracy for their multi-sensor dry season model by combining sensors and seasons. 

Regardless of the impact on the overall accuracy, our results show that adding more 

than one season to multi-sensor models solved misclassification problems in specific 

areas within the NCA (Figure 2.6). For instance, in the mountains northeast of the Crater 

(Figure 2.6. C), Model 16 overestimated the open ‘Woodland’ cover: by adding the dry 

season data, the classification was improved (Figure 2.6. C1 & C2). These errors in the 

spatial configuration of the mapped classes can go unnoticed, as the calculation of 



62 

 

accuracy statistics is carried out over a limited number of locations compared to the 

much larger total number of pixels of the study area. 

Most multi-season mapping studies consider only the wet and dry seasons or a 

combination of the two. Our results show that the tri-seasonal models performed better 

than the wet and dry season models and improved the accuracies for several specific 

land cover types (e.g. closed ‘Forest’ and ‘Grassland’ achieved 92% and 90.6%, 

respectively in Model 7). However, the overall accuracy did not increase significantly 

when compared to bi-seasonal models. For example, Model 21, which combines the 

three seasons and SAR data, obtained an overall accuracy of 85.6%, higher than Model 

19 (81.2%), which only included the dry and wet seasons but lower than Model 18 

(86.3%), which included the dry and short-dry seasons (Figures 2.3 & 2.7). These results 

contrast with Hüttich et al. (2011; (Hüttich et al., 2011)) who found that increasing the 

length of the observation period and inter-seasonal data increases the accuracy of the 

classification. However, the scholars also mention that highly dynamic classes, such as 

‘Grassland’ and ‘Bareland’, benefit when longer time series are used which our results 

support. Whilst there are benefits from using tri-seasonal imagery, it must be noted that 

the amount of data and time required for pre-processing also increases significantly. 

Unless tri-seasonal data provide improvements for mapping specific vegetation types of 

interest, using a combination of the dry and short-dry seasons should suffice.  

2.4.4. Implications for biodiversity monitoring/ ecosystem monitoring challenges in 

the area 

This study has demonstrated that Sentinel imagery can reliably map land cover in 

the Ngorongoro Conservation Area (NCA), and the wider Serengeti region. The NCA is 

globally important for biodiversity conservation due to the presence of iconic 

megafauna, such as the Eastern black rhino and African elephant. It is among the best 

locations in the world to see Black Rhino in the wild, attracting thousands of tourists 

every year. The NCA supports the largest Black rhino population in Tanzania and in 

recent years this population increased to 56 individuals (Kohi and Lobora, 2019). 

Currently, there is emerging evidence of a decrease in the quality and quantity of 

preferable browse and, consequently, a decrease in suitable habitat for black rhino 

(Makacha et al., 1979; Amiyo, 2006; Niboye, 2010b). Unsuitable habitats and limited 

browse promote intra- and inter-specific competition for resources and emigration of 

rhinos out of the Crater and the NCA (Makacha et al., 1979). Our derived land cover map 

could help monitor Black Rhino habitat quality and identify new locations within the NCA 
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which the population could expand into. In addition, land cover maps can infer rhino 

home ranges and support anti-poaching efforts in the NCA. Previously, the only detailed 

land cover survey in the NCA was completed in 1972 (Herlocker and Dirschl, 1972), 

before several major management policies were introduced that brought about 

significant environmental changes, e.g. the displacement of pastoralists from the 

Ngorongoro Crater (Mills et al., 2006; Niboye, 2010b). Therefore, our accurate and up-

to-date land cover map could have considerable conservation implications for the NCA, 

in general, and the black rhino population, in particular, as it provides information 

essential for the development of sustainable management strategies. 

2.5. Conclusion 

Savannahs are heterogeneous environments providing essential ecosystem services 

to communities. Currently, they are threatened by extensive land use/cover changes 

and subsequent land degradation. Mapping these environments is challenging but 

essential in order to improve monitoring capabilities, prevent biodiversity loss and 

ensure savannah ecosystem service provision. In this study, we tested how 

combinations of imagery from different seasons and sensors affects the accuracy of land 

cover maps for the NCA and provide guidance for future attempts to monitor and 

understand savannah landscapes. We conclude that the combination of Sentinel-1 and 

2 data from the dry and short-dry seasons successfully maps most of the land cover 

types in the NCA, with ‘Shrubland’ remaining a challenge. Additionally, we found that if 

SAR data are unavailable, multi-season Sentinel-2 data provide a good alternative, whilst 

if no multi-seasonal data can be used, a combination of SAR and optical data can be used 

to accurately map savannah environments with similar results to the best performing 

model. Finally, we advise that the short-dry season should be preferred over the wet 

and dry seasons for both multi-sensor combinations and optical data. In conclusion, we 

provide much needed and highly accurate, medium resolution land cover maps for the 

NCA, which will support sustainable management and conservation. 
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2.7 Supplementary material – Chapter 2 

Table 2.S1. Overall accuracy of the models tested. 

Sensor Data included Model Accuracy 

Sentinel-2 (S2) Dry season s2 1 0.77 

Short-dry season s2 2 0.83 

Wet season s2 3 0.78 

Dry + short-dry seasons s2 4 0.85 

Dry + wet seasons s2 5 0.80 
Wet + short-dry seasons s2 6 0.85 

All seasons s2 7 0.85 

Sentinel-1 (S1) Dry season s1 8 0.59 

Short-dry season s1 9 0.58 
Wet season s1 10 0.58 

Dry + short-dry seasons s1 11 0.64 

Dry + wet seasons s1 12 0.63 

Wet +short-dry seasons s1 13 0.62 

All seasons s1 14 0.65 

Sentinel-1 and 
Sentinel-2 

combinations 
(S1&S2) 

Dry season S1&S2 15 0.79 
Short-dry seasons S1&S2 16 0.86 

Wet season S1&S2 17 0.79 

Dry + short-dry seasons S1&S2 18 0.86 

Dry + wet seasons S1&S2 19 0.81 

Wet + short-dry seasons S1&S2 20 0.86 

All seasons S1&S2 21 0.86 
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Table 2.S2. User’s and Producer’s accuracy of all land cover types and models tested.  

 
  

Bareland   Bushland   Forest   Grassland   Montane 
heath 

  Shrubland   Woodland   

Statistic U: User’s 
P: Producer’s 

U P U P U P U P U P U P U P 

Model 1 0.79 0.46 0.67 0.65 0.67 0.74 0.87 0.91 0.61 0.68 0.41 0.34 0.65 0.60 

Model 2 0.87 0.69 0.75 0.85 0.82 0.79 0.90 0.92 0.71 0.62 0.52 0.46 0.75 0.70 

Model 3 0.86 0.54 0.69 0.72 0.65 0.66 0.87 0.90 0.61 0.57 0.45 0.35 0.63 0.66 
Model 4 0.88 0.84 0.75 0.91 0.90 0.84 0.90 0.96 0.94 0.79 0.60 0.50 0.84 0.65 
Model 5 0.82 0.44 0.71 0.75 0.72 0.69 0.87 0.93 0.92 0.74 0.44 0.37 0.69 0.63 
Model 6 0.89 0.61 0.75 0.88 0.86 0.80 0.90 0.94 0.88 0.73 0.59 0.49 0.80 0.73 
Model 7 0.92 0.67 0.74 0.90 0.92 0.83 0.91 0.95 0.94 0.81 0.57 0.46 0.82 0.70 

Model 8 0.20 0.30 0.47 0.21 0.31 0.30 0.87 0.77 0.17 0.10 0.20 0.32 0.34 0.53 

Model 9 0.34 0.35 0.35 0.22 0.28 0.19 0.82 0.78 0.00 0.00 0.12 0.16 0.32 0.51 

Model 10 0.20 0.33 0.44 0.16 0.37 0.28 0.81 0.78 0.14 0.02 0.15 0.19 0.35 0.57 
Model 11 0.44 0.37 0.45 0.24 0.38 0.33 0.88 0.83 0.21 0.13 0.23 0.36 0.37 0.54 
Model 12 0.40 0.27 0.46 0.25 0.31 0.28 0.86 0.82 0.22 0.13 0.21 0.34 0.41 0.58 
Model 13 0.40 0.37 0.45 0.24 0.40 0.30 0.84 0.82 0.17 0.04 0.19 0.27 0.39 0.60 
Model 14 0.53 0.34 0.54 0.29 0.34 0.28 0.88 0.83 0.42 0.21 0.21 0.32 0.39 0.61 

Model 15 0.83 0.40 0.71 0.67 0.69 0.78 0.90 0.91 0.67 0.78 0.42 0.43 0.63 0.62 

Model 16 0.97 0.77 0.70 0.88 0.83 0.78 0.92 0.94 0.80 0.64 0.59 0.54 0.85 0.76 

Model 17 0.87 0.48 0.69 0.73 0.67 0.68 0.89 0.92 0.73 0.46 0.47 0.40 0.67 0.70 
Model 18 0.89 0.70 0.76 0.92 0.91 0.84 0.93 0.95 0.91 0.84 0.53 0.49 0.84 0.73 
Model 19 0.89 0.42 0.70 0.78 0.72 0.66 0.91 0.92 0.75 0.78 0.49 0.42 0.67 0.72 
Model 20 0.94 0.60 0.75 0.91 0.83 0.81 0.91 0.96 0.85 0.56 0.65 0.50 0.84 0.76 
Model 21 0.97 0.56 0.76 0.89 0.84 0.81 0.92 0.96 0.96 0.75 0.56 0.48 0.82 0.71 
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Chapter 3 – Landsat time series reveal forest loss and woody 
encroachment in the Ngorongoro Conservation Area, Tanzania 

This chapter has been published (Appendix 2). 

Abstract: The Ngorongoro Conservation Area (NCA) is of global significance for 

conservation due to the presence of iconic fauna; understating its vegetation dynamics is 

increasingly important to improve monitoring, protect biodiversity and ensure sustainable 

development. Here, we propose a Landsat-based monitoring strategy that incorporates (i) 

regression-based unmixing for the accurate mapping of the fraction of the different land 

cover types, and (ii) a combination of linear regression and the BFAST trend break analysis 

technique for mapping and quantifying land cover changes.   Using Google Earth Pro and 

the EnMap-Box software, the fractional cover of the main land cover types of the NCA were 

accurately mapped for the first time, namely bareland, bushland, cropland, forest, 

grassland, montane heath, shrubland, water and woodland. Our results show that the main 

changes occurring in the NCA consisted of the replacement of forest with bushland: we 

exemplify this with a case study in the Lerai Forest. We also found declines in grassland and 

an increase in shrubland in the Serengeti Plains suggesting woody encroachment. These 

changes threaten the wellbeing of livestock, the livelihoods of pastoralists and of the 

wildlife dependent on these grazing areas. Some of the land cover changes may be 

occurring naturally and caused by herbivory, rainfall patterns and vegetation succession, 

but many are linked to human activity, specifically, management policies, tourism 

development and the increase in human population and livestock. We recommend that the 

managers of the NCA conduct trials on fire management to assess their suitability in 

improving rangeland condition, reducing encroachment, and managing invasive species.  

Our study provides for the first time much needed and highly accurate information on long-

term land cover changes in the NCA that can support the sustainable management and 

conservation of this UNESCO World Heritage Site.  

3.1 Introduction 

African savannah environments provide essential ecosystem services to communities, 

sustain endemic biodiversity and play a critical role in regulating carbon cycles (Poulter et 

al., 2014; Liu et al., 2015; Schneibel et al., 2017; McNicol et al., 2018). In recent years, the 

provision of ecosystem services from many savannah regions has progressively declined 
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due to agricultural expansion, woodland degradation, invasive species, bush 

encroachment, climate change, and management policies, putting wildlife and 

communities at risk (Schneibel et al., 2017; Symeonakis & Higginbottom, 2014; Tsalyuk et 

al., 2017). 

The Ngorongoro Conservation Area (NCA) in Northern Tanzania is a designated United 

Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage Site for 

exceptional natural and cultural values (UNESCO, 2010). It is part of the world’s largest 

intact savannah systems, the Greater Serengeti Ecosystem, which includes the Serengeti 

National Park and the Maasai Mara, where one of Africa’s largest animal migrations takes 

place (Swanson, 2007; Masao et al., 2015). The NCA also supports the largest population of 

the critically endangered Eastern Black Rhinoceros (Diceros bicornis michaeli) in Tanzania 

(Amiyo, 2006; Goddard, 1968; Mills et al., 2006). The density and diversity of wildlife in the 

NCA is of global importance for biodiversity conservation and economically important for 

Tanzania. For instance, in 2016 over one million tourists visited the NCA, generating 

revenue of approximately $70 million (Slootweg, 2016, 2017). The NCA is unique as it 

operates as a multiple land-use model designed to protect not only wildlife but also the 

lifestyle of the resident Maasai pastoralists (Niboye, 2010b).  

The NCA vegetation comprises of a combination of highland forests around the Ngorongoro 

Crater, savannah woodland and shortgrass plains , Herlocker & Dirschl, 1972). Over the last 

50 years, African savannahs have undergone considerable land cover changes, including 

forest degradation, spread of invasive plant species, and woody encroachment (Amiyo, 

2006; Higginbottom et al., 2018; Ludwig et al., 2019; Mills et al., 2006; Symeonakis et al., 

2018; Venter et al., 2018). In the NCA highlands, forest degradation is of particular concern, 

as these forests provide ecosystem services to the Maasai through the provision of fuel 

wood, traditional medicinal plants, and forage for livestock (Swanson, 2007). Additionally, 

upland forests provide shelter for wildlife and regulate water resources (Swanson, 2007). 

In the grassland plains, woody encroachment and invasive species can reduce rangeland 

carrying capacity, which directly affects wildlife and the Maasai livestock (Venter et al., 

2018).  

Land cover changes in the NCA are driven by a combination of local and global drivers 

(Homewood et al., 2001; Masao et al., 2015; Niboye, 2010).Firstly, the Maasai community 

within the NCA increased from roughly 8,000 in 1959 to almost 100,000 in 2018, with an 
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accompanying livestock population of approximately 800,000 in 2018 (Lyimo et al., 2020; 

Manzano & Yamat, 2018). Population growth has led to the expansion of settlements, 

livestock bomas, and demand for water resources (TAWIRI & NCAA, 2020). In addition, 

tourism, grazing pressure, climate change, and management decisions also seem to be 

contributors to change (Homewood et al., 2001; Masao et al., 2015; Niboye, 2010). Many 

of these changes have led to the decline in habitat quality (Amiyo, 2006; Estes et al., 2006; 

Niboye, 2010b). Less suitable habitats with limited opportunities for browsing and grazing 

encourage inter- and intraspecific competition for resources, threatening wildlife 

populations and their distribution, and subsequently raising concerns of biodiversity loss 

and increasing human-wildlife conflicts (Makacha et al., 1979; Amiyo, 2006; Niboye, 2010b; 

Hamza Khalid Kija et al., 2020). In addition, for the Maasai pastoralists these changes 

threaten quantity and quality of pasture resources for livestock and consequently food 

security. Previous small-scale studies have mentioned ongoing land cover changes within 

the NCA, but the large-scale dynamics remain poorly understood (Boone et al., 2006; 

Homewood et al., 2001; Masao et al., 2015). The research available for the NCA is mostly 

based on surveys and aerial photography, providing highly detailed information at the 

species level but does not offer a large-scale, holistic coverage (Amiyo, 2006; Herlocker & 

Dirschl, 1972). 

Over the last five decades, Earth-observation (EO) data have increasingly been used to map 

and monitor land cover (Woodcock et al., 2008; Wulder et al., 2012; Adole et al., 2016). In 

particular, the Landsat archive provides open-access, long-term data, with 30 meter spatial 

resolution and six spectral bands that are well suited for vegetation mapping. However, 

savannah landscapes are challenging to map due to their heterogeneous and complex 

characteristics, incorporating a mixture of woody vegetation (trees, bushes, and shrubs), 

different grass species and bare land (Borges et al., 2020; Ludwig et al., 2019; Mathieu et 

al., 2013; Settle & Drake, 1993; Symeonakis et al., 2018; Venter et al., 2018). Mapping and 

monitoring change in savannah environments is even more challenging, as most changes 

occur gradually and incrementally, resulting in subtle spectral changes that are difficult to 

detect using imagery with a moderate spatial resolution.  Recently, the combination of 

synthetically-generated mixed samples with machine learning regression methods has 

proved effective for mapping fractional cover in complex environments, (Okujeni et al., 

2013; Suess et al., 2018; Senf et al., 2020). A combination of fractional cover or class 

probability maps  with time-series techniques can provide a more ecologically meaningful 
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quantification of change compared to traditional bi-temporal classification comparisons 

(Schwieder et al., 2016; Schneibel et al., 2017; Souverijns et al., 2020). 

There is a pressing need to quantify the extent and magnitude of land cover changes within 

the NCA, to identify vulnerable areas and prevent potential threats to habitats and 

livelihoods. The NCA’s multiple-use approach, which attempts to reconcile biodiversity 

protection and the needs of local people, is a notoriously challenging task (Harris et al., 

2020). Moreover, in the context of protected area management, an improved 

understanding of land cover dynamics is imperative for sustainable development, to 

support effective land use planning, conserve and manage biodiversity and ensure the long-

term survival of wildlife and the prosperity of resident human communities.  

The main aim of the paper is to support the sustainable management of the NCA by 

developing an Earth-observation based approach for monitoring multi-faceted land cover 

changes occurring over the past 35 years. We build on the approach of Okujeni et al., (2013) 

to produce near-annual fractional cover maps for nine constituent land cover classes of the 

NCA. To identify the various change processes we employ two pixel level time-series 

analyses. Firstly, we employ monotonic linear trend analysis to detect long-term changes 

in land cover (Herrmann et al., 2005; Higginbottom and Symeonakis, 2014). Secondly, we 

used the Breaks For Additive Season and Trend (BFAST) piece-wise linear regression 

method to detect possible breakpoints, specifically for upland forest cover (Grogan et al., 

2016; Lewińska et al., 2020; Morrison et al., 2018; Schmidt et al., 2015; Wu et al., 2020).  

We chose the linear trend analysis to detect long-term, incremental land cover changes, 

such as shrub encroachment and grassland decline. Meanwhile BFAST is well-suited to 

identifying abrupt shifts and reversals in trends that may be obscured by monotonic 

analysis, such as deforestation and regrowth  (Verbesselt, Hyndman, Zeileis, et al., 2010).  

3.2 Study area  

The NCA covers an area of around 8,283 km2 (Swanson, 2007, Figure 3.1). It contains the 

largest, intact volcanic caldera in the Ngorongoro Crater and has highly abundant and 

diverse wildlife (Estes et al., 2006, Figure 3.1c). Annual rainfall ranges from 450 mm/year 

in the lowlands to 1,200 mm/year in the highlands (Boone et al., 2007; Figure 3.S1). Rainfall 

follows a bimodal pattern, characteristic of East Africa, comprising two wet seasons: the 

main between March and May, and a shorter one between November and December 
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(Pellikka et al., 2018). During the dry season temperature ranges between 11°C and 20°C, 

whilst in the wet season it ranges between 7°C – 15°C (Amiyo, 2006). 

 

Figure 3.1. The Ngorongoro Conservation Area (a) and its location within Africa (b), 

Tanzania and the Greater Serengeti ecosystem (c). 

3.3 Materials and Methods  

3.3.1 Landsat Image Acquisition and Processing 

We acquired and processed Landsat Collections Level 1 Tier 1 imagery from 1985 to 2020. 

Based on our previous study, we selected images from the short dry season (January – 

April), which enables the highest separability of the land cover types (Borges et al., 2020). 

For the 35-year study period, we obtained 26 annual images with cloud cover less than 

75%, acquisition dates ranged from 9 January to 28 April (Figure 3.2). No suitable images 

were available for 1986, 1988, 1991-1994, and 1996-1999. The Landsat collections are pre-

processed for atmospheric corrections using the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) routine (Masek et al., 2006). Cloud masking was provided by 

F-mask (Schmidt et al., 2013). The images were topographically corrected using a Sun 

Canopy Sensor (Gu & Gillespie, 1998) and C-correction approach (Teillet et al., 1982). The 

Normalised Difference Vegetation Index (NDVI; Tucker, 1979) was calculated using the 
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standard equation and added to the Landsat data. The NDVI is useful in for analysing 

vegetation in savannahs that do not feature dense forest canopies (Prince and Tucker, 

1986). We used the Google Earth Engine cloud-computing environment for all Landsat 

processing (Gorelick et al., 2017; Moore & Hansen, 2011).  

 

Figure 3.2. Methodological flowchart of our study. 

3.3.2 Fractional Cover Mapping 

3.3.2.1 Training Data Collection 

We employed a land cover classification schema based on the detailed surveys of the NCA 

undertaken in the 1960s by Herlocker and Dirschl (1972) and Pratt et al., (1966). This aligns 

with our previous work on land cover classification in the area (Borges et al., 2020), and is 

ecologically relevant both in terms of habitat usage by species and the management of the 

park. For instance, the highest densities of black rhino occurs in bushland areas (Emslie, 

2020), but in the NCA they can also be found in shrubland, open grasslands and closed 

canopy forest, as such it becomes increasingly important to distinguish between these 

classes (Gadiye et al., 2016). In total, we classified nine land cover types, detailed in Table 

3.1.  
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Table 3.1. Description of the nine main land cover types of the NCA, according to Herlocker 

and Dirschl (1972) and Pratt et al., (1966). 

Land cover 

types 

Description Examples of land cover 

Bareland Minimal or no vegetation cover including 

bare rock, sand, saline or alkaline flats or 

riverine deposits. 
 

Bushland Closed shrub canopy comprising of woody 

plants, bushes or trees, ranging from 3 to 6 

m in height. 
 

Cropland Natural vegetation has been removed and 

replaced by other types of vegetation cover 

that require human activity to maintain it. 
 

Forest Closed canopy trees ranging between to 7-

40m or more in height. The ground is 

mostly covered by bushes and shrubs 

making it difficult for animals to move 

through it.  

 

Grassland Grasses that vary between short (< 25cm) 

and tall (150cm). In certain areas, herbs, 

scarred trees or shrubs can occur. During 

the dry season and during droughts it can 

be almost bareland. 

 

Montane 

heath 

Medium sized vegetation (< 1m) including 

shrubs, grasses, ferns and mosses, usually 

at higher altitudes. 
 

Shrubland Open canopy with medium sized woody 

vegetation (< 6 m in Pratt), surrounded by 

grass or bareland. Some trees and bushes 

can occur. 
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For training data, we collected 890 polygon samples from across the NCA, covering the nine 

land cover classes, based our knowledge of the area, spectral information (Figures S3.2 and 

S3.3), visualisation of high-resolution imagery within Google Earth Pro and the processed 

Landsat images (Figure 3.2). The samples were distributed as follows: 20 for Bareland; 94 

for Bushland; 11 for Cropland; 50 for Forest; 498 for Grassland; 19 for Montane heath; 82 

for Shrubland; 13 for Water, and 103 for Woodland. The samples size was proportional 

based on our earlier land cover map (Borges et al., 2020), to accommodate the greater 

species variability within the large classes (e.g grassland) relative to the smaller more 

classes (e.g. montane heath). We compared multi-temporal Landsat images and aerial 

photography to select only pixels that remained unchanged throughout the study period 

(i.e pseudo-invariant features). For each Landsat image, we extracted pixel values to 

produce an independent annual-level spectral library, creating a total of 26 libraries.  

3.3.2.2 Synthetic Mixing 

To create fractional training data from our spectral library we used the EnMAP-box (version 

3.6; (EnMAP-Box Developers, 2019)) software  to generate synthetic mixture samples 

(Okujeni et al., 2013; Van der Linden et al., 2015). For each class, we generated 1000 

synthetic samples, comprised of different fractional mixtures of all classes. The following 

processes, described in (Cooper et al., 2020), produced each synthetically mixed sample:  

1. We established the likelihood for different multi-class combinations across each 

pixel, and included endmembers according to this weighting.  We set a 20% chance 

for a two classes mixture, 40% for a three classes mixture and 40% for a four classes 

mixture. 

2. From the target class spectral library, one random endmember was pulled. 

3. This selected endmember was randomly allocated a mixing fraction between 0 and 

1. 

Water Ponds, lakes, rivers and swamps (with little 

or no vegetation cover).  

 

Woodland Open or continuous canopy with trees as 

tall as 20m, often surrounded by shrubs, 

bushes or grass but not thicket.  
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4. Additional endmembers were randomly selected from the additional classes and 

added. 

5. The newly added endmembers were randomly assigned mixing fraction, with the 

sum of all fractions equalling one. 

6. Synthetically mixed spectra were generated based on linear combinations of the 

assigned mixing fractions. 

We repeated this process for every synthetic spectra. Finally, we added the original 

endmembers to the synthetic samples and assigned mixing fractions of one or zero for 

spectra belonging to target and non-target classes, respectively. 

3.3.2.3 Regression-Based Unmixing 

We used a Random Forest regression to map vegetation class fractions (Breiman, 2001). 

The Random Forest is a non-parametric machine learning model based on ensembles of 

regression trees, popular for image classification and land cover mapping (Rodriguez-

Galiano et al., 2012; Li et al., 2015; Symeonakis et al., 2018). 

The regression-based unmixing was carried out in the EnMAP-Box 3.6 (EnMAP-Box 

Developers, 2019), an open-source QGIS plugin designed for advanced processing 

workflows of optical remote sensing data (Van der Linden et al., 2015). The procedure was 

repeated 10 times and averaged the 10 predictions for each year using the correspondent 

spectral library. This allowed the inclusion of multiple types of synthetic mixtures into the 

unmixing process while keeping the training sample size low (Okujeni et al., 2017). 

3.3.2.4 Validation of Fraction Maps  

A validation dataset centered on 2010 and 2020 was developed based on visual 

interpretation of high-resolution imagery in Google Earth Pro (Ludwig et al., 2016). Due to 

limited Google Earth imagery and uncertain dates for certain images, imagery between 

2009 and 2014 was aggregated into 2010 and imagery between 2015 and 2020 was 

aggregated into 2020. Validation of model predictions prior to 2010 was not possible as 

earlier images had substantially lower resolution or were unavailable. We validated the 

model predictions by using a stratified random sampling, based on best practise (Olofsson 

et al., 2014). We collected 416 reference pixels for each epoch, resulting in 832 reference 

pixels.  For each reference pixel, a 10x10 grid of 3 m squares (Figure 3.S4) was used and the 

class fractions estimated by a researcher with local knowledge. For statistical validation, 

we calculated the bias, the coefficient of determination (R2) and the mean absolute error 

(MAE) between the reference fractions and predicted fractions.  
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3.3.3 Change Mapping 

To detect changes in the fractional land cover we employed two complementary time-

series analyses. Firstly, to detect the general land cover change we performed a linear 

regression against time on the annual fractional cover maps of each land cover class 

(Herrmann et al., 2005). Changes that were statistically (p > 0.05) or ecologically (cover in 

2020 < 5%) insignificant were masked.  

Secondly, to provide more detailed information on changes specifically in the upland 

forests we applied the Break For Additive Season and Trend (BFAST) method (Verbesselt, 

Hyndman, Newnham, et al., 2010). BFAST is a piecewise linear regression approach that 

combines time-series decomposition with structural breakpoint detection. The statistical 

basis of BFAST is the decomposition of a time-series into trend, seasonal, and residual 

components; with significant changes in the trend component detected by a moving sum 

of residuals (MOSUM) test. BFAST was originally developed for NDVI time-series, however 

it is not specific for any type of data (Verbesselt, Hyndman, Newnham, et al., 2010) and has 

been applied to other vegetation indexes, rainfall data or Landsat bands. (Horion et al., 

2016; Che et al., 2017; Morrison et al., 2018; Platt et al., 2018; Higginbottom and 

Symeonakis, 2020). We used the ‘BFAST0’1 implementation of BFAST, which is tailored for 

non-seasonal (i.e. annual) data, and allowed for a single breakpoint to occur in the time-

series using a P <0.05 significance threshold. The breakpoints identified by BFAST were then 

classified into six change types, based on De Jong et al., (2013): 1) monotonic: increase, 2) 

monotonic: decrease, 3) reversal: increase to decrease 4) reversal: decrease to increase 5): 

interruption: increase with negative break, and 6) interruption decrease with positive 

break. 

Our logic for employing two time-series analyses is as follows: gradual changes (e.g. shrub 

encroachment, grassland degradation) will be best identified using monotonic trend 

analysis (Lewińska et al., 2020), whereas BFAST is well suited for identifying sudden changes 

and reversals that may be obscured within long-term analysis . However, grasslands and 

non-woody areas will fluctuate more on an annual basis, due to climatic variation, and 

benefit from a simpler change model. Furthermore, we employ trend analysis over direct 

comparison of the fractional cover maps to ensure our analysis is robust to variation and 

noise in the input maps. We expect our annual fractional maps to contain errors and noise 

which may distort bi-temporal comparisons. This is analogous to post-classification 

cleaning of hard classification change detections, by removing illogical transitions (e.g. 
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(Griffiths et al., 2018)) or applying statistical techniques such as Hidden Markov Models 

(e.g. (Abercrombie and Friedl, 2016). 

3.4 Results  

3.4.1 Fraction Maps  

The predicted fractional land cover maps (Figure 3.3) successfully distinguished the nine 

land cover types (Table 3.1), and a discrete land cover map shown in Figure 3.4b was 

estimated from the fractional map of 2020 (Figure 3.3). We were able to identify 

transitional areas with highly heterogeneous land cover (Figure 3.3).  For instance, most of 

the NCA is dominated by grassland (Figure 3.3), which transitions into shrubland around 

the centre. The Highland area (Figure 3.1a) is dominated by woody classes (bushland, 

woodland, forest). Figure 3.4a shows an red-green-blue composite of the land cover layers 

aggregated into three main components of savannah landscapes: trees (forest and 

woodland), shrubs (bushland and shrubland) and grasses (grassland). For bushland and 

forest, there are areas of clear separation (Figure 3.4a) but there is also some degree of 

mixture (Figure 3.3). The West side of the NCA mostly comprises of grassland (e.g. the 

Serengeti Plain) with some patchy shrubland around the Ang’ata Salei plain.  

 

Figure 3.3. Fractional cover maps for the nine main land cover classes of the NCA in the 

year 2020. 
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Figure 3.4. (a) RGB composite of the aggregated three main components of savannah 

landscapes: trees (G, forest and woodland), shrubs (R, bushland and shrubland) and grasses 

(B) for the year 2020; locations 1 and 2 are example subsets. (b) Land cover (‘hard’) 

classification for the year 2020. 

Validation statistics for the fractional land cover maps of 2010 and 2020 (MAE and R2) are 

shown in Table 3.2 (full statistics in Table 3.ST1 and ST2 and scatterplots in Figures S3.5 and 

S3.6). Most classes performed well, achieving accuracies between R2 0.61 and 0.95 Figures 

S3.5 and S3.6). The lowest absolute errors occurred in the bareland class with MAE of 2.8 

for 2010 and water with a MAE of 1.63 for 2020. Cropland had highest relative errors with 

R2 of 0.43 and 0.33 for 2010 and 2020 respectively.  Most cross-class confusion occurred in 

transition eco-zones between grassland-bareland and grassland-shrubland. This was 

expected due to the highly heterogeneous nature of these regions. 

Table 3.2. Accuracy of the fractional land covers for the NCA for the years 2010 and 2020. 

Land cover Bare. Bush. Crop. Forest Grass. 
M. 

heath 
Shrub. Water Wood. 

2010 

MAE 2.80 5.08 5.34 4.69 14.18 5.64 6.00 4.47 6.70 

R2 0.90 0.92 0.43 0.88 0.83 0.64 0.77 0.81 0.61 

Bias -3% -6% -8% -6% -1% -8% -3% -6% -8% 

2020 

MAE 2.97 6.13 6.72 6.09 13.67 5.24 6.23 1.63 6.42 

R2 0.89 0.91 0.33 0.84 0.82 0.76 0.76 0.95 0.73 

Bias -2% -10% -9% -7% -1% -8% -2% -10% -8% 

3.4.2 Linear Trends 

Figure 3.5 shows the statistically significant (p < 0.05) linear trends for each individual and 

cover type. Areas with < 5% cover in the respective class for 2020 were masked. There were 
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notable increases and decreases for all land cover types with most of the change in the 

±25% range (Figure 3.6) The most common change in the NCA was decreasing forest by 

~25% coverage, which affected roughly 900 km2 (Figures 3.5 and 3.6). The second most 

common change was grassland coverage declining by 25%, which affected roughly 782 km2 

(Figures 3.5 and 3.6). A sizeable amount of grassland also experienced a decline of up to 

50% (~493 km2), mostly in the Serengeti plains (Figures 3.5 and 3.6). 

 

Figure 3.5. Land cover change according to the linear trend analysis in the NCA between 

1985 and 2020 for all land cover classes. 
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Figure 3.6. Statistically significant (p < 0.05) changes in land cover between 1985 and 2020 

for forest, bushland, shrubland and grassland. 

A majority of forest cover is located in the eastern part of the NCA. Figures 3.7 b and c show 

a clear reduction in fractional cover, particularly visible around Mount Oldeani, throughout 

the highlands and in the south-east side of the Crater rim (Figure 3.7d). There is also some 

patchy increase in forest cover, ranging between 25% and 75% cover in the highlands, 

outside the NCA border near Mount Oldeani and in the montane areas (Figure 3.7d). 

 

Figure 3.7. True colour composite Landsat image for the year 2000 (a). Fraction of forest 

cover in the NCA in the year 2000 (b) and 2020 (c). Forest cover change according to the 

linear trend analysis between 1985 and 2020 in the southeast of the NCA (d). 
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3.4.2.1 Lerai Forest 

Contrarily to its name, the Lerai Forest mostly comprises of low woodland and bushland 

with some forest and shrubland. According to our findings, there were both increases and 

decreases in the fractional cover of forest, bushland and woodland (Figures 3.8 a and c). 

The most obvious change in the Lerai Forest was the decrease in bushland cover, ranging 

between -25% and -75% (covering 1.6 km2), and the increase in woodland (+25% covering 

1 km2; Figures 3.8 b and c). However, the expansion of woody vegetation, specifically forest 

and woodland occurred mostly in the southwest side of the Lerai Forest (Figures 3.8 a and 

c; S7). 

 

Figure 3.8. a, b, c and respective plots (A1 to C2): linear trend changes in forest, bushland 

and woodland in the Lerai Forest (this area is the example Location 1 shown in Figure 3.4) 

3.4.3 BFAST Trends 

Most of the forest change detected by BFAST consisted of monotonic increases and 

decreases (Figure 3.9a). Forest loss was widespread with some focal points in the rim of 
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the Crater, around Mount Oldeani and Empakai Crater. Throughout the Highlands there 

was also a reversal where forest cover increased but then started to decrease. These shifts 

in the vegetation occurred mostly between 2004 and 2009 (Figure 3.9b). 

 

Figure 3.9. (a) BFAST trend analysis results for the southeast side of the NCA showing the 

type of change in forest cover; (b) the year of change in forest cover. 

3.4.3.1 Lerai Forest 

The change map produced using BFAST for the Lerai Forest is shown in Figure 3.10. In the 

northeast side of the Lerai Forest, BFAST detected a consistent monotonic decrease in 

forest cover (Figure 3.10).  Additionally, a large cluster that experienced a monotonic 

increase occurred in the southwest side of the Forest (Figure 3.10). Although significant, 

some of those changes were subtle (< 25%; Figure 3.10, location A2) when compared to 

others (Figure 3.10, location A1). For instance, in location A2 (Figure 3.10) there was a 

consistent increase in cover which remained low. In A1, forest cover increased until 2008, 

when it started to decrease but the changes were more pronounced than in A2. 
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Figure 3.10. Outcome of the trend analysis using BFAST for the Lerai Forest (a). Locations 

A1-A3 are used as examples of time-series plots at the individual pixel level. 
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3.5 Discussion 

Understanding land cover dynamics is increasingly important to improve habitat 

monitoring, preserve biodiversity and ensure sustainable development (Reed et al., 2009). 

Over the last 30 years, the NCA has undergone considerable changes but these remain 

poorly understood due to lack of robust information and detailed maps. Here we 

demonstrate a Landsat-based monitoring strategy, combining synthetic unmixing, machine 

learning regression, and time-series analysis, to quantify sub-pixel change in nine land 

cover classes. Our fractional cover maps for 2010 and 2020 achieved high accuracies for 

most land cover types (Table 3.2, ST3.1 and ST3.2 and Figures S3.5 and S3.6), distinguishing 

the nine main land cover classes but also identifying transitional areas with heterogeneous 

vegetation (Figures 3.3; 4a). Out of our nine land cover types, only cropland scored low 

accuracies (R2 0.43 and 0.33 for 2010 and 2020, respectively), whilst the other classes high 

accuracies (R2 > 0.6, Table 3.2). Souverijns et al., (2020) and (Senf et al., (2020) achieved 

similar accuracies for comparable land cover types, but Nabil et al., (2020) reported low 

accuracies for cropland in the Sahel regions. Using fractional cover maps has proven 

advantageous, as it allows for the detection of more subtle land cover variability and 

changes that cannot be captured by discrete classifications (Suess et al., 2018; Senf et al., 

2020; Souverijns et al., 2020). 

Between 1985 and 2020, we identified significant land cover changes; in particular, declines 

in forest and grassland cover (Figures 3.5-3.7). The most common change using the linear 

trend analysis was a decrease in forest coverage by ~25%, which affected roughly 900 km2 

(Figure 3.6). BFAST also detected a similar trend in the highlands, with a monotonic 

decrease in forest throughout the period (Figure 3.9a). Contrarily, there was an increase in 

bushland cover by 25%, which covered 440 km2 (Figure 3.6). These changes are consistent 

with field studies that have identified forest conversion into bushland due to the removal 

of larger trees (Amiyo, 2006; Masao et al., 2015; TAWIRI & NCAA, 2020). A report by the 

Tanzania Wildlife Research Institute (TAWIRI) and the Ngorongoro Conservation Area 

Authority (NCAA) in 2020 also found a decrease in forest cover between 1978 and 2018. 

These changes were linked to human disturbances namely clearing for settlement or 

cultivation and searching for thatching materials and fuel wood (Kija et al., 2020; Masao et 

al., 2015; TAWIRI & NCAA, 2020). In addition, (Mills, 2006), studied the dieback of Acacia 

xanthophloea (commonly known as fever tree and can reach 25 meters) in Ngorongoro 
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Crater identified natural disturbances, specifically herbivory, (mainly by elephants, 

Loxodonta africana), disease, and salinity as contributors for the demise of large trees. 

Forest decline has previously been reported across Africa and is a common indicator of land 

degradation (Higginbottom & Symeonakis, 2020; McNicol et al., 2018). Souverijns et al., 

(2020) mapped thirty years of land cover changes over the Sudano-Sahel and detected 

forest degradation based on fractional cover maps. McNicol et al., (2018), who used radar 

data to study losses in carbon due to deforestation and forest degradation in savannahs, 

reported similar trends. Our results support those findings and show that Landsat data and 

fractional cover maps can be used to detect and monitor forest degradation. Forests have 

an important role providing critical ecosystem services and supporting biodiversity. As 

such, forest degradation threatens human populations, as they provide wood, natural 

remedies, and forage for livestock and wildlife, which also depends heavily on the 

resources that the forest supplies (Swanson, 2007). In addition, forests promote carbon 

sequestration and therefore, directly affect global carbon budgets and climate change ( 

McNicol et al., 2018; Venter et al., 2018). In the NCA, degradation of forests threatens the 

pastoralist livestock economy plus availability of good habitat for wildlife species adapted 

to such particular forest type.   

Serengeti Plains 

The loss of palatable grasses has been identified as a threat to wildlife, the Maasai 

pastoralists and the NCA ecosystem as a whole (Amiyo, 2006; Mills et al., 2006). We found 

that grassland cover decreased in the NCA during the study period (Figure 3.5 and 6). Figure 

3.6 shows between 25% and 50% decrease in grassland cover (493 km2 to 782 km2), mostly 

located in the Serengeti plains (Figures 3.5 and 3.6). In the same area, the increase in 

shrubland (~345 km2) and woodland cover (~497 km2) is also visible (Figures 3.5 and 3.6). 

Previous research reported a decline in grassland and woody encroachment in the NCA 

which supports our findings (Amiyo, 2006; Niboye, 2010b; Masao et al., 2015). The no-

burning policy imposed in the 1980s, was identified as a main driver for land cover changes, 

specifically woody encroachment in the NCA (Amiyo, 2006; Homewood et al., 2001). In 

addition, grazing pressure, by wildlife and livestock, also facilitates development of woody 

plant communities by removing fine fuels and reducing fire frequency and intensity (Archer 

et al., 2017). 
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Shrub encroachment, often linked to grassland decline and land degradation, is a serious 

threat to ecosystem services and biodiversity (Higginbottom & Symeonakis, 2020; 

Symeonakis et al., 2018). Previous research found an increasing trend of woody cover 

throughout Africa (Higginbottom et al., 2018; Ludwig et al., 2019; Symeonakis et al., 2018 

). Venter et al., (2018), reported that encroachment is accelerating over time and that 

African savannahs are at high risk of widespread vegetation change. Stevens et al., (2016), 

measured woody cover change between 1940 and 2010 and found similar results in areas 

with low rainfall (< 650mm). Contrarily to forest degradation, shrub encroachment can 

have a positive impact in carbon storage (McNicol et al., 2018). However, the loss of 

grassland areas raises issues for wildlife, the Maasai pastoralists, and their livestock 

(Niboye, 2010b). In the Serengeti plains, densification and encroachment of woody cover 

can have a negative effect on ground water recharge, grazing potential (Angassa & Baars, 

2000; Stevens et al., 2017), tourism, (Gray & Bond, 2013) and is related with increased costs 

for woody vegetation clearing (Grossman & Gandar, 1989). Woody encroachment into 

grasslands can potentially be reversed by a combination of management (frequent fires) and 

climatic events (drought; Roques et al., 2001). In these areas, using fire as a management 

strategy, can decrease shrub and invasive species, and has been successfully employed 

throughout the continent (Sankaran et al., 2005; Venter et al., 2018). Additionally, reducing 

grazing pressure by decreasing livestock numbers can positively affect grassland areas 

(Archer et al., 2017). As such, given the infeasibility of reducing livestock numbers, trailing 

fire management to assess the potential for limiting encroachment and improving 

rangeland condition may be beneficial. 

Lerai Forest 

The earliest records of change in the NCA dates back to the 1960s, when the dieback of the 

Lerai forest was first suggested (Amiyo, 2006; Mills, 2006). Our results show contrasting 

trends: a significant decline in woody cover within the original range of Lerai Forest (Figure 

3.S7) and an overall increase in forest cover in the periphery (Figures 3.8a, 3.10). These 

results suggest that Lerai Forest is re-establishing outside its original range (Amiyo, 2006). 

Mature fever trees, which can reach heights up to 25 meters and require high water tables 

(Homewood et al., 2001), dominated the Forest, however since their decline they have not 

been replaced by young Acacia trees (Amiyo, 2006). The decrease in ground water 

availability, due to higher influx of tourism and diversion of streams, as well as floods of the 

salt lake, Lake Magadi, contributed to an increase in soil salinity, which negatively affects 
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vegetation (Amiyo, 2006; Boone et al., 2007; Mills, 2006). Mills (2006) suggested that 

sodicity (e.g. the accumulation of sodium salt in the soil) can exacerbate salinity-induced 

drought stress in vegetation, by limiting entry of rainwater into the soil, which was already 

low due to a reduced rainfall (Figure 3.S1). Furthermore, sodicity can promote sodium 

concentrations in trees, which has an additional detrimental effect by attracting elephants 

and other herbivores (Homewood et al., 2001; Mills, 2006). Management strategies were 

implemented and in 2006, the stream was diverted back to supplying the Forest (Mills, 

2006, Figure 3.10, location A1). This increased the freshwater supply to the area and 

promoted the flushing of salts from the soil (Mills, 2006). The southwest side, closer to the 

Crater rim, is more fertile and has a lower soil salinity due to its proximity to the stream, 

which explains the increase in forest and woodland cover (Figures 3.8 a and c; 3.10 location 

A1; Elisante et al., 2013, Mills, 2006). Exclusion of elephants from Lerai was considered in 

2006 but was never implemented (Mills, 2006). The dieback in Lerai may be jeopardizing 

the long-term conservation of the black rhinoceros (Diceros bicornis michaeli) population 

in the caldera (Mills, 2006). Historically, the Lerai Forest was used for shelter and browse 

by the rhinos and it has been suggested it was also critical for hiding new-born rhinos from 

predators (Goddard, 1967, 1968). Consequently, the recovery of the Lerai Forest is an 

essential priority for the success of black rhino population in the NCA (Mills et al., 2006). 

3.6 Conclusion 

Mapping and quantifying land cover changes is increasingly important to improve habitat 

monitoring, preserve biodiversity and ensure sustainable development (Reed et al., 2009). 

Savannah landscapes, such as the NCA, however, are heterogeneous and complex 

combinations of vegetation. Our results demonstrate that the regressing-based unmixing 

approach is effective in mapping several spectrally similar vegetation types. In addition, the 

combination of linear trend analysis and BFAST analysis provided highly detailed insights 

into land cover change throughout the 35-year study period. We identified two dominant 

land change dynamics: the replacement of uplands forest with bushland, and a transition 

from grassland to shrubland in the Serengeti Plains. These changes threaten the wellbeing 

of livestock, and consequently the livelihoods of pastoralists but also the wildlife 

dependent on grazing areas. Changes are likely due to a combination of climate change and 

natural occurring changes, such as rainfall patters, vegetation succession, herbivory; and 

human activities, namely, management policies, tourism and increase in human 

populations and livestock. In conclusion, we provide much needed and highly accurate 
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information on long-term land cover changes in the NCA, which can support sustainable 

management and conservation. In addition, our methodological approach can be applied 

elsewhere to understand savannah changes. 
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3.8 Supplementary material - Chapter 3 

 

Figure 3.S1. Rainfall in The Ngorongoro between January 1985 and June 2020. 

 

Figure 3.S2. Example of spectral data using near-infrared, green and red bands for bushland, 

forest, montane heath, shrubland and woodland for the year 2020.  
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Figure 3.S3. Example of spectral data using SWIR, red and green bands for bushland, forest, 

montane heath, shrubland and woodland for the year 2020. 

 

 

Figure 3.S4. Grid used for validation.  
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Figure 3.S5. Validation 2010 

 
Figure 3.S6. Validation 2020 

 

Figure 3.S7. Lerai Forest range: (a) Landsat imagery in December 1985; (b) Landsat imagery in 

February 2020; (c) CNES/Airbus in January 2020.  
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Table 3.ST1. Full validation statistics 2010 

Landcover Bareland Bushland Cropland Forest Grassland 
Montane 

heath 
Shrubland Water Woodland 

ME 0.15 1.34 3.59 2.38 -11.76 3.38 -3.26 2.55 1.14 

ME.se 0.25 0.41 0.45 0.34 0.78 0.42 0.41 0.40 0.53 

MAE 2.80 5.08 5.34 4.69 14.18 5.64 6.00 4.47 6.70 

MAE.se 0.21 0.33 0.40 0.28 0.68 0.36 0.32 0.36 0.43 

RMSE 5.17 8.43 9.76 7.38 19.79 9.20 8.93 8.61 10.95 

RMSE.se 4.27 9.30 20.06 7.10 27.86 12.61 7.76 14.04 18.46 

R2 0.90 0.92 0.43 0.88 0.83 0.64 0.77 0.81 0.61 

cor 0.95 0.96 0.66 0.94 0.91 0.80 0.88 0.90 0.78 

Table 3.ST2. Full validation statistics 2020 

Landcover Bareland Bushland Cropland Forest Grassland 
Montane 

heath 
Shrubland Water Woodland 

ME -0.64 3.66 3.83 2.19 -11.97 3.16 -3.74 0.10 2.28 

ME.se 0.29 0.39 0.51 0.46 0.75 0.38 0.40 0.26 0.43 

MAE 2.97 6.13 6.72 6.09 13.67 5.24 6.23 1.63 6.42 

MAE.se 0.25 0.30 0.43 0.36 0.68 0.32 0.31 0.25 0.31 

RMSE 5.86 8.66 11.07 9.56 19.49 8.45 8.93 5.38 9.02 

RMSE.se 6.40 6.86 19.40 13.35 27.74 10.39 7.73 11.02 7.78 

R2 0.89 0.91 0.33 0.84 0.82 0.76 0.76 0.95 0.73 

cor 0.94 0.95 0.58 0.91 0.90 0.87 0.87 0.97 0.86 
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Chapter 4 – Assessing habitat suitability for black rhino in the 
Ngorongoro Conservation Area 

Abstract: Efforts to identify optimal habitat for wildlife conservation are crucial for 

preserving biodiversity and promote sustainable coexistence between wildlife and 

communities. Our study focuses on identifying potential black rhino habitat within the 

Ngorongoro Conservation Area (NCA) during both wet and dry seasons, while also assessing 

the impact of human activities on habitat quality. Approximately 36% of the NCA is suitable 

for black rhino throughout the year, however, seasonal shifts influence habitat suitability. 

Anthropological factors impact habitat suitability, but this depends on the season. During 

the wet season, when human factors are reduced, habitat suitability increases to 53.6%. 

On the other hand, in the dry season, browse availability decreases and rhinos become less 

selective of areas where they move to fulfil their nutritional requirements, with 

anthropological pressures becoming less important. Our study also identified areas that are 

consistently suitable throughout seasons and not severely impacted by human factors, 

such as between the Olmoti and Ngorongoro Craters. The Oldupai Gorge only highlights 

small suitable patches, however, it used to sustain a large population of rhinos in the 1960s. 

Land cover changes seems to have decreased the suitability of the Gorge, but the area 

should be studied further before being deemed unsuitable. Lastly, our study also found 

that is imperative to combine ground truthing with remotely sensed data. Remote sensing 

heavily relies on theoretical data and often overlooks crucial field variables such as shelter 

locations. Therefore, integrating these approaches ensures more precise and reliable 

results in habitat suitability assessments. Overall, the findings provide valuable insights into 

identifying suitable habitat for black rhinos and highlight the need for enhanced 

conservation efforts to safeguard populations amidst changing environmental and 

anthropogenic pressures. 

4.1 Introduction 

Conservation and management of critically endangered species is an urgent priority due to 

escalating threats to biodiversity worldwide. To ensure species long-term survival, it is 

essential to understand habitat requirements and the factors influencing animal 

distribution (Boyce et al., 2016; Emslie, 2020). These requirements comprise a range of 

ecological factors, including browse availability, water sources, breeding areas, and shelter 
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(Tatman et al., 2000; Freeman et al., 2014). Additionally, understanding these parameters 

provides valuable insights for land-use planning, protected area establishment, and the 

creation of wildlife corridors (Emslie, 2020). Such measures promote gene flow, reduce 

habitat fragmentation, and facilitate movement between suitable habitats, all of which are 

vital for genetic diversity and viability of wildlife populations (Kohi and Lobora, 2019; 

Emslie, 2020). By identifying and preserving areas that fulfil population requirements, 

conservation efforts can focus on targeting strategies that maintain or restore critical 

habitats necessary to ensure species recovery. 

The black rhino (Diceros bicornis) is a critically endangered species with a global population 

of circa 5,630 individuals, approximately 1,000 of which are Eastern black rhino (D. b. 

michaeli), mostly located in Kenya and Tanzania (Knight, 2019; Emslie, 2020). They are 

generally solitary, or form small family groups, reaching sexual maturity at around 5-7 years 

with a lifespan of approximately 35-40 years (Goddard, 1967; Emslie and Adcock, 1994). 

Black rhinos are selective browsers, generally preferring the woody species found in 

savannah and bushveld areas (Emslie, 2020). Although the primary threat to black rhino is 

poaching - driven by high demand for rhino horn - habitat loss from deforestation, livestock 

grazing, human settlement development and agricultural expansion poses an increasing 

threat to rhino populations  (Leader-Williams, 2002; Chanyandura et al., 2021). Habitat loss 

also increases intra-species competition for limited resources, further exacerbating the 

population’s vulnerability to external pressures (Landman et al., 2013).  

The Ngorongoro Conservation Area (NCA) in Tanzania serves as a crucial stronghold for the 

Eastern black rhino, hosting approximately 30% of the country's total population (Kohi and 

Lobora, 2019). In recent years, increased anti-poaching patrols and monitoring in the NCA 

have allowed the black rhino population to reach 55 individuals (Kohi and Lobora, 2019). 

Given this recent population growth, it is essential to identify habitat areas capable of 

supporting a growing, and eventually larger, rhino population (Emslie and Brooks, 1999; 

Kohi and Lobora, 2019). By pinpointing these areas, conservation efforts can prioritize their 

protection and that of their preferred habitat, thus promoting a favourable environment 

for black rhino conservation (Buk and Knight, 2012; Lush et al., 2015). 

Seasonal variations significantly impact plant growth and availability, influencing the 

nutritional content and abundance of preferred browse for black rhinos (Baltensperger and 
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Joly, 2019; Van Moorter et al., 2020). During the dry season, the reduction in green browse 

prompts rhinos to seek areas with higher browse density or to adapt their movement 

patterns to find alternative food sources, and therefore investigating seasonal patterns 

becomes crucial in evaluating habitat suitability (Baltensperger and Joly, 2019; Van 

Moorter et al., 2020).  

Black rhinos tend to avoid areas of human activity, such as settlements and roads 

(Muntifering et al., 2021). In 2013, the NCA received over 647,000 visitors, with more 

recent numbers approaching one million (Melita, 2015; Slootweg, 2016). This growth has 

generated substantial economic revenue and facilitated extensive infrastructure growth, 

but also led to higher rates of disturbance in and around the Crater (Harris et al., 2020). 

The Maasai community residing in the NCA also increased from approximately 8,000 

people in 1959 to nearly 100,000 by 2018 (Manzano and Yamat, 2018; Lyimo et al., 2020). 

Alongside this demographic expansion, the estimated livestock population associated with 

the community surpassed 800,000 in 2018 (Manzano and Yamat, 2018; Lyimo et al., 2020). 

The combination of these factors provides a unique opportunity to study how human 

disturbances impact black rhino habitat suitability.  

Species distribution models (SDMs) combine species occurrences with spatial data based 

on environmental and ecological variables of a given geographic area to predict species 

distributions (Elith et al., 2006). SDMs are widely used in invasive species management, 

climate change impact assessment, habitat restoration, ecological research, land use 

planning and wildlife management (Guisan and Zimmermann, 2000; Guisan and Thuiller, 

2005; Araújo and New, 2007; Peterson et al., 2008; Guisan et al., 2013; Kramer-Schadt et 

al., 2013). SDMs can provide information that facilitates efficient conservation 

management by pinpointing key habitats, potential migration corridors, and areas that 

require increased protection (Guisan and Thuiller, 2005; Elith and Leathwick, 2009). For 

instance, Pratzer et al., (2023) showed how combining SDMs with dispersal scenarios could 

provide valuable information regarding potential habitat expansion of large carnivores.  

Hybrid models combining SDMs with population dynamics have also been used in Canada 

to identify essential habitat areas for the Ord's kangaroo rat (Dipodomys ordii; (Heinrichs 

et al., 2010).  
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Previous conservation efforts for black rhinos have focused on establishing protected areas 

and increasing security using anti-poaching patrols and fencing (Brett, 1993). However, 

habitat quality and food availability are equally important factors that need to be 

considered to sustain and promote population growth (Muya and Oguge, 2000; Mills et al., 

2003; Buk and Knight, 2010). Within this framework, the overarching aim of this research 

is, therefore, to provide the NCA management with accurate data to support black rhino 

population expansion and conservation.  We do this by providing answers to the following 

research questions: (i) how does seasonal variability impact habitat suitability for black 

rhino; (ii) how do human disturbances impact habitat suitability; and (iii) in the absence of 

field data, can theoretical models be used to predict habitat suitability. 

4.2. Study area 

The NCA is a protected area located in northern Tanzania. During the wet season, 

temperatures fluctuate between 7.5° and 14.5 °C, while in the dry season, they range from 

10.6° to 19.6 °C (Amiyo, 2006). Rainfall demonstrates distinct patterns featuring two wet 

seasons from March to May and October to December, as well as two dry seasons from 

January to February and June to October (Frederick D. L. Hunter et al., 2020). Annual rainfall 

varies from 450mm/year in lowlands to 1200 mm/year in highlands (Boone et al., 2006). 

The NCA includes diverse vegetation types, including highland grassland plains, open 

canopy woodland, closed canopy forests, and savannah grasslands (Borges et al., 2020; 

Herlocker and Dirschl, 1972, Figure 4.1). The vegetation suitable for grazing is essential for 

wildlife but also Maasai livestock that either reside within, or are passing through, the NCA 

(Swanson, 2007). The NCA has an open border policy that allows grazing livestock for 

resident and non-resident Maasai; however, the Northern Highland Forest Reserve and the 

Crater floor are restricted areas (Swanson, 2007. 

Changes in management policy over the years have been a source of conflict between 

communities and the Ngorongoro Conservation Area Authority (NCAA; Amiyo, 2006; Boone 

et al., 2006). For instance, a lifting of the cultivation ban led to an increase in cultivated 

areas (Boone et al., 2006; Niboye, 2010; Masao et al., 2015). The conversion of land to 

cultivation fields creates environment pressures through vegetation changes and habitat 

patchiness (Scogings et al., 2012; Wigley et al., 2014). Additionally, a fire ban implemented 

32 years ago contributed to grass growth and spread of invasive plant species as there was 



129 

 

 

no vegetation control other than herbivory (Niboye, 2010). The spread of invasive 

unpalatable grass species decreases the pasture suitable for cattle so the pastoralists resort 

to cultivation to sustain their households (Swanson, 2007). A shift from traditional pastoral 

systems to cultivation, combined with an increase in human population, poses a serious 

threat to the ecosystem and is likely to be detrimental in the long-term (Mills et al., 2003; 

Niboye, 2010).  

The NCA has undergone significant habitat changes, particularly experiencing forest loss 

and woody encroachment (Borges et al., 2022). While some of these changes may be 

natural, driven by herbivory, rainfall, and vegetation succession, many are attributed to 

human activities, including management policies, tourism development, and the expanding 

human population and livestock (Mills et al., 2003).  

With regards to rhino populations, in 1966, the Crater and Oldupai Gorge areas within the 

NCA (Figure 4.1) supported 108 and 69 rhinos, respectively (Goddard, 1967). By 1993, 

poaching had reduced rhino population to just 13 individuals (Kohi and Lobora, 2019). More 

recently, a relatively high rate of growth has been reported, leading to the current total of 

55 animals as of 2018 (Kohi and Lobora, 2019).  

 

Figure 4.1. The Ngorongoro Conservation Area. Locations A1 and A2 are example subsets. 

4.3. Datasets and methods 

Field data on the presence/absence of animal species are invaluable for habitat suitability 

modelling. However, it is often the case that conducting fieldwork is not feasible, e.g., due 
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to armed conflict in the area of interest. We mapped rhino habitat suitability in the NCA 

with and without field data on rhino presence and compared the outcomes to assess 

whether, in the absence of field data, a theoretical habitat suitability model can be used 

instead. The Ngorongoro Crater was included in the analysis but has been filtered out from 

the maps at the request of the NCAA to ensure the safety of the resident rhinos 

To model habitat suitability with field data, we first assumed that areas currently used by 

rhinos are suitable and used satellite imagery to identify other suitable areas beyond their 

current range. We employed a comprehensive approach integrating Sentinel-2 and 

PlanetScope images, vegetation indices and human distribution data. We employed the 

Recursive Feature Elimination (RFE) technique and random forest (RF) algorithm to identify 

the most relevant features that contribute to habitat suitability prediction (Breiman, 2001; 

Guyon et al., 2002; Demarchi et al., 2020). RFE systematically evaluates different 

combinations of features and eliminates the least significant ones reducing model 

complexity (Guyon et al., 2002). The model was trained with presence and pseudo-absence 

data collected in the field. To assess the effect of seasonal variability on habitat suitability, 

we used satellite data from both the dry and the wet seasons and assessed them 

separately. To investigate how habitat suitability is impacted by the presence of humans 

and livestock, we ran the RFE and RF with two versions of the human activity data: one with 

the current situation and a simplified one with all settlements and livestock removed, 

together with some of the roads. The output was four suitability maps: one for each season, 

with the current human activity data and with the simplified less intense version. 

To map habitat suitability without field data: we employed fuzzy logic using land cover data 

(scored according to their ability to fulfil rhino diet requirements) and human disturbances 

(using both the current situation as well as the simplified, less intense version, Borges et 

al., 2020; Goddard, 1968; Muntifering et al., 2021). Fuzzy logic analysis is widely used in 

predictive modelling to map habitat suitability (Adriaenssens et al., 2004; Zabihi et al., 

2017; Gwynn and Symeonakis, 2022; Pestka et al., 2023). The fuzzy approach assigns a 

probability score to classes identifying the ranges between boundaries of each class and 

can be employed in the absence of field data (Woodcock and Gopal, 2000; Qiu et al., 2014). 

The output was two suitability maps: one with the current human activity data and one 

with the simplified one. 
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4.3.1 Datasets 

4.3.1.1 Sentinel-2  

We used all Sentinel 2 images acquired over the study area between 1 March 2022 and 30 

September 2022 with less than 75% cloud cover. Level 2 images were processed into 

analysis ready data products using the Framework for Operational Radiometric Correction 

for Environmental monitoring (FORCE) software version v.3.7 (Frantz, 2019), following the 

approach and parameters detailed in Borges et al. 2020. Finally, we calculated 14 

vegetation indices (Table 4.1) that have been employed in vegetation studies to detect 

habitat types. These were then added to the Sentinel-2 spectral bands. 

Table 4.1. Vegetation indices added to the Sentinel-2 stack. 

Name Equation and derivation Reference 

Normalized Difference 
Vegetation Index (NDVI) (NIR – R)/(NIR + R)  Tucker, 1979 

Green Normalized Difference 
Vegetation Index (GNDVI) (NIR – G)/(NIR + G) 

Gitelson et al. 
1996 

Normalized Difference Red 
Edge (NDRE) (NIR-RE1)/(NIR+RE1) Barnes, 2000 

Modified Normalized 
Difference Water Index 
(MNDWI) (G-SWIR1)/G+SWIR1) Xu, 2006 

Normalized Difference Water 
Index (NDWI) (NIR – SWIR1)/(NIR +SWIR1) Gao, 1996 

Inverted Red Chlorophyll 
Index (IreCI) (NIR – R)/(RE1/RE2)  Frampton, 2013 

Pigment Specific Simple Ratio 
(PSSRa) NIR/R Blackburn, 1998 

Normalized Difference Index 
4 and 5 (NDI45) (RE1 – R)/(RE1 + R) Delgido, 2011 

Chlorophyll Index Red-Edge 
(CIRE) ((NIR/RE1) – 1.0) 

Gitelson et al., 
2006 

Sentinel-2 Red-Edge Position 
(S2REP) 

705 + 35 * ((((NIR +R)/2) – RE1)/(RE2 
-RE1)) Frampton, 2013 

MERIS Terrestrial Chlorophyll 
Index (MTCI) 

(NIRred – Red_edge) / (Red_edge – 
Red) 

Dash and Curran, 
2004 

Modified Soil-Adjusted 
Vegetation Index 2 (MSAVI2) 

[(RE1 – R) – 0.2 * (RE1 -G)] * (RE1 / 
R) Richardson, 1977 

Modified Chlorophyll 
Absorption in Reflectance 
Index (MCARI) 

2.5 * ((NIR – R)/((NIR + 6* R – 7.5 * 
B) + 1)) Daughtry, 2000 

Enhanced Vegetation Index 
(EVI) (2.5*((NIR – R)/ ((NIR + (2.4 * R) + 1)) Liu, 1995 
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4.3.1.2 PlanetScope  

Planet data were extracted from the Planet Labs Public Benefit Corporation (PBC) database 

for the dry (October 2022) and the wet season (March 2022) at a spatial resolution of 4.7 

meters (Planet Team, 2022). Adding the Planet data to the analysis enhances the spatial 

resolution, facilitating the distinction of spectrally similar habitats (Symeonakis et al., 

2019).  

4.3.1.3 Human activity 

Settlement data were incorporated in the habitat suitability analysis, including the location 

of villages, towns, tourism infrastructure and any other building identifiable in the high-

resolution Google imagery (CNES/Airbus). The initial settlement data, obtained from the 

2012 Population and Housing Census, were extracted from the Tanzania National Bureau 

of Statistics database (nbs.go.tz) and updated using Google Earth Pro (v. 7.3.6.9326, Ludwig 

et al., 2016) to account for changes since the initial census. 

Black rhinos are known to avoid areas that humans frequent, namely surrounding lodges, 

camping sites, roads or settlements (Muntifering et al., 2021). In the NCA specifically, this 

behaviour has been suggested as a possible driver of rhino distribution (Mills et al., 2003; 

Gadiye et al., 2016). To establish how settlements impact habitat suitability, a new 

simplified settlement layer was created which only included the lodges and ranger stations 

and excluded villages. We created the road network data via Manual digitisation over 

Airbus imagery acquired between 2016 and 2022 using Google Earth Pro (v. 7.3.6.9326, 

Ludwig et al., 2016). We identified all existing main roads used for tourism as well as smaller 

roads used by the local population to reach villages and towns. To assess the effect of roads 

on habitat suitability, we also developed a simplified road dataset, which included only 

tourism-related roads, as these roads are expected to continue being used in the 

foreseeable future.  

Finally, the livestock presence/absence data were created based on current NCA policies. 

Currently, livestock is permitted anywhere except in the Ngorongoro Crater and the 

Northern Highland Forest Reserve. For the reduced activity version, livestock was removed 

from all the NCA. 



133 

 

 

4.3.1.4 Land cover layer 

The land cover layer we used in our modelling came from our previous work in the area 

Borges et al., (2020): this dataset was based on Sentinel 1 and Sentinel 2 data from the dry 

and short-dry season and comprises of nine land cover classes at a 10m resolution (overall 

accuracy of 86.3 ± 1.5%). 

4.3.1.5 Rhino presence data  

The training samples were collected between March and September 2023 to cover both 

the wet and dry seasons. A total of 272 samples were collected: 109 presence and 163 

pseudo-absences. Each data point comprised of 30-m diameter circular plots. Presence 

data were established through the identification of direct signs, such as rhino sightings, or 

indirect signs, like tracks, bites on vegetation or dung. Pseudo-absence data refers to an 

area where there were no recorded sightings of black rhinos by the monitoring team over 

the years. Pseudo-absence data were randomly collected in areas that exhibited 

comparable conditions in terms of vegetation composition, geography, water presence, 

etc., known to be suitable for black rhinos (Phillips et al., 2006, 2009).  

4.3.2 Methods 

4.3.2.1 Recursive Feature Elimination 

We used Recursive Feature Elimination (Guyon et al., 2002) in RStudio environment to 

identify the optimal band combination, for highest accuracy, out of the 31 available bands 

(10 Sentinel-2, 14 VIs, 4 PlanetScope, 3 human disturbance) for the two distinct seasons. 

The random forest algorithm, embedded in RFE, is an efficient non-parametric machine 

learning model based on ensembles of regression trees, commonly used for image 

classification and land cover mapping (Rodriguez-Galiano et al., 2012; Li et al., 2015; 

Symeonakis et al., 2018). 

Each season had its own training data and 80% was allocated to train the model with the 

remaining 20% left aside for validation. RFE systematically evaluates different 

combinations of bands by eliminating the least significant bands and assessing their impact 

on model performance (Guyon et al., 2002). This approach helps identify the most 

informative bands for accurate classification of habitat (Higginbottom et al., 2018). The RFE 

process was conducted separately for the dry and wet seasons to determine the best band 

combination for each season. Validation was then performed, and the prediction maps 
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produced for each season using the best band combinations identified through the RFE and 

the raster package in R.  

4.3.2.2 Fuzzy analysis 

To assess rhino habitat suitability, each land cover type was assigned a score based on 

available information on habitat utilisation for the NCA (Table 4.2, Goddard, 1968). The 

scoring system ranged from 0.0 to 1.0 (Table 4.2), with 0.0 representing unsuitable habitat 

and 1.0 representing highly suitable habitat, as suggested by Gwynn (2022) for the 

allocation of fuzzy membership scores. 

Table 4.2. Suitability score for each land cover type.   

Land cover type Score Justification 

Bareland 0.0 No browse available 

Bushland 1.0 High browse available, shelter, water sources 

Cropland 0.0 No browse available, human-wildlife conflicts 

Forest 0.4 Moderate browse available, shelter, water sources 

Grassland 0.0 Little browse and no shelter 

Montane heath 0.0 Little browse available 

Shrubland 1.0 High browse available, shelter, water sources 

Water 0.0 Usually salt water, no browse available 

Woodland 0.6 Browse available, shelter, water sources 

We applied fuzzy logic to develop scored maps based on land cover types expected to fulfil 

rhino food requirements, and human disturbances, identifying areas that were expected to 

be suitable (Goddard, 1968; Borges et al., 2020; Muntifering et al., 2021). Fuzzy 

membership (linear) was applied separately to the current and simplified versions of the 

roads and settlements datasets, generating suitability maps for each variable. Distances 

from the roads or settlements between 0km and 2.5km were scored as unsuitable (=0), 

while distances over or equal to 2.5km were assigned a value of 1.0 (i.e., suitable). These 

values were based on expert knowledge and corroborated by the presence data during the 

field work. The categorical land cover data was reclassified according to Table 4.2, followed 

by the fuzzy membership steps described above. Finally, fuzzy overlaying was employed, 
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and the three outputs were added together to create the habitat suitability map without 

field data.  

4.4. Results 

4.4.1 Habitat suitability using field data 

The best combination of layers for the wet season (Table 4.3) included 11 bands and 

achieved an accuracy of approximately 76.2%. For the dry season, the best data 

combination comprised of 13 layers and achieved an accuracy of 88.2%.  

Table 4.3. Best combination of layers from RFE for both seasons. 

Wet season Dry season 
Roads Sentinel-2 REDEDGE3 
MSAVI2 Sentinel-2 REDEDGE1 
Settlements Sentinel-2 BROADNIR 
NDVI Sentinel-2 Red 

NDWI Sentinel-2 Green 

Planet Scope NIR Planet Scope NIR 

NDRE Settlements 

Livestock Sentinel-2 SWIR1 

Planet Scope Blue Sentinel-2 Blue 

Planet Scope Red Planet Scope Blue 

Sentinel-2 REDEDGE1 CRE 

  PSSRa 

  GNDVI 

The NCA comprises of approximately 3377 km2 (36.9%) of potentially suitable habitat for 

black rhino during the wet season alone (Figure 4.2A). Similarly, during only the dry season, 

the suitable habitat covers approximately 3263 km2 (35.6%) of the NCA. The area that 

remains suitable through both seasons covers 1912 km2. This includes the Ngorongoro 

Crater (NC), which has been filtered out at the request of the Ngorongoro Conservation 

Area Authority (NCAA) to ensure animal safety. The Oldupai Gorge is mostly unsuitable 

except for a few patches during the dry season and around the Gorge during the wet season 

(Figure 4.2 A1-B1). The area between Olmoti Crater and the NC (Figure 4.2 A2-B2) remains 

suitable for black rhino throughout both seasons. 
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Figure 4.2. Suitable habitat with current human disturbances (A); and with simplified 

human disturbances (B). A1 -B2 are example subsets. The Ngorongoro Crater has been 

removed for safety reasons. 

Under simplified human disturbances, the suitable area during solely the wet season area 

increases by 1526.5 km2 (16.7%) covering 4903 km2 (53.6%) of the entire area (Figure 4.2B). 

During the dry season the NCA remains almost unchanged covering approximately 3344 

km2 (35.5%) once the human disturbances are simplified (Figure 4.2B). The area that 

remains suitable through both seasons improved by 312 km2 covering 2224 km2. The 

Oldupai Gorge and surrounding area becomes more suitable once human disturbances are 

simplified during the wet season (Figure 4.2 B1). The area between Olmoti Crater and the 

NC suitable for black rhino under both seasons (Figure 4.2 B2).  

4.4.2 Habitat suitability without field data 

The suitability maps of the fuzzy membership analysis show woody vegetation areas as dark 

green (>90% suitability, Figure 4.3 A). Most of the NCA, including the Serengeti plains and 

the NC, is comprised of open grasslands with little or no vegetation and is classified as 

unsuitable (<27% suitability, Figure 4.3 A). When human disturbances are reduced the 
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suitable area increases throughout (Figure 4.3 B). The Oldupai Gorge and highlands 

between the NC and Olmoti Crater also become more suitable (Figure 4.3 A1-A2, B1-B2). 

 

Figure 4.3. Fuzzy membership output maps with current human disturbances (A); and with 

simplified human disturbances (B). A1 – B2 are example subsets. The Ngorongoro Crater 

has been removed for safety reasons. 

4.5. Discussion 

Identifying optimal habitat suitability is paramount for targeted conservation efforts, to 

safeguard biodiversity and promote sustainable coexistence between wildlife and 

communities (Emslie, 2020). In the context of critically endangered species, such as the 

black rhino, it becomes increasingly important to detect key habitat that can support 

growing populations (Kohi and Lobora, 2019; Emslie, 2020). Here, we identified potential 

black rhino habitat, for the wet and dry seasons and assessed how human activities impact 

habitat quality within the NCA.  

Our results show that when mapping habitat, using dry season data (88.2%) produces 

higher accuracy results then during the wet season (76.2%). Dry season data is often 
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preferred due to lower cloud cover and higher contrasts between grass and woody plants 

(Haro-Carrion and Southworth, 2018; Higginbottom et al., 2018) . There are also differences 

between the best combination of data for each season (Table 4.3). For instance, during the 

dry season the spectral bands are more relevant than anthropogenic factors when mapping 

suitability (Table 4.3). The natural seasonal shifts can explain this, as the decrease in browse 

availability forces the animals to frequent areas with different vegetation (Baltensperger 

and Joly, 2019; Van Moorter et al., 2020). Contrarily, during the wet season, when there is 

plenty of browse available, the anthropogenic factors (roads, settlements, and livestock 

presence) become more important to identify suitable habitat as the availability of more 

food often means that the rhinos can be more selective (Table 4.3).  

Seasonal differences  

During the dry season potentially suitable habitat for black rhino covers 35.6% (3263 km2) 

of the NCA (Figure 4.2A). However, in context of conservation, it is essential to account for 

seasonal changes as often wildlife is confined to protected areas and unable to migrate 

long distances (Baltensperger and Joly, 2019; Van Moorter et al., 2020). Surprisingly, the 

suitable area was only 1.4% higher (114 km2) during the wet season than the dry season 

(Figure 4.2B). In the NCA, bushland cover often includes palatable browse, water resources 

and shelter, and therefore suitable for rhino (Goddard, 1968; Herlocker and Dirschl, 1972; 

Borges et al., 2022). Most of the bushland cover in the rim of the Crater is comprised of 

evergreen species and we would expect fewer seasonal changes (Figure2, Borges et al., 

2020; Herlocker and Dirschl, 1972).  

The Serengeti plains, west of the NCA, are suitable mostly during the wet season but 

become unsuitable as the season changes (Figure 4.2A). This shift in suitability is expected 

as the vegetation comprises of seasonal species that lose their leaves or die during the dry 

season (Herlocker and Dirschl, 1972). The area surrounding Oldupai Gorge remains mostly 

unsuitable throughout both seasons except for a few patches (Figure 4.2 A1). In the 1960s, 

the Gorge supported a population of 69 black rhinos (Goddard, 1967). In comparison to the 

Crater population, these individuals probably occupied larger home ranges to fulfil the 

nutritional requirements which suggests that the vegetation was already less desirable 

than in the Crater (Goddard, 1967).  In addition, over the last decades the Oldupai Gorge 

experienced changes in the vegetation, specifically the loss of woody cover (Borges et al., 
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2022). Land cover changes impact vegetation composition and likely contributed to the 

disappearance of the black rhino population from the Oldupai area.  

Anthropogenic factors 

Anthropogenic activities have a profound influence on wildlife habitats, often posing 

significant challenges to the conservation of endangered species such as rhinos (Emslie, 

2020; Muntifering et al., 2021). One of the main drivers for rhino distribution is browse 

availability, however, areas with adequate browse would be deemed unsuitable due to 

anthropogenic factors (Odendaal-Holmes et al., 2014). In Namibia for instance, human 

presence has been linked to an increase in calf-mortality (Hearn et al., 2000; Odendaal-

Holmes et al., 2014). As such, human disturbances should be considered when identifying 

areas that could support a black rhino population. Our findings support previous studies 

suggesting that human activities are major drivers in rhino location and habitat stability but 

there are seasonal variations (Goddard, 1967; Mukinya, 1977; Buk and Knight, 2012; 

Muntifering et al., 2021). 

During the wet season, our analysis pinpointed roads as the predominant predictor of rhino 

habitat suitability with location of settlements and livestock presence also playing a role 

(Table 4.3). Once human activities are removed from the model there is a clear increase 

(16.7%) in suitable habitat and 53.6% of the NCA becomes suitable (Figure 4.2B). 

Conversely, the dry season presents a contrasting scenario, where limited browse 

resources, due to seasonal shifts, reduce the importance of human disturbances (Table 4.3, 

Figure 4.2B). Settlements, however, continue to play a role but to a lesser extent than 

observed during the wet season (Table 4.3).  

Rainfall variability between the wet and dry season is highly linked to vegetation growth 

and rainfall, thereby impacting browse availability for large herbivores in arid and semi-arid 

environments (Beytell, 2010). During the wet season, due to higher rainfall, there is a 

higher availability of browse so rhinos can afford to seek alternative areas with reduced 

human disturbance (Goddard, 1967; Beytell, 2010; Odendaal-Holmes et al., 2014). When 

the dry season arrives, and browse is limited, rhinos become less selective and frequent 

different areas (e.g. nearer the roads) in order to fulfil their nutrient requirements 

(Goddard, 1967; Beytell, 2010; Odendaal-Holmes et al., 2014).  

 



140 

 

 

Habitat suitability with and without field data  

In small protected areas, field-based mapping offers crucial insights into the fluctuating 

patterns of savannah vegetation structure and distribution. However, in larger areas, field 

techniques are time consuming and expensive, rendering them less practical (Yang and 

Prince, 2000; Eisfelder et al., 2012). As a result, there is a growing reliance on Earth 

Observation data to identify and monitor habitat cover and its characteristics, as it provides 

valuable insights even when field data is unavailable (Woodcock et al., 2008; Wulder et al., 

2012; Adole et al., 2016). Black rhinos can survive in wide range of habitats, including marsh 

areas, forests and even deserts and browse availability is a driver of their distribution and 

habitat preference (Klingel and Klingel, 1966; Goddard, 1968; Leader-Williams, 1989; Kotze 

and Zacharias, 1993; Lush et al., 2015). However, the highest densities of black rhinos occur 

in savannah areas and bushvelds, mainly due to the higher availability of woody species 

(Emslie, 2020). Our results show that areas with higher bushland cover, namely the 

Highland Forest reserve, NC rim, and between Olmoti Crater and the NC, are the most 

suitable areas to sustain a black rhino population (Figure 4.3, A2-B2) which also agrees with 

Figure 4.2 A2-B2. These areas have an abundance of browse and are located away from 

human activities and as in Figure 4.2A and 2B, the removal of these from the model have a 

positive impact in habitat suitability (Figure 4.3A and 3B). 

When compared to Figure 4.2A, areas like the Oldupai Gorge area and the Serengeti plains 

produce contrary results (Figure 4.3A). The Oldupai Gorge is classified as suitable habitat 

as it comprises of woodland and shrubland cover, classes with a higher score regarding 

browse availability (Figure 4.3 A1, Table 4.2). Additionally, areas such as the Serengeti 

plains, primarily grasslands, appear as unsuitable (red, Figure 4.3A) due to lower woody 

cover which has little to no feeding value for rhino (Emslie and Adcock, 1994). Grassland 

was given a score of zero because of black rhino diets comprise of woody plant species 

(Table 4.2, Buk and Knight, 2010; Emslie and Adcock, 1994; Ganqa et al., 2005). However, 

the NCA black rhino population is unique in a way that they spend a lot of time on the 

Crater floor, which is mostly grassland, to feed on herbs or sleep (Goddard, 1967, 1968). 

Without field data, the Gorge and the Serengeti plains would have been misidentified, 

potentially posing significant threats to the NCA's long-term rhino population growth. To 

enhance the accuracy of our findings, it is imperative to combine ground truthing with 

remotely sensed data. Remote sensing heavily relies on theoretical data and often 
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overlooks crucial field variables such as shelter locations. Therefore, integrating these 

approaches ensures more precise and reliable results in habitat suitability assessments. 

4.6 Conclusion 

Emerging research shows a decline in both the quality and quantity of browse in NCA, and 

consequently a decrease in suitable habitat for black rhinos (Amiyo, 2006; Kohi and Lobora, 

2019; Borges et al., 2022). An increase in competition for resources drives rhinos out of the 

Crater to potentially dangerous areas, therefore, there is an urgent need to identify suitable 

areas that can support an increasing black rhino population (Kohi and Lobora, 2019). 

Approximately 36% of the NCA is suitable for black rhino throughout the year (Figure 4.2A) 

and under the current conditions the impact of season is minimal (improvement of 

1.4%from the dry to the wet season). Additionally, anthropological factors impact habitat 

suitability, but this depends on the season (Figure 4.2A-B). During the wet season, when 

human factors are reduced, habitat suitability increases to 53.6% which agrees with 

previous research (Figure 4.2, Baltensperger and Joly, 2019; Van Moorter et al., 2020). On 

the other hand, in the dry season, browse availability decreases and rhinos become less 

selective of areas where they move to fulfil their nutritional requirements, with 

anthropological pressures becoming less important (Figure 4.2, Baltensperger and Joly, 

2019; Van Moorter et al., 2020).  

Our study identified areas that are consistently suitable throughout seasons and not 

severely impacted by human factors, such as between the Olmoti and Ngorongoro Craters, 

(Figure 4.2 A2-B2). Over the last decades, the area experienced a decrease in forest cover, 

and increase in bushland and the vegetation has not been surveyed since the 1960s 

(Goddard, 1968; Herlocker and Dirschl, 1972; Borges et al., 2022). Since bushland is 

associated with browse availability, areas such between the Olmoti and Ngorongoro 

Craters are likely to contain suitable browse. Contrastingly, the Oldupai Gorge currently 

only highlights small suitable patches (Figure 4.2 A1) and used to sustain a large population 

of rhinos in the 1960s (Goddard, 1967). Land cover changes seem to have decreased the 

suitability of the Gorge, but the area should be studied further before being deemed 

unsuitable. Ultimately, areas that are deemed suitable for rhino require increased security 

and detailed vegetation surveys to detect the presence or absence of rhino preferred 

browse. Areas that are deemed unsuitable should be surveyed more thoroughly, 

particularly if in the past they used to be occupied by black rhino. 
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Finally, the use of theoretical models in the absence of field data has proven effective but 

has limitations. The discrepancies observed in areas like the Oldupai Gorge and Serengeti 

plains underline the need for ground truthing to ensure accurate habitat assessments. 

Therefore, combining remote sensing with field-based methods is crucial for making 

informed conservation decisions that will support the growth and stability of the black 

rhino population in the NCA. These insights are vital for directing future conservation 

efforts and ensuring the long-term survival of black rhinos. 
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Chapter 5 - Feeding ecology of black rhino in the Ngorongoro 

Conservation Area, Tanzania 

Abstract: Feeding studies provide critical insights into foraging behaviour and dietary 

preferences and contribute to conservation efforts by helping to select appropriate sites 

for conservation management and reintroductions. We examined the factors influencing 

distribution and dietary habits of black rhinos in the Ngorongoro Conservation Area (NCA) 

across different seasons. A PERMANOVA was employed to assess the influence of habitat 

variables, seasons, and regions on black rhino presence. Additionally, random forest 

modelling was also used to identify the key variables that best classified the presence or 

absence of rhinos. Seasonal variations significantly impacted rhino diets, leading to visible 

changes in feeding patterns observed between wet and dry seasons. The Crater grasslands 

emerged as important feeding areas, particularly in the wet season. Additionally, there was 

a strong preference for plants present in the swamps and an avoidance of invasive species 

that cover the Crater floor. When the vegetation in the Crater dries, the Lerai forest, the 

Crater rim and Lemala become increasingly important. These areas are likely to be suitable 

because of a combination of preferred browse, water, areas for shelter and potential 

breeding. We also found that rhino prefer sites with browse that is available <1m of height 

rather than high density bushland. Despite experiencing significant dryness during the dry 

season, the Oldupai area retained the browse species crucial for black rhino and was 

identified as an ecologically suitable site even though it currently does not support rhino. 

Overall, our study contributes valuable insights into the ecological dynamics and feeding 

preferences of black rhinos in the NCA. The information can be used to identify sites into 

which the NCA’s rhino population could expand. 

5.1 Introduction 

Conservation strategies often rely on the reintroduction or introduction of species into 

areas where they were previously absent due to various threats (Armstrong and Seddon, 

2008; Angeli and Fitzgerald, 2021). Moreover, environmental changes may render former 

habitats unsuitable for reintroduction (IUCN, 2013; Peers et al., 2016). To ensure the success 

of re/introductions, detailed studies on feeding ecology are necessary, as they provide 

crucial insights into the species' dietary needs and habitat preferences (IUCN, 2013). These 

studies are essential to improve habitat quality of currently occupied areas, estimate 
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carrying capacities, and identify potential expansion areas for populations, whether 

through natural dispersal or reintroductions (Goddard, 1968; Reid et al., 2007; Ngoti, 2017) . 

The black rhino (Diceros bicornis) is a critically endangered species, with a global population 

of 5,630 individuals; around 1,000 Eastern black rhinos (D. b. michaeli) are resident in Kenya 

and Tanzania (Knight, 2019; Emslie, 2020). The main threat to black rhinos is poaching for 

their horns (Leader-Williams, 2002; Chanyandura et al., 2021). However, land cover 

changes, which often reduce food availability and increase inter- and intra-specific 

competition for resources, pose an increased risk to rhino populations (Leader-Williams, 

2002; Amin et al., 2006; Emslie, 2020; Chanyandura et al., 2021). Black rhinos are selective 

browsers, able to browse up to 220 plant species, but tend to rely heavily on a limited 

number of plant species that are high in protein and water content and low in phenols and 

aromatics (Emslie and Adcock, 1994; Ganqa et al., 2005; Buk and Knight, 2010). Browse 

availability affects the distribution and habitat preference of black rhinos, with higher 

densities observed in savannah areas and bushvelds, where woody species are more 

abundant (Emslie, 1999). Thick bush, often with unpalatable woody species, is used more 

for protection and shelter than for feeding (Kotze and Zacharias, 1993). 

Currently, the primary model for rhino conservation is the use of fenced sanctuaries which 

have ‘known’ Ecological Carrying Capacities (ECCs, Amin et al., 2017). With populations 

rising, particularly in Kenya, there is an emerging shift from fenced sanctuaries to intensive 

protection zones (IPZs) which are unfenced areas within larger protected areas (Okita-

Ouma et al., 2007; Landman et al., 2013). Within any sanctuary or protected area, it is 

crucial to carefully manage the population size to ensure it remains slightly below the 

Ecological Carrying Capacity (ECC), a measure essential for the growth of the global black 

rhino population (Omari, 2009). This approach often involves the selection of individuals 

from populations with positive growth rates, which are then translocated to alternative 

areas with the potential to sustain new populations (Linklater et al., 2012). 

The Ngorongoro Conservation Area (NCA) in Tanzania is an unfenced protected area that 

serves as a crucial stronghold for the black rhino population, hosting approximately 30% of 

the country's total population (Kohi and Lobora, 2019). In the 1960s, the black rhino 

population was comprised of 108 individuals in the Ngorongoro Crater (NC) and 69 in 

Oldupai Gorge (Goddard, 1968).  Heavy poaching reduced that population to 13 individuals 

in 1996 (Goddard, 1967, 1968; Kiwia, 1989; Moehlman et al., 1996). By 2018 the population 
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had increased to 55 individuals (11 probable) in the Crater, but there were none in the 

Oldupai area (Kohi and Lobora, 2019). Despite this increase, and absence of poaching, the 

NCA population has not reached previous numbers and feeding behaviour and preferences 

have not been surveyed since the 1960s (Goddard, 1968; Kohi and Lobora, 2019). 

Additionally, habitats frequented by rhinos have likely changed through human activities, 

increased numbers of other herbivores, spread of invasive plants and changes in 

management policy (Niboye, 2010; Borges et al., 2022). Examining rhino diet in the NCA 

serves as a vital tool for assessing whether specific areas still provide adequate food 

resources and for identifying areas for potential translocations. 

The NCA has been operating as a multiple land-use model, aiming to protect not only 

wildlife but also the traditional lifestyle of the resident Maasai pastoralists (Amiyo, 2006; 

Niboye, 2010). Expanding human settlements, agricultural activities, and infrastructure 

development have resulted in habitat fragmentation and escalated human-wildlife conflicts 

within the area (Kideghesho et al., 2021; Linuma et al., 2022). Simultaneously, undesirable 

invasive plant species have proliferated extensively within the NCA and now cover most of 

the Crater floor, leading to a decline in habitat quality for wildlife (Foxcroft et al., 2006; 

Ngondya et al., 2016, 2019). However, the NCA stands out as a particularly unique 

ecosystem where rhinos coexist within human-modified landscapes, a phenomenon rarely 

studied as most research focuses on protected areas devoid of human presence. These 

distinct characteristics may provide valuable insights into the dynamics of wildlife 

conservation in landscapes where human and natural elements intersect, offering 

important lessons for conservation efforts in similar contexts worldwide. 

Feeding studies on black rhino provide essential insights into foraging behaviour and dietary 

preferences, facilitating a better understanding of their ecological role of rhinos and their 

habitat requirements (Goddard, 1968; Emslie and Adcock, 1994; Buk and Knight, 2010). 

Furthermore, such studies contribute to global conservation efforts by identifying key areas 

that can sustain a populations of black rhino (Muya and Oguge, 2000; Reid et al., 2007; 

Omari, 2009). Our ultimate goal is to contribute to the long-term conservation of black 

rhinos in the NCA and to achieve this, we (1) determined the variables that affect rhino 

presence and feeding; (2) identified species preferred by rhino (3) identified areas that can 

sustain a future black rhino. 
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5.2 Study Area 

The NCA (Figure 5.1), located in northern Tanzania, is a World Heritage Site that is part of 

the Serengeti ecosystem and includes the world’s largest intact volcanic caldera, the 

Ngorongoro Crater (Estes et al., 2006). The temperature ranges between 7° and 15°C in the 

rain season and 11° and 20°C in the dry season and altitude between 1000m and 3800m y 

(Herlocker and Dirschl, 1972; Amiyo, 2006). Annual rainfall ranges from 450mm/year in the 

lowlands to 1200 mm/year in the highlands (Boone et al., 2006). The rainfall follows a 

bimodal pattern, consisting of two wet seasons (March to May and October to December), 

and two dry seasons (January to February and June to October, Mwabumba et al., 2022). 

The vegetation in the NCA is highly diverse and comprises highland grassland plains, open 

canopy savannah woodland, closed canopy forests, and savannah grasslands (Herlocker and 

Dirschl, 1972; Borges et al., 2020). However, in recent  decades, the area has experienced 

woody encroachment and a loss in forest and grassland cover (Borges et al., 2022).   

 

Figure 5.1. Ngorongoro Conservation Area with key regions highlighted.  
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5.3 Methods  

5.3.1 Data collection  

Vegetation surveys were conducted in the NCA for a period of 6 months during the wet 

season (March - June 2023) and dry season (June-September 2023). The locations 

comprised of areas known to be frequented by rhinos (following the rhino monitoring 

teams’ advice), areas where direct observations occurred or rhino signs were found (e.g. 

bites in plants, dung piles, tracks) and in ‘control’ locations where there was no prior 

evidence of rhino occupation, and which covered the range of different vegetation types of 

the NCA. The GPS coordinates for the random locations were extracted from 1x1km grid 

over an NCA map. In total we sampled in 13 different regions as shown in Figure 5.1. The 

Crater floor is mostly grasslands (from here onwards Crater grasslands) and the Lerai forest 

comprises of woodland and bushland, and as in Goddard’s (1968), the two were sampled 

separately (Figure 5. S1.; Herlocker and Dirschl, 1972). 

At sampling locations (136 in the dry season and 136 in the wet season) the vegetation was 

sampled in 30m diameter circular plots. The centre of the plot was marked, XY coordinates 

recorded and two 30m tape measures were laid out in a cross shape aligned with the 

cardinal compass points (Appendix 1 Figure 5.S1.) 

To calculate an index of browse availability, herbs, shrubs, and trees whose canopies 

overlapped at least one of the measuring tapes were recorded and an estimate of their 

volume calculated (Appendix 1 Figures 5.S1 and S2). Only vegetation <2m was included, 

since rhinos are unable to reach heights above 2m (Muya and Oguge, 2000). To calculate 

the volume of each individual plant, a shape was chosen (sphere, cylinder, cube/cuboid, or 

cone) and the measurements for each collected (Appendix 1 Figure 5.S2). For shrubs and 

trees which crossed over the 2m limit, only the portion below the limit was included. When 

more than one species was present within a clump, the proportion that each species 

contributed to the clump was estimated and then attributed a shape.  

Each plant was inspected for black rhino bite marks which have a distant sharp-cut edge at 

45° angle (Gadiye, 2016). When a bite was encountered, the species and a rough estimate 

of time (over 1 week or under 1 week) of bite were recorded following the ranger’s advice. 

A description of the area and the main grass species within the plot were noted and all trees 

(DBH>6cm), were identified, and their diameter measured (at 1.5m from the ground) and 
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damage to the plants caused by elephants was recorded as zero (no damage), low (some 

twigs, small branches damaged) and extensive (major branches, broken trees). Any other 

evidence of elephant or rhino such as within the plot was also recorded.  

The presence of invasive species was also recorded. Invasive plants are native or non-native 

species that aggressively spread in new environments, outcompeting native vegetation and 

disrupting natural ecosystems (Ngondya et al., 2016). In the NCA the most common 

invasives are Gutenbergia cordifolia (native), Bidens schimperi (native), Datura stramonium 

(non-native), Tagetes minuta (non-native), Argemone mexicana (non-native), Lippia 

javanica (native) and Eleusine jaegeri (native, Ngondya et al., 2016, 2017).  

Canopy cover was measured every 5m along each tape, including one at the plot centre (13 

total). For each reading, a sighting was taken ‘the wrong way’ through one side of 8x 

binoculars. A score from 0 to 5 was recorded based on what percentage of the view was 

covered by canopy. 0=no cover, 1=20%, 2=40%, 3=60%, 4=80%, 5=100%. A complete canopy 

cover would have a score of 65 (5 x13). Density (mid-level density) was measured using a 

2m pole. One recorder stood at the centre of the plot and another at the end of each tape 

(N, E, S and W) holding the pole horizontally 1m above the ground. The central recorder 

uses 8x binoculars to count the number of bands that can be seen (not obstructed by 

vegetation). Readings should vary between 0 in very dense plots to 160 in very open ones. 

Lastly, ground cover was also measured. The 2m pole was placed every 1m along each arm 

of the tape measure and the height of grass (if present) recorded. The type of substrate 

which the end of the pole touched and any substrate/low level vegetation within 10cm 

(hand width) of the base of the pole, was also recorded. Ground cover categories were – 

live grass, dead grass, rock, bare soil, herb or tree. 

5.3.2 Statistical analysis 

Habitat Variables 

The mean and standard deviation of several habitat variables (canopy cover, vegetation 

density, grass height (cm), ground cover (dead grass, live grass, soil, herbs, shrubs, tree and 

rock), browse available, elephant presence (1) or absence (0)) was calculated for plots with 

evidence of rhino presence rhino and plots without evidence. The analysis was conducted 

using R version 4.3.1. A Permutational multivariate analysis of variance (PERMANOVA) was 

employed to determine if these variables, seasons and regions influence black rhino 
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presence (Anderson, 2001; Oksanen et al., 2022). PERMANOVAs are commonly used in 

community ecology to compare the multivariate structure of ecological communities. It is 

particularly valuable because it allows for the comparison of different communities even 

when the data are not normally distributed (Anderson, 2001). This is achieved by using 

permutation tests, which are robust to violations of normality assumptions. This method 

assesses whether there are significant differences among groups of samples (e.g., 

communities) based on dissimilarity or distance matrices derived from ecological data. 

The adonis2 function was used within the vegan package with 999 permutations, and the 

data were tested to ensure the assumptions for the PERMANOVA were met using the 

betadisper function (VEGAN package, Appendix 1 Figure 5.S3, Oksanen et al., 2022). 

Although homogeneity of variances (or group dispersions) is not a strict prerequisite for 

PERMANOVA, it significantly impacts the outcomes, in conjunction with data independence 

(Anderson et al., 2008). Therefore, testing dispersion alongside PERMANOVA is particularly 

beneficial with smaller datasets, as a significant result could indicate that disparities in 

variances contribute to observed discrepancies in PERMANOVA result (Anderson et al., 

2008). 

Random forest modelling 

We employed random forest (RF) to determine which variables were the best performers 

in terms of classifying the presence and absence plots.  RF is a nonparametric machine 

learning classifier that combines decision trees with bootstrapping and aggregation 

(Breiman, 2001; Rodriguez-Galiano et al., 2012). Twenty-one variables were tested against 

rhino bites. The data was randomly split and 70% was used to train the random forest 

model and 30% to perform the validation (Breiman, 2001).   

The analysis yields a 'variable importance' graph, which shows the ‘mean decrease in 

accuracy’ measure for each of the variables. These measures indicate each variable’s 

impact on the model in predicting outcomes and distinguishing between absence and 

presence sites (Garzón et al., 2006). A decrease in prediction accuracy when a particular 

variable is randomly permuted, indicates the variable's importance in maintaining the 

model's accuracy (Han et al., 2016).  
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Browse Preferences 

The volume of the individual plants of each species with bites was calculated and compared 

to the total volume available of that species. Browse preference was assessed using Ivlev's 

(1961) electivity index as follows: 

𝐸𝑖 =
(𝑟𝑖 − 𝑝𝑖)

(𝑟𝑖 + 𝑝𝑖)
 

Where Ei is the measure of electivity, ri is the volume of eaten species i, and pi is the total 

volume of species i. The index ranges between 1 and -1, where -1 indicates total avoidance, 

0 indicates no selection or avoidance, and 1 indicates total selection. 

5.4 Results 

5.4.1 Drivers of rhino presence 

Season and region 

The results from the perMANOVA test found that rhino presence is impacted by Region (F 

=10.71, p-value = 0.001) and relatively less by Season (F =3.24, p value = 0.052). During the 

wet season most rhino presence occurred in the Crater grasslands (69.8%). During the dry 

season rhino presence occurred mostly in the rim (32.6%), followed by Lerai forest (28.3%), 

Lemala (21.7%) and the Crater grasslands (17.4%, Figure 5.2). 

 

Figure 5.2. Proportion of black rhino presence per season. 
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Habitat variables 

Rhino presence was associated with areas with higher canopy and shrub cover and lower 

soil and rock cover. There is also a preference for sites with lower vegetation density and 

lower browse availability.  Rhino and elephant frequented the same regions (Table 5.1).   

Table 5.1 Comparison of mean values and standard deviation of the statistically significant 

variables between black rhino presence and absence.  

Rhino Presence Absence 
  

 
Mean (sd) Mean (sd) F p-value 

Canopy cover 16.4 (15.9) 14.3 (15.5) 2.71 0.02 

Density 43.8 (56.9) 55.1 (62.6) 4.39 0.001 

Browse available (per plot) 80.6 (130.6) 94.2 (107.6) 6.51 0.001 

Soil coverage 11.6 (11.9) 19.1 (20.2) 2.09 0.019 

Shrub coverage 21.3 (12.6) 19.4 (15.0) 2.16 0.02 

Rock 1.04 (5.46) 3.92 (10.1) 1.91 0.028 

Elephant presence 0.70 (0.46) 0.39 (0.49) 1.91 0.032 

 

5.4.2 Random Forest modelling 

Our model shows that rhino choice depends on plant species and browse availability 

(Figure 5.3). Grass cover, region and season are other drivers of rhino choice (Figure 5.3). 

Browse availability, elephant presence, shrubs, soil and herb coverage influence both rhino 

presence (Table 5.1) and rhino food choice (Figure 5.3). The out-of-bag (OOB) prediction 

accuracy of the model was 11.18%. When the model was validated against the test data, 

the overall accuracy 89.3% (p <0.001, McNemar’s test p=0.04, Table 5.2). The model also 

identified sites in the Rim and Oldupai currently unoccupied by black rhino that have similar 

characteristics and species composition to areas where rhino is currently present (Table 

5.2, Appendix 1 Tables 5.S1 and S2).  
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Table 5.2 Confusion matrix for the random forest model. 

 Actual  Class  

error Predicted Absence Presence 

Absence 152 11 0.07 

Presence 16 93 0.15 

 

Figure 5.3 Variable importance generated from the randomforest model. 

5.4.3 Species preferred by rhino 

Of all the species browsed by rhino (Appendix 1 Table 5.S4), the Ivlev's (1961) electivity 

index revealed a strong preferences for Cyperus imensus (E = 85.1%) and Schoenoplectiella 

confusa (E = 84,9%) which are both present in the swamps in the Ngorongoro Crater. There 

was also ‘rejection’ of Gutenbergia cordifolia (E = - 14.9%) an invasive species now 

widespread throughout the NCA, and Lippia javanica (E = - 29.4%) a shrub that is 

encroaching the Crater grasslands. Only species that were bitten more than 6 times are 

present in Table 5.3 but the full data is available in Appendix 1 Table 5.S4.  
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 Table 5.3 List of species preference by rhino based on bites and availability. (i) stands for 

invasive species. 

Species Bites 

Times 

present 

Preference 

(E) 

Cyperus imensus 12 12 0.851 

Schoenoplectiella confusa 39 47 0.848 

Amaranthus hybridus 15 93 0.608 

Ludwigia stolonifera 12 18 0.607 

Aeschynomene schimperi 19 28 0.571 

Nicoteba betonica 12 39 0.528 

Abutilon mauritianum 38 119 0.521 

Lantana trifolia 90 127 0.475 

Pavonia urens irakuensis 13 60 0.472 

Bidens pilosa 18 104 0.431 

Achyranthes aspera 149 398 0.376 

Baccharoides lasiopus 11 37 0.344 

Clausena anisata 8 30 0.276 

Pavonia urens 54 152 0.097 

Abutilon longicuspe 57 166 0.041 

Meiosperma bracteatum 14 164 0.008 

Gymnosporia senegalensis 9 145 -0.147 

Gutenbergia cordifolia (i) 12 272 -0.149 

Lantana ukambensis 20 128 -0.210 

Solanum incanum 17 367 -0.216 

Lippia javanica (i) 36 228 -0.294 

Hibiscus aponeurus 13 140 -0.376 

Crotalaria vallicola 7 27 -0.379 

Tagetes minuta (i) 26 308 -0.411 

Cyathula polycephala 7 90 -0.491 

Hibiscus fuscus 27 111 -0.530 
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Sida cuneifolia 24 46 -0.614 

Indigofera arrecta 12 41 -0.748 

Ocimum gratissimum 17 189 -0.787 

5.5 Discussion  

5.5.1 Crater grasslands and Lerai forest 

Understanding the dietary preferences and habitat use of black rhinos is crucial for their 

effective management (Goddard, 1968; Emslie and Adcock, 1994; Buk and Knight, 2010). 

The Ngorongoro Crater is often regarded as the most suitable habitat for black rhino within 

the NCA boundaries (Gadiye, 2016) but it is clear that the rhinos move between different 

regions depending on season, to fulfil their nutritional needs (Figure 5.2, Table 5.1, 

Goddard, 1968; Gadiye, 2016). During the wet season, rhino presence was most obvious in 

the Crater grasslands (69.8%, Figure 5.2). Rhinos can survive in a wide range of habitat but 

previous research carried out in the Masai Mara, found that most rhinos occurred in open 

grasslands and shrubland with a few scattered trees, particularly during feeding (Mukinya, 

1977).  

During the dry season rhino presence occurred in the rim (32.6%), Lerai forest (28.3%) and 

Lemala (21.7%). The Crater grasslands accounted for only 17.4% of the rhino presence plots 

(Figure 5.2). Rhino diet in the Ngorongoro Crater during the wet season comprises mostly 

of herbs, forbs and legumes (Goddard, 1968; Gadiye, 2016). These tend to disappear or dry 

up during the dry season and shrubs such as, L.javanica become more important (Goddard, 

1968; Gadiye, 2016). We found that, although L.javanica is part of their diet, it is often 

under-used and it only makes up for a small part of their overall diet (Table 5.2, Goddard, 

1968). As black rhinos are water-dependent browsers. It is not surprising that they use the  

Lerai forest more in the dry season – it has a supply of water throughout the year and many 

of the plants remain in leaf even during the dry season (Herlocker and Dirschl, 1972; Mills 

et al., 2003).  

The three most preferred species, Cyperus imensus (E = 85.1%) and Schoenoplectiella 

confusa (E = 84,9%) and Aeschynomene schimperi (E = 57.1%) are abundant in the swamps 

in the Crater floor (Table 5.2, Goddard, 1968). These species are heavily browsed by rhino 

during the dry season and since the swamps have water available throughout the year, they 

become increasingly important as the dry season approaches (Goddard, 1968; Gadiye, 
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2016). In the 1960s, swamps were regularly used by black rhinos for shelter and browsing, 

but more recent research suggested that rhinos no longer visited these areas because of  

elephant presence (Klingel and Klingel, 1966; Goddard, 1968; Amiyo, 2006; Landman et al., 

2013). We found that rhinos are using the swamps throughout the year, irrespective of the 

elephants – there was a positive relationship between the presence of rhino and elephant 

(Table 5.1).  

One of the biggest threats the NC is currently facing is the spread of invasive plant species  

(Mills et al., 2003; Kohi and Lobora, 2019). We found evidence of bites in most of the 

invasive species in the NC, including dried plant parts during the dry season but all were 

under-used (e.g. G. cordifolia, T. minuta, B. schimperi, Table 5.2, Appendix 1 Table 5.S4). 

These findings contrast with previous research that found a strong preference for G. 

cordifolia during the wet season and avoidance of dried specimens (Goddard, 1968; Gadiye, 

2016).  Ultimately, all the preferred species (Table 5.2) were part of rhino diets in the NC in 

the 1960s, which shows that the Crater is still a suitable site for black rhino in terms of 

browse availability as well as security (Goddard, 1968).  

5.5.2 Rim and Lemala 

The rim surrounds all of the Crater and is an isolated area that is often described as ideal 

black rhino habitat, comprising  montane forest and bushland communities (e.g. Vachellia 

lahai, Nuxia congesta, Bersama abyssinica, Cassipourea molassana, Herlocker and Dirschl, 

1972). Although Lemala is geographically close to the rim, the vegetation composition 

includes mostly shrubland and patches of grassland (Herlocker and Dirschl, 1972; Borges et 

al., 2020, 2022). The combination of the rim (32.6%) and Lemala (21.7%) accounted for 

54.3% of rhino presence during the dry season (Figure 5.2). During the wet season black 

rhino fed in proximity to wallow sites, seasonal streams, and waterholes but when these 

dry up, they move to areas with permanent water supplies (e.g. riverine habitats, manmade 

reservoirs) and evergreen palatable herbs and shrubs (Oloo et al., 1994). Although black 

rhino diet in Lemala and the rim has not been studied before, Gadiye, (2016) also noted 

the movement of rhinos from the Crater floor to the Rim during the dry season. This shift 

in feeding areas will influence diet composition (Goddard, 1968; Gadiye, 2016). 

The rim vegetation is dominated by a mosaic of Gymnanthemum auriculiferum and 

Crotalaria agatiflora (Herlocker and Dirschl, 1972). Pavonia urens irakuensis, Clutia 
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abyssinica, Lantana trifolia and Lippia javanica are also abundant (Table, 5.S3, Herlocker 

and Dirschl, 1972). These species are all browsed by rhino (Appendix 1 Table 5.S4), however 

there is as strong preference for L. trifolia (47.5%) and P. urens irakuensis (47.2%, Table 

5.2). Eleusine jaegeri  commonly known as ‘highland tussock grass’ (locally called ‘buffalo 

grass’) is also present in the rim, and it has expanded its range since the 1960s (Table 5. S3 

and S4, Herlocker and Dirschl, 1972; Amiyo, 2006). It is highly unpalatable for livestock and 

other herbivores, raising concerns of the loss of palatable plant species, however we did 

find evidence of rhino bites in some specimens (Appendix 1 Table 5.S4). This is not 

completely surprising since black rhinos are known to consume toxic species, and previous 

research also shows evidence of rhinos consuming E. jaegeri in the NCA (Goddard, 1968). 

The model predicted that the rim includes several sites deemed suitable for black rhino 

that are currently unoccupied by rhino (Appendix 1 Table 5.S1). Land cover changes in these 

areas have contributed to an increase in bushland and shrubland, thereby enhancing the 

availability of browse—a critical factor for rhino shelter and breeding (Figure 5.3, Table 5.1, 

Roques et al., 2001; Smit et al., 2010; Borges et al., 2022). Moreover, the rim contains an 

abundance of preferred browse for feeding and a constant water supply throughout the 

year (Table 5.3 and 5.S3, Herlocker and Dirschl, 1972). The northern part of the Crater, 

between the NC and Olmoti, which is included within the rim, combines the ideal 

vegetation composition, and remains relatively isolated from human disturbances, both 

tourists and settlements (Muntifering et al., 2021). This unique combination of 

characteristics renders the area ideal habitat for a potential expansion of the black rhino 

population in the NCA. It can be accessed through Lemala which was also deemed suitable 

for black rhino, thus further expanding the potential range and connectivity of habitats 

available for rhinos within the broader Rim region.  

5.5.3 Oldupai Gorge Area 

Historically, the Gorge was part of a corridor between the Ngorongoro and the Serengeti 

National Park (D. Maige, NCAA, 2023, pers. comm.). Rhinos used to migrate from the Crater 

to the Rim, towards Balbal and through Oldupai Gorge, to Ndutu and to the Serengeti (D. 

Maige, NCAA, 2023, pers. comm.). In the 1960s, there was a population of 69 rhinos in the 

Oldupai area but after heavy poaching, during the 1970s and 80s, it disappeared (Kiwia, 

1989; Moehlman et al., 1996; Oates and Rees, 2013). Our results show that the area is still 
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suitable for black rhino (Appendix 1 Table 5.S1). Oldupai is characterized as typical 

thornbush habitat, covered in Acacia-Commiphora scrub, mixed with extensive growths of 

wild sisal Sanseveria ehrenbergii, Euphorbia tirucalli, Salvadora persica, and Barleria 

eranthemoides (Goddard, 1967; Herlocker and Dirschl, 1972). This habitat combines lower 

vegetation density and browse availability but higher shrub cover which are all positively 

associated with rhino presence (Table 5.1). The shrubs that cover the area are shorter than 

in other places in the NCA, which is why the density and browse available are also lower in 

these areas (Table 5.1, Herlocker and Dirschl, 1972). This suggests that rhinos prefer sites 

with browse that is available <1m of height, so although the volume is lower, it is physically 

easier for them to reach than between 1 to 2m.  

Currently, all the species that were part of rhino diet in the 1960s still occur in Oldupai and 

surrounding areas (Table, 5.S2, Goddard, 1968). This was somewhat unexpected due to 

land cover changes, namely the shrub encroachment the area experienced in the last few 

decades, however, this increase could also mean an associated increase in preferred 

browse   (Borges et al., 2022). During the dry season, Oldupai becomes much drier than the 

Crater and most water sources dry up (Goddard, 1968). Since season plays an important 

role in rhino presence, regions like Oldupai will experience a greater impact than places like 

Oldeani and the rim, that mostly support evergreen species (Figure 5.2, Oloo et al., 1994). 

In the 1960s, rhinos that resided in the Gorge were consuming Euphorbia tirucalli, 

Sansevieria ehrenbergii and Cissus quadrangularis during the dry season for their water 

content (Goddard, 1968). Interestingly, we also found evidence of bites in Euphorbia 

tirucalli, however, this occurred in a different region of the NCA (Appendix 1 Table 5.S4).  

The Oldupai area has high numbers of livestock and settlements, and the road that links 

the NCA to the Serengeti (Herlocker and Dirschl, 1972). During the dry season the 

grasslands appear to be over-grazed but during the wet season, herbs such as Solanum 

incanum, Indigofera basiliora, and Indigofera bogdanii rapidly emerge which seems to 

benefit black rhino (Goddard, 1968). The Indigofera species are known to be very palatable 

to rhinos and Indigofera basiliora, is particularly important during the dry season where it 

is still available (Appendix 1 Table 5.S2; Goddard, 1968). As such, regions classified as 

suboptimal grazing pastures for other herbivores, could provide suitable habitat for rhinos 

(Goddard, 1967, 1968). Therefore, heavily overgrazed areas should not be viewed as 
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inherently detrimental; rather, they may be regarded as an integral component of an 

ecosystem that sustains a diverse array of herbivores (Goddard, 1967, 1968).  

The Oldupai region was identified as potentially suitable for rhino habitat based on its 

ecological characteristics; however, it's crucial to consider the presence of humans, which 

was not explicitly measured in our assessment. Rhinos tend to avoid areas with human 

activity, highlighting the need to assess and mitigate human presence in potential 

reintroduction areas (IUCN, 2013; Muntifering et al., 2021, Chapter 4). Additionally, 

security concerns related to poaching must be addressed and intense monitoring must be 

achievable before recommending an area for rhino reintroduction (IUCN, 2013). These 

factors underscore the importance of comprehensive assessments that account for both 

ecological suitability and human-related factors when evaluating potential reintroduction 

sites for critically endangered species like the black rhino. 

5.6 Conclusion 

We examined the dietary habits of black rhinos in the Ngorongoro Conservation Area 

across wet and dry seasons, relying on observable signs as indicators of rhino presence, 

namely bites in plants, dung piles and direct observations (Gadiye, 2016). The NCA includes 

a diverse range of habitats, each playing a crucial role in supporting rhino populations 

through different seasons (Figure 5.2). The ideal habitat for rhino comprises of areas with 

higher canopy cover and rich in shrubs <1m that are easy to reach, instead of heavily dense 

areas.  Seasonal variations significantly impacted rhino diets, leading to noticeable changes 

in feeding patterns. The Ngorongoro Crater emerges as a critical habitat for rhinos, 

particularly during the wet season when palatable herbs dominate the floor (Figure 5.2).  

During the dry season, when the Crater vegetation dries, rhinos shift in their distribution 

patterns, favouring areas such as the rim, Lemala and the Lerai forest where water sources 

and preferred browse remain available throughout the year. The rim, characterized by 

montane forest and bushland communities, provides promising habitat for rhinos, offering 

both shelter and a variety of browse options (Herlocker and Dirschl, 1972). The presence 

of rhinos in these areas underscores their adaptability to different habitats and the 

significance of these regions in sustaining populations year-round. 

The Oldupai Gorge area was flagged as suitable rhino habitat, despite historical declines in 

rhino populations due to poaching (Goddard, 1968). The habitat characteristics of Oldupai, 
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namely the thornbush habitat and vegetation composition, show its potential suitability for 

future rhino populations. However, human presence and security concerns related to 

poaching pose significant challenges that need to be addressed before considering this area 

for rhino reintroduction efforts. By addressing both ecological suitability and human-

related factors, we can ensure the success of conservation initiatives aimed at safeguarding 

critically endangered species like black rhinos. Comprehensive assessments that combine 

habitat suitability, human activity, and security concerns are crucial in identifying suitable 

reintroduction and translocation sites and ensuring the long-term survival of rhino 

populations (IUCN, 2013). 
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Figure 5.S3. Homogeneity of multivariate dispersions results showing the differences 
between sites. Empakaai, Olmoti, Kakesio, Ndutu, and Mbulumbulu overlap completely 
because the average distance to centroid is 0.  

Table 5.S1. Location of plots currently unoccupied by black rhino 

 

Predicted 
plots 

Oldupai Gorge 7 

Rim 5 

Ngorongoro Crater 3 

Balbal 1 
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Table 5. S2 Plant species present in Oldupai 

Oldupai 

Abutilon mauritianum Commiphora madagascariensis Kalanchoe lanceolata 

Abutilon rehmannii Commiphora merkeri Kleinia longiflora 

Acacia drepanolobium Cordia monoica Lantana viburnoides 

Acacia mellifera Crotalaria laburnifolia Leonotis spp. 

Acacia nilotica Cyathula orthacantha Leucas deflexa 

Acacia senegal Cynodon dactylon Lycium shawii 

Acacia seyal Cyphostemma lentianum Maerua triphylla 

Achyranthes aspera Datura stramonium Melhania parviflora 

Aerva javanica Dichrostachys cinerea Nicoteba betonica 

Aloe volkensii Dracaena hanningtonii Pupalia lappacea 

Argemone mexicana Eragrostis spp. Ricinus communis 

Asparagus flagellaris Euphorbia tirucalli Ruellia bignoniiflora 

Aspilia pluriseta Glinus lotoides Salvadora persica 

Atriplex brenanii Grewia bicolor Sansevieria ehrenbergiana 

Balanites aegyptiaca Grewia lilacina Sarcostemma viminale 

Barleria eranthemoides Gutenbergia cordifolia Senegalia mellifera 

Blepharis hildebrandtii Helichrysum glumaceum Sida chrysantha 

Boerhavia diffusa Heliotropium curassavicum Sida cordifolia 

Boscia integrifolia Hibiscus cannabinus Solanum incanum 

Capparis tomentosa Hibiscus spp. Solanum setaceum 

Chenopodium opulifolium Hypoestes forskaolii Sphaeranthus bullatus 

Cissus cactiformis Hypoestes triflora Tagetes minuta 

Cissus quadrangularis Indigofera arrecta Talinum portulacifolium 

Coleus igniarius Indigofera basiflora Tribulus terrestris 

Coleus spp. Ipomoea jaegeri Vachellia abyssinica 

Combretum apiculatum Ipomoea longituba Vachellia tortilis 

Commiphora africana Justicia betonica Ximenia caffra 

Commiphora kua Justicia cordata  
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Table 5. S3 Plant species present in the Rim 

Rim 

Abutilon longicuspe Discopodium spp. Ocimum gratissimum 

Acacia seyal Dolichos oliveri Ocimum lamiifolium 

Acalypha ornata Dovyalis abyssinica Olea africana  

Achyranthes aspera Ekebergia capensis Osyris lanceolata 

Amaranthus hybridus Eleusine jaegeri Ouret lanata 

Asparagus africanus Erythroxylum spp. Pavonia burchellii 

Asparagus asparagoides Euclea divinorum Pavonia urens 

Aspilia mossambicensis Euclea spp. Pavonia urens irakuensis 

Auclea simpliformis Euphorbia candelabrum Periploca linearifolia 

Baccharoides lasiopus Euphorbia murielii  Phyllanthus fischeri 

Basella alba  Euphorbia spp. Phytolacca dodecandra 

Bersama abyssinica Euphorbia terracina Piper capense 

Bidens pilosa Euphorbia tirucalli Psiadia punctulata 

Bidens schimperi Flacourtia indica Rhamnus prinoides 

Boscia angustifolia Grewia similis Rhamnus staddo 

Boscia integrifolia Gutenbergia cordifolia Rhynchosia minima 

Buddleja polystachya Gymnanthemum auriculiferum Rotheca myricoides 

Cadaba farinosa Gymnosporia senegalensis Rubia cordifolia 

Carissa spinarum Helichrysum schimperi Rubia spp. 

Carthamus caeruleus Helichrysum spp. Salvia spp. 

Cassipourea malosana Heteromorpha arborescens  Salvia splendens 

Catha edulis Hibiscus aponeurus Searsia natalensis 

Celosia trigyna Hibiscus fuscus Searsia pyroides 

Cenchrus sphacelatus Hoffmannanthus abbotianus Senecio hadiensis 

Chenopodium opulifolium Hypoestes aristata Setaria pumila 

Clematis brachiata Hypoestes forskaolii Sida ovata 

Clematis simensis Ipomoea indica Solanecio sp 

Clerodendrum johnstonii Justicia elliotii Solanum aculeastrum 

Clutia abyssinica Kalanchoe spp. Solanum incanum 

Coleus igniarius Lannea spp. Solanum nigrum 

Coleus meyeri Lantana trifolia Solanum spp. 

Commelina spp. Lantana ukambensis Sparrmannia ricinocarpa 

Conyza pyrrhopappa Lantana viburnoides Sporobolus spp. 

Crassocephalum sp Lasiosiphon glaucus Stephania abyssinica 

Crotalaria agatiflora Leonotis nepetifolia Tagetes minuta 

Crotalaria incana Leonotis ocymifolia var. raineriana Themeda triandra 

Croton macrostachyus Leucas deflexa Urtica massaica 

Cucumis spp. Leucas glabrata Vachellia drepanolobium 

Cyathula orthacantha Lipotriche scandens Vachellia lahai 
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Cyathula polycephala Lippia javanica Verbena officinalis 

Cyathula uncinulata Lippia rehmannii Verbena spp. 

Cyathula uniculata Marsdenia abyssinica Vernonia galamensis 

Cynodon dactylon Meiosperma bracteatum Vernonia spp. 

Cynoglossum coeruleum  Momordica foetida Vernonia syringifolia 

Cyperus rigidifolius Nelsonia spp. Withania somnifera 

Cyphostemma lentianum Neonotonia wightii Zehneria scabra 

Datura stramonium Nicoteba betonica  
Diospyros abyssinica Nuxia congesta  

 

Table 5.S4. Species browsed by rhino. (i) stands for invasive species. 

Species Bites Total 

Achyranthes aspera 149 398 

Lantana trifolia 90 127 

Abutilon longicuspe 57 166 

Pavonia urens 54 152 

Schoenoplectiella confusa 39 47 

Abutilon mauritianum 38 119 

Lippia javanica 36 228 

Hibiscus fuscus 27 111 

Tagetes minuta (i) 26 308 

Sida cuneifolia 24 46 

Lantana ukambensis 20 128 

Aeschynomene schimperi 19 28 

Bidens pilosa 18 104 

Ocimum gratissimum 17 189 

Solanum incanum (i) 17 367 

Amaranthus hybridus 15 93 

Meiosperma bracteatum 14 164 

Pavonia urens irakuensis 13 60 

Cyperus imensus 12 12 

Gutenbergia cordifolia (i) 12 272 

Indigofera arrecta 12 41 

Ludwigia stolonifera 12 18 

Nicoteba betonica 12 39 

Baccharoides lasiopus 11 37 

Gymnosporia senegalensis 9 145 

Hibiscus aporeneus 9 41 

Clausena anisata 8 30 

Crotalaria vallicola 7 27 

Cyathula polycephala 7 90 

Chenopodium opulifolium 6 33 

Commelina africana 6 8 

Helichrysum schimperi 6 28 

Hibiscus calyphyllus 6 8 
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Hypoestes forskaolii 6 163 

Sida ovata 6 96 

Gymnanthemum auriculiferum 6 85 

Pavonia burchellii 5 54 

Hibiscus aponeurus 4 99 

Vachellia xanthophloea 4 142 

Aspilia mossambicensis 4 72 

Vernonia galamensis 4 30 

Capparis tomentosa 3 37 

Clutia abyssinica 3 68 

Coleus meyeri 3 14 

Jasminum fluminense 3 3 

Lantana viburnoides 3 14 

Phyllanthus fischeri 3 17 

Solanum aculeastrum 3 60 

Sphaeranthus bullatus 3 26 

Trichodesma zeylanicum 3 3 

Bidens schimperi (i) 2 122 

Coleus igniarius 2 22 

Crotalaria incana 2 46 

Cyathula orthacantha 2 20 

Hypoestes aristata 2 76 

Justicia betonica 2 39 

Leucas bracteosa 2 65 

Leucas deflexa 2 84 

Vangueria madagascariensis 2 48 

Amaranthus graecizans 1 16 

Arundinaria alpina 1 5 

Clematis simensis 1 37 

Eleusine jaegeri (i) 1 28 

Euphorbia tirucalli 1 18 

Gomphocarpus fruticosus 1 9 

Gorteria beguinotii 1 22 

Kalanchoe lanceolata 1 19 

Leonotis nepetifolia 1 35 

Lippia rehmannii 1 10 

Nepeta azurea 1 13 

Ocimum lamiifolium 1 9 

Phytolacca dodecandra 1 1 

Searsia natalensis 1 18 

Senecio hadiensis 1 29 
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Chapter 6 – General discussion 

6.1 Motivation for the thesis 

Black rhinos are umbrella species and play a key role in shaping landscapes and influencing 

vegetation dynamics through their feeding habits and interactions, they are therefore, 

essential in maintaining ecological balance, promoting biodiversity, and supporting the 

health of ecosystems (Augustine and McNaughton, 2006; Bergstrom, 1992; Wigley et al., 

2014). In 1996, the black rhino was listed as a Critically Endangered species, in 2020 there 

were reported to be 1044 Eastern black rhinos (583 mature individuals) in the wild (Emslie, 

2020). Despite its population gradually increasing, the growth rates are below 5% per 

annum, the minimum target accepted internationally to maintain genetic diversity (du Toit, 

2006; Emslie et al., 2009). Previous conservation efforts focused on establishing protected 

areas, increasing security, using anti-poaching patrols and fencing (Brett, 1993). However, 

food availability and quality and genetics constrains are major contributors which need 

consideration if current populations are to be sustained and potentially grow. (Brooks and 

Adcock, 1997; Buk and Knight, 2010; Mills, 2006; Muya and Oguge, 2000; Omari, 2009). 

To sustain viable rhino populations, it is essential to manage habitats within the ecological 

carrying capacity (ECC), optimizing breeding performance, minimizing death rates, and 

ensuring browse availability (Omari 2009, Knaini 2009). This is particularly important in 

small populations which are more vulnerable to environmental changes (Heywood et al., 

1995). The habitat changes naturally over time and geographically, and habitat that was 

suitable for black rhino might become unsuitable (Amiyo, 2006; Reid et al., 2007). Studies 

on habitat preferences are vital to improve habitat quality and ensure appropriate 

management of the protected areas (Hazarika and Saikia, 2012; Omari, 2009; Reid et al., 

2007). As the habitat changes, the rhino diets are also expected to be different when 

compared to old studies in the same site or between protected areas. Therefore, the need 

for site-specific feeding ecology studies using appropriate methods is paramount. 

Geospatial approaches such as habitat suitability models using satellite imagery and 

machine learning algorithms (e.g., Random Forest, MaxEnt) provide finer-scale spatial 

insights compared to traditional approaches (Breiman, 2001; Eisfelder et al., 2012; Kramer-

Schadt et al., 2013; Yang and Prince, 2000). These methods allow for the prediction of rhino 

distribution by integrating various environmental factors namely vegetation types, water 

sources, and human disturbance data, which are critical in understanding habitat 
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preferences and identifying potential new habitats for rhino populations (Garzón et al., 

2006). 

These studies can also be used to predict rhino distribution based on habitat usage using 

modelling to help identify suitable habitat which may not yet be occupied (Buk and Knight, 

2010; Lush et al., 2015). Similarly, monitoring land cover changes using satellite imagery 

(e.g. through time-series satellite data), helps detect areas where habitat quality is 

degrading, enabling timely management interventions to maintain or enhance habitat 

suitability for rhinos and other wildlife (Borges et al., 2022). These insights are critical for 

guiding targeted conservation actions, such as mapping and creating wildlife corridors, 

prioritizing areas for habitat restoration, managing human-wildlife conflicts, and planning 

reintroduction programs to expand rhino habitat 

The Ngorongoro Conservation Area (NCA), located in northern Tanzania, is a protected area 

that forms part of the Serengeti ecosystem and became a United Nations Educational, 

Scientific and Cultural Organisation (UNESCO) World Heritage Site, in 1979, for exceptional 

natural and cultural values (UNESCO, 2010). The density and diversity of wildlife in the NCA 

is of global importance for biodiversity conservation and economically important for 

Tanzania. The primary aim of this thesis was to critically evaluate the NCA’s capacity to 

sustain its growing Eastern black rhino population, thereby contributing valuable insights 

to conservation management in the region. The thesis is structured into four distinct 

chapters. I started by determining what was the best combination of satellites and seasons 

to map the main land cover types in the NCA (Chapter 2, Borges et al., 2020). Mapping the 

extent and the composition of savannah environments is challenging but essential to 

improve monitoring capabilities, prevent biodiversity loss and ensure the provision of 

ecosystem services. The outcome of the Chapter provided a high accuracy medium 

resolution land cover map, with the nine main vegetation types.  

The recommendation on best performing season (short-dry season) from Chapter 2 was 

then applied in Chapter 3 (Borges et al., 2022) to identify and quantify the major land cover 

changes occurring in the NCA. Land cover changes threaten the wellbeing of livestock, the 

livelihoods of resident pastoralists and of the wildlife dependent on these grazing areas 

(Niboye, 2010; Swanson, 2007). Some of the land cover changes may be occurring naturally 

and caused by herbivory, climate change, rainfall patterns and vegetation succession, but 
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many are linked to human activity, specifically, management policies, tourism development 

and the increase in human population and livestock (Homewood et al., 2001; Masao et al., 

2015; Niboye, 2010). This study provides, for the first time, much needed and highly 

accurate information on long-term land cover changes in the NCA that can support the 

sustainable management and conservation of this unique UNESCO World Heritage Site 

(UNESCO, 2010). Additionally, it further highlights the importance of using remote sensing 

to monitor and assess changes in vegetation cover and habitat quality over time.  

In Chapter 4 I identified potential black rhino habitat, for the wet and dry seasons and 

assessed how human activities impact habitat quality within the NCA. Additionally, I 

investigated how using field data combined with remote sensing provides more accurate 

predictions than solely using a land cover map (Chapter 2) and human disturbance data. 

In Chapter 5, I investigated black rhino feeding preferences in the NCA and how it varies 

with season and region. Areas that experienced extensive land cover changes (e.g. Lerai 

Forest) and have been previously used by black rhino, and areas that were identified in 

Chapter 4 as suitable (e.g. between Olmoti Crater and NC) were studied in more detail 

(Borges et al., 2022; Goddard, 1968). Suitable areas, as identified by remote sensing, have 

a higher potential of supporting future populations, however, it is still essential to survey 

the vegetation to ensure there is preferable browse available for rhino.  

This comprehensive approach, which combines mapping and quantifying land cover 

changes, assessing habitat suitability, and understanding dietary preferences, 

demonstrates how geospatial approaches directly support conservation goals. The 

integration of these techniques provides insights that are essential for sustaining and 

increasing the Eastern black rhino population in the Ngorongoro Conservation Area by 

enabling targeted conservation actions and effective management strategies. 

6.2 Remote Sensing Applications in Savanna Management 

Savannahs are heterogeneous environments with an important role in supporting 

biodiversity and providing essential ecosystem services. Due to extensive land use/cover 

changes and subsequent land degradation, the provision of ecosystems services from 

savannahs has increasingly declined over recent years (Schneibel et al., 2017; Symeonakis 

and Higginbottom, 2014). To monitor these changes effectively, specific geospatial tools, 

such as Sentinel-1, -2 and Landsat are used often. For 50 years, the Landsat archive has 
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been the workhorse for vegetation and land cover mapping and monitoring, mainly due to 

its unparalleled archive. More recently, Sentinel-2 data with improved spatial and spectral 

resolution have also been successfully employed to map African savannah vegetation 

characteristics (Zhang et al., 2019). However, optical data come with their limitations, such 

as the presence of cloud coverage and the difficulty in discriminating between woody 

vegetation and grassland (Symeonakis et al., 2018). To address these inherent problems, a 

number of studies have combined Synthetic Aperture Radar (SAR) data (e.g., from the 

Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar, 

ALOS PALSAR; or Sentinel-1) with optical data to improve classifications, as SAR sensors are 

insensitive to cloud cover, discriminate woody vegetation effectively, and are, therefore, 

particularly helpful for savannah environments (Higginbottom et al., 2018; Mathieu et al., 

2013; Naidoo et al., 2016; Symeonakis et al., 2018; Zhang et al., 2019). Techniques like 

regression-based unmixing and trend break analysis are applied to these datasets to 

distinguish between subtle changes in vegetation types and to detect shifts in land cover 

trends over time, providing unique insights into savanna dynamics (EnMAP-Box 

Developers, 2019; Verbesselt et al., 2010). Understating vegetation dynamics and ongoing 

land cover change processes in protected areas is to improve monitoring capabilities and 

prevent biodiversity loss and ensure long-term survival of wildlife (Borges et al., 2022; 

Harris et al., 2020). 

The NCA supports the largest black rhino population in Tanzania and in recent years this 

population increased to approximately 70 individuals (Kohi and Lobora, 2019). Currently, 

there is emerging evidence of a decrease in the quality and quantity of preferable browse 

and, consequently, a decrease in suitable habitat for black rhino (Amiyo, 2006; Makacha et 

al., 1979; Niboye, 2010). Unsuitable habitats and limited browse promote competition for 

resources and emigration of rhinos out of the Crater and the NCA (Makacha et al., 1979). 

In this context, remote sensing approaches, such as those employed here, are essential 

tools for monitoring these changes and informing management decisions. By applying such 

approaches, we can accurately track habitat quality and detect areas of degradation or 

regrowth, which are crucial for understanding the availability of suitable browse for rhinos 

(Chapter 4). Additionally, these have broader applicability across various ecosystems and 

regions and have been successfully applied in other studies, as in Abera et al. (2022), to 
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monitor habitat quality and land degradation in different environments, including wetlands 

and forests. 

6.2.1 Mapping savannah habitats 

In Chapter 2 there are three relevant findings concerning the optimization of land cover 

mapping and rhino habitats. Firstly, the use of Sentinel-2 imagery during the short-dry 

season, occurring between January and February, proved remarkably effective, 

demonstrating a 5% improvement over other single-season Sentinel-2 models and 

comparable performance to multisensory models. This was the first time that this season 

was used to map savannah landscape using remote sensing data. Seasonality plays a crucial 

role in remote sensing as it is influenced by cloud cover and affects vegetation reflectance 

properties, with the short-dry season providing clearer distinctions between woody and 

herbaceous vegetation. 

The findings from Chapter 2 are particularly relevant due to their transferability, as 

demonstrated by the successful application of these geospatial analysis techniques in 

subsequent research. For instance, the recommendations from Chapter 2 were utilized in 

Chapter 3 to create fractional maps of each land cover type, further validating their 

applicability in different contexts. Additionally, the findings were extended to a 2022 

(Abera et al., 2022) study focused on woody cover changes in East Africa, where similar 

geospatial analysis methods, including the use of satellite imagery and non-parametric 

modelling techniques, were employed to assess vegetation dynamics over time. This 

further illustrates the broader applicability and transferability of the approach across 

different regions and environmental conditions, reinforcing the importance of seasonality 

in geospatial analysis and its relevance for diverse ecological studies. 

The short-dry season was then used to create fractional maps of each land cover type in 

Chapter 3. Second, while tri-seasonal imagery has some advantages, there is a substantial 

increase in data preprocessing and our study suggested that combining data from the dry 

and short-dry seasons may suffice unless specific vegetation types require tri-seasonal 

mapping.  

Lastly, the findings align with the consensus that multisensor approaches provide more 

accurate results, particularly in mono-temporal models. However, in the presence of 

multiseason data, combining more than one sensor may be unnecessary and potentially 
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counterproductive for certain land cover types, such as 'Shrubland.' Additionally, 

multisensor approaches involve complex preprocessing steps which can be 

computationally intensive and may present trade-offs between accuracy and processing 

costs. 

The best performing model—using a combination of Sentinel-2 and Sentinel-1 data from 

the dry and short-dry seasons— was then used in Chapter 4 with the fuzzy approach and 

measurements relating to impacts. Additionally, our derived land cover map could help 

monitor black rhino habitat quality and identify new locations within the NCA which the 

population could expand into. Previously, the only detailed land cover survey in the NCA 

was completed in 1972, before several major management policies were introduced that 

brought about significant environmental changes (Herlocker and Dirschl, 1972; Mills, 2006; 

Niboye, 2010). 

6.2.2 Land cover changes in the Ngorongoro  

Over the last 50 years, African savannahs have undergone considerable land cover changes, 

including forest degradation, spread of invasive plant species, and woody encroachment 

(Amiyo, 2006; Higginbottom et al., 2018; Ludwig et al., 2019; Mills, 2006; Symeonakis et al., 

2018; Venter et al., 2018). In Chapter 3, I demonstrate a Landsat-based monitoring strategy 

incorporating regression-based unmixing for the accurate mapping of the fraction of the 

different land cover types. Additionally, I combined linear regression and the BFAST trend 

break analysis technique for mapping and quantifying land cover changes. I used Landsat 

data of the short-dry season as recommended in Chapter 2 and although Sentinel-2 

provides a higher resolution, Landsat has the long-term data that is required to identify the 

more subtle changes (Senf et al., 2020; Souverijns et al., 2020; Suess et al., 2018).   

I identified the two dominant land cover change: the degradation of highland forest into 

bushland, and a transition from grassland to shrubland in the Serengeti Plains. In the NCA 

highlands, forest degradation is of particular concern, as these forests provide ecosystem 

services to the Maasai through the provision of fuel wood, traditional medicinal plants, and 

forage for livestock (Swanson, 2007). Additionally, forests provide shelter for wildlife and 

regulate water resources (Swanson, 2007). In the Serengeti plains, woody encroachment 

and invasive species can reduce rangeland carrying capacity, directly affecting wildlife and 

the Maasai livestock (Venter et al., 2018). To address these issues, understanding the 
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spatial distribution of human activities such as livestock density and settlement expansion 

is crucial for assessing habitat changes. These factors, alongside climate change, shifting 

rainfall patterns, and herbivory, likely contribute to the observed land cover changes and 

underscore the need for targeted management strategies (Homewood et al., 2001; Masao 

et al., 2015; Niboye, 2010). 

6.2.3 Implications for the NCA 

In the context of conservation efforts within the NCA, these findings offer critical insights 

into the management and preservation of its diverse ecosystems. Firstly, the provision of a 

much-needed and highly accurate medium-resolution land cover map for the NCA's main 

land cover types stands as an important contribution. This will play a crucial role in 

supporting sustainable management practices and informing targeted conservation 

initiatives within the area. 

Moreover, the identification of specific areas undergoing land changes holds profound 

significance for black rhino conservation and other wildlife species within the NCA. Remote 

sensing approaches allow for continuous monitoring of these changes with high temporal 

resolution, providing detailed insights into shifts in habitat composition. Recognizing these 

shifts in habitat composition is essential for implementing effective conservation strategies 

that address the requirements of critically endangered species and safeguard their 

habitats. 

Considering these findings, it is imperative to develop a proactive fire management plan 

tailored to areas affected by encroachment, such as the Crater floor, and those undergoing 

vegetation regeneration. Employing remote sensing imagery can enhance fire 

management by providing data on vegetation health and dryness, which are critical for 

predicting and managing fire risk. By implementing targeted fire management strategies, 

conservation efforts can mitigate the adverse impacts of habitat changes, promote 

ecosystem resilience, and contribute to the long-term conservation goals of the NCA and 

its diverse wildlife populations. 

Additionally, integrating remote sensing data with field observations can further refine 

conservation strategies. Combining these data sources allows for a more accurate 

understanding of habitat conditions and variability within the NCA. This integrated 
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approach ensures that management practices are based on accurate, real-time 

information, ultimately improving the effectiveness of future interventions. 

6.3 Implications for rhinos 
Although the NCA was investigated as whole, to assess habitat cover and change, I was 

particularly interested in two specific areas; the Oldupai area because it once supported a 

rhino population, and the montane region between Olmoti and the Ngorongoro Crater 

which, the results in Chapter 2 indicated suitable vegetation to support black rhino.  

6.3.1 Montane areas around the Ngorongoro Crater 

The area between Olmoti and the Ngorongoro Crater is comprised of forest and bushland 

cover (Chapter 2). The vegetation was described as Crotalaria-Gymnanthemum montane 

bushland and is dominated by Gymnanthemum auriculiferum, Pavonia urens irakuensis, 

and Clutia abyssinica, all of which were browsed by rhino (Chapter 5). This habitat also 

features moist evergreen forests like Nuxia congesta and sporadic occurrences of Bersama 

abyssinica (Herlocker and Dirschl, 1972). Several vines, creepers, and other herbaceous and 

woody species also thrive in abundance, providing ideal forage and cover (Herlocker and 

Dirschl, 1972; Gadiye, 2016).  

Although, over the last decades, the area has experienced loss of forest and particularly of 

large trees, the bushland cover, which is more favourable for rhino, has increased (Chapter 

3). Forest areas, although useful for shelter and breeding, do not usually provide much 

browse reachable by rhino. Considering the composition of the vegetation in the area, the 

increase in bushland would most likely support more rhino as there would be more 

resources for browsing (Goddard, 1968; Herlocker and Dirschl, 1972; Gadiye, 2016).  

The rim and surrounding areas were highlighted as suitable habitat for black rhino in 

Chapter 4 and 5. It is particularly good because most of the vegetation is evergreen, not 

severely impacted by seasons (Chapter 4), and has a constant supply of water throughout 

the year. In addition, it is isolated enough from human activities, namely tourism, but still 

benefits from the removal of human settlements (Chapter 4). Chapter 4 recommended that 

suitable areas should be surveyed to determine if rhino browse is available and the relevant 

data was analysed in Chapter 5. I found that the species preferred by rhino are widely 

available but there is also a range of other species that are known to be palatable to black 

rhino (Gadiye, 2016).  
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The combination of browsing material, habitat type, water availability, breeding areas, 

shelter, and distance from humans, suggests that the rim, specifically the region between 

Olmoti and the Ngorongoro Craters could be premium habitat for black rhino. However, it 

is also important to note that monitoring through direct observation in such a dense habitat 

would be very challenging. Ideally, the rhinos in this area would be fitted with trackers, so 

anti-poaching patrols could locate them easily with minimal disruption to the animals while 

ensuring the safety of the rangers.  

6.3.2 Oldupai Gorge area 

In the 1960s, there was a resident population of 69 rhinos in the Oldupai area but after 

heavy poaching, during the 1970s and 80s, it disappeared (Kiwia, 1989; Moehlman et al., 

1996; Oates and Rees, 2013). Historically, the Gorge was part of a corridor between the 

Ngorongoro and the Serengeti National Park. Rhinos used to migrate from the Crater to the 

Rim, towards Balbal and through Oldupai Gorge, to Ndutu and to the Serengeti (Deogratius 

Maige 2023 pers. comm.). In Chapter 2, the Gorge area was identified as mostly grassland, 

shrubland and woodland which agrees with Herlocker and Dirschl (1972) findings. In 

Chapter 3 I found that the area experienced encroachment of shrubland and an increase in 

woodland cover between the South and the Western portions of the Gorge. Assuming, that 

these changes include species that are palatable, an increase in woody cover would be 

beneficial for black rhino (Hitchins, 1969). 

The area surrounding Oldupai Gorge remains mostly unsuitable throughout except for a 

few patches (Chapter 4), however the habitat characteristics associated with rhino 

presence identified the area as a potential site for reintroductions (Chapter 5). This 

apparent discrepancy underscores the importance of integrating remote sensing 

techniques with detailed fieldwork. While presence/pseudo-absence data and remote 

sensing imagery were employed in Chapter 4 to identify suitability, it's essential to 

acknowledge the data limitations, such as resolution and spectrally similar vegetation 

types. Field-based studies offer additional detail that cannot be captured by remote sensing 

alone (Chapter 5). 

The ideal habitat for rhino comprises lower vegetation density and browse availability but 

higher shrub cover, suggesting that rhinos prefer sites with browse that is actually available 

below 1m of height which explains why Oldupai was flagged in Chapter 5. Additionally, the 
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species that were consumed by rhinos in the past are still present. During the dry season, 

Oldupai becomes much drier and there is barely any water available (Goddard 1968). 

Rhinos are water-dependent but in the past they consumed Euphorbia tirucalli, Sansevieria 

ehrenbergii and Cissus quadrangularis to fulfil their water requirements (Goddard, 1968).  

Despite the presence of browse, most of the Oldupai area was only seasonally suitable and 

even then, does not seem as ideal the areas between Olmoti and the Ngorongoro Craters 

or most of the Rim. There is a heavy presence of livestock in the area and it is bisected by 

the road which connects the NCA to the Serengeti. When human disturbances were 

removed from the model (settlements and cattle) the suitability of the area increased. 

However, the road was not removed (even during the simplified human disturbances) as 

there is no realistic alternative to its presence as is the only viable route to the Serengeti. 

Additionally, I worked under the assumption that the habitat is suitable in areas that are 

similar the ones where black rhinos currently reside. Most of the rhinos are ‘kept’ in the 

Crater for protection and if they try to leave, they are often brought back to ensure their 

safety. It could be that if this was not the case, they would expand to other areas.  

6.4 Limitations of study 

EO data limitations: The Landsat 7 satellite's Enhanced Thematic Mapper Plus (ETM+) 

sensor has a known limitation due to the failure of its Scan Line Corrector (SLC) in 2003, 

causing gaps and stripes in the imagery, resulting in approximately 22% of data loss in each 

scene. However, this limitation can be effectively managed by combining Landsat 7 data 

with imagery from other sources to fill in the gaps, as was done in this study. In Chapter 3, 

specifically in Figure 3.9, gaps were filled using data from images taken on different dates, 

which is why some of the stripes remain visible. This approach ensures the continued 

usability of Landsat 7 data despite the SLC failure.  

The resolution of freely available remote sensing data, such as Landsat (30m) and Sentinel-

2 (10m), also remains as one of the main limitations. Moderate resolution data limits the 

ability to detect small-scale habitat features that are often essential for habitat mapping, 

such as individual species, small water sources, or narrow migration pathways. The inability 

to accurately capture these fine-scale features can result in underestimating or 

misclassifying important habitat areas. Other datasets, such as Pléiades (0.5m) or SPOT 

(1.5m) have a much higher resolution, but the costs associated with acquiring this data are 
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much higher. PlanetScope data has a higher resolution of 3 meters but limited spectral 

layers (Symeonakis et al., 2019). Higher-resolution datasets would enable more precise 

habitat mapping, improving the detection of specific forage species and other critical 

habitat elements. For time series studies using Sentinel-2 would be beneficial due to its 

higher resolution but since it has only been in orbit from 2016, it has a limited temporal 

scope (Symeonakis et al., 2019). Additionally, single Landsat images were used rather than 

composites due to restrictions accessing the university campus during the pandemic. 

Composites would provide data with fewer cloud gaps and therefore more accurate 

analysis. However, the Landsat images available for the NCA provided enough quality for 

the study and decreased processing time.    

Spatial Specificity: The study's focus on the Ngorongoro Conservation Area may limit the 

generalizability of findings to other rhino habitats, and extrapolation to different regions 

may require caution. However, our methods can be replicated in other locations, which 

would provide more site-specific information.  

Field work limitations: Our field season lasted 7 months, covering both wet and dry 

seasons. This was due to the pandemic followed by delays associated with research 

permits. Repeating it over multiple years would provide a broader scope of the browsed 

species. In addition, the identification of species browsed by rhinos may not cover the 

entire spectrum of potential food sources, leaving gaps in understanding the full dietary 

preferences. Another limitation of our field work was that it was solely based on bite 

identification on each plant. Combining this type of data with other more accurate 

methods, such as DNA metabarcoding would provide higher quality results.   

6.5 Recommendations for further research 

Based on the findings of the study and the identified challenges and opportunities for rhino 

conservation in the Ngorongoro, the following recommendations outline key areas for 

further research to advance our understanding and management of rhino populations and 

habitats: 

• Combine the feeding study with DNA metabarcoding techniques to obtain the full 

spectrum of plants consumed by rhino. Metabarcoding will allow the identification 

of grasses (if present), as well as other herbs and shrubs that are difficult to identify 

using rhino bites.  
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• Utilise camera trapping methodologies to assess movement patterns and habitat 

use across different areas within the NCA, aiding in the identification of key habitats 

and potential corridors for rhino populations. 

• Incorporate finer-resolution remote sensing data, such as Unmanned Aerial 

Vehicles (UAVs) or LiDAR, to improve the spatial detail of habitat maps. These 

technologies can provide more precise data on vegetation structure, canopy height, 

and ground cover, which are crucial for identifying microhabitats and fine-scale 

features important for rhino conservation. Combining these high-resolution 

datasets with advanced geospatial modelling approaches, including machine 

learning and artificial intelligence, could enhance the accuracy of habitat suitability 

models and predict potential habitat changes more effectively. 

• Continue long-term monitoring efforts to track changes in habitats, using this 

research as baseline data to evaluate the effectiveness of conservation 

interventions, adapt management strategies and to understand the potential 

impacts of Maasai community relocation on land cover changes. 

• The accuracy of the produced models that forecast potential changes in rhino 

habitats can be tested in the future and be used to validate future predictive models 

to assess their accuracy and reliability under different scenarios or conditions.  

6.6 Conclusion 

Overall, this research not only advances ecological knowledge but also provides actionable 

information for on-the-ground conservation strategies, making it an important 

contribution to both the academic field and practical wildlife conservation efforts. This 

thesis significantly contributes to the broader understanding of geospatial science in 

ecology and conservation, particularly through the development and application of 

advanced remote sensing and spatial analysis techniques. 

This research highlights the importance of geospatial science by demonstrating how the 

integration of Sentinel-1 and Sentinel-2 data across multiple seasons can optimize land 

cover mapping in heterogeneous environments like the Ngorongoro Conservation Area 

(NCA). The findings underscore the value of combining different types of remote sensing 

data to achieve higher accuracy in land cover classification, particularly in challenging 

savannah landscapes. The identification of optimal black rhino habitats further showcases 
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the practical application of these geospatial techniques, offering targeted information for 

potential reintroductions, translocations, and management strategies that ensure the 

preservation of key habitats throughout the year. 

This thesis also provides critical insights into the vegetation dynamics within the NCA, 

employing regression-based unmixing and trend break analysis to map and quantify land 

cover changes. The detailed mapping of fractional cover for various land cover types—such 

as grassland, bushland, forest, and woodland—demonstrates the intellectual contribution 

of this work to geospatial science. By accurately tracking changes in vegetation, such as the 

encroachment of shrubland into grazing areas, this research provides essential data that 

promotes sustainable management practices and highlights the role of human activities in 

driving these changes. 

The study's findings emphasize the necessity of combining remote sensing data with 

ground-truthing, vegetation surveys, and local knowledge to produce the most accurate 

and reliable results. This multidisciplinary approach is crucial for making informed 

conservation decisions, particularly for critically endangered species such as the black 

rhino. Additionally, the research shows that relying solely on remote sensing data can be 

unreliable, as it often overlooks crucial field variables. The methods developed here, 

although applied specifically to the NCA and its black rhinos, are replicable and can be 

adapted to other species and sites. The vegetation changes and invasive species 

distribution identified in this thesis can directly inform the development of fire and invasive 

species management programs, which have the potential to improve vegetation quality 

throughout the NCA. 

As the NCA undergoes significant policy changes, this thesis provides foundational data that 

can support these transitions while ensuring that conservation efforts are grounded in 

robust scientific methodologies. The intellectual contribution of this work lies not only in 

its application to rhino conservation but also in its advancement of geospatial science as a 

critical tool for ecological research and conservation planning. 
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6.8 Appendix 2 - Publications 

Chapters 2 and 3 appear below, as their final versions in published papers. 
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1  | INTRODUC TION

The Ngorongoro Conservation Area (NCA) is a protected area and 
UNESCO World Heritage Site and part of the Serengeti-Ngorongoro 
Biosphere reserve in northern Tanzania. It is famous for its large 
volcanic caldera, unique cultural heritage, early hominid fossils and 
significant wildlife populations. NCA has been managed as a mul-
tiple land-use area since 1959, a designation intended to foster a 
harmonious coexistence between indigenous residents and wildlife 
(Goldstein, 2004).

The NCA has international conservation prominence due to its 
populations of black rhinoceros (Diceros bicornis michaeli), African el-
ephant (Loxodonta africana), and a wide range of herbivore and large 
predator species (Homewood et al., 2004). It supports one of the 
largest mammal migrations on earth, with estimates of greater than 
1,000,000 wildebeest (Connochaetus taurinus), 260,000 plains zebra 
(Equus quagga) and 460,000 Thompson gazelle (Eudorcas thompsoni) 
(Campbell & Borner, 1995; Lembo et al., 2011). The area is also home 
to a large human population made up of several ethnic groups and 
diverse cultural traditions, including Hadzabe hunter-gatherers, and 
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Datooga and Maasai pastoralists (McCabe, 2003). These features 
attract nearly 50% of all international tourists who visit Tanzania 
(Melita, 2015), making the NCA by far the largest single contribu-
tor to the national economy relative to all other conservation areas 
in the country (accounting for 38% of park revenue in Tanzania; 
Busiweek, 2018). As a result, the NCA is considered a priceless and 
irreplaceable reserve for nature and nature's contribution to people.

Despite its enormous conservation, cultural and economic 
standing, there are considerable challenges in maintaining the NCA 
as a sustainable system for nature and people into the future. One 
of these challenges relates to the volume of tourists now visiting the 
area. Tourism has increased from approximately 50,000 visitors in 
1960 to 647,773 in 2013 (Melita, 2015; Melita & Medlinger, 2013) 
and approaching one million more recently (Slootweg, 2016). While 
this rise in paying visitors has brought about significant economic 
benefits, stimulating considerable infrastructure development, it has 
also increased disturbance in and around the caldera, swelling the 
demand for water and natural resources. This has led to the asser-
tion that tourism growth is incompatible with conservation objec-
tives in the NCA (Charnley, 2005).

At the same time, unpalatable invasive plant species have spread 
extensively within the NCA and dominate more than half of the 
caldera floor (Ngondya et al., 2019), reducing rangeland quality for 
many wildlife species and livestock (Foxcroft et al., 2006; Ngondya 
et al., 2016, 2019). The resident human population has also grown 
dramatically from approximately 10,000 people in 1954 (displaced 
from adjacent areas set aside for the Serengeti National Park) to 
87,851 in 2013 (Galvin et al. 2015, Masao et al., 2015) and currently 
approaching 100,000 (Manzano & Yamat, 2018). Associated with the 
expansion of the human population, livestock numbers within the 
NCA have increased during the same period, fostering the greater 
incidence and impact of diseases affecting humans, livestock and 
wildlife (Homewood, 2008). However, livestock populations have 
risen considerably less steeply than the human population (Ghosh 
& Uddhammar, 2013), causing a negative impact on livelihoods and 
well-being of the people in the NCA (McCabe, 2003). The total live-
stock units (TLUs) per person, a measure of food productivity for 
tropical pastoralists, fell from around 12.5 TLU/person in 1960 to 
2.02 in 2009 (Galvin et al. 2015), well below the benchmark min-
imum for pastoralist food provision (~6 TLU/person). Concomitant 
with these changes, there is mounting evidence to show that pop-
ulations of some wildlife species (i.e. gazelle species, wildebeest, 
kongoni (Alcelaphus buselaphus cokii), waterbuck (Kobus ellipsiprym-
nus) and eland (Taurotragus oryx) have declined in the Ngorongoro 
caldera (Estes et al., 2006, Moehlman et al., 2020). These species 
preferred the short grasslands as maintained through prescribed 
burning. Since the practice of burning was banned from 1975, 
grasslands supported taller grass stands benefitting Cape buffalo 
(Syncerus caffer, Fyumagwa et al., 2007) and elephant populations, 
while plains zebras have remained stable (Moehlman et al., 2020).

Mirroring a larger pattern of lifestyle change in traditional pas-
toral communities across Africa (Homewood, 2008), Maasai people 
have adapted to a more sedentary lifestyle with modern houses, 

increasing their reliance on garden crops and on food provided by 
the NCA Authority. Although it has been suggested that small-scale 
agriculture could be developed alongside wildlife populations in the 
NCA (e.g. Boone et al., 2006), it is prohibited at present and there is 
a complicated history associated with human rights and legal per-
mission to farm in the NCA, which has been permitted, restricted or 
banned at different points in time (Goldstein, 2004; McCabe, 2003). 
However, were sustainable agriculture to be permitted in the NCA, 
the enterprise would necessarily be limited in scale due to its in-
compatibility with wildlife conservation. In addition, the expansion 
of cultivation in the NCA could clash with the tourism ideal, which 
perceives a benefit from the absence of development in the area 
(Slootweg, 2016).

While conditions for wildlife, livestock and people within the 
NCA have deteriorated, tourism intensity and its associated reve-
nue have increased, thus creating a unique challenge for managers. 
The result is that there is no clear single causative agent or solution 
to improve conditions simultaneously for people, wildlife and tour-
ism. Likewise, different stakeholders may have divergent objectives: 
a potential outcome for one stakeholder group may be perceived 
as undesirable, or even disastrous, by others. Also, the nature of 
issues may change through time, such as the aspirations of young 
people for education and jobs in urban areas instead of the pasto-
ral lifestyle, rendering possible solutions conceived in the present 
ineffectual in the future. Situations like this, with uncertain, contra-
dictory and changing requirements, have been referred to as ‘wicked 
problems’ (Rittel & Weber 1973), and it has been suggested that this 
may be typical of complex conservation challenges involving multi-
ple stakeholders (DeFries & Nagendra, 2017). While there is a long 
history of conservation management in the NCA, in the context of 
similar challenges across east Africa (Reid et al., 2014), the situation 
continues to defy a long-term solution and has been described as a 
wicked problem of the utmost severity (Balint et al., 2011).

Here, we conceptualise challenges in the NCA into four cate-
gories, and we assess them for their wickedness (Table 1). Of pri-
mary importance is the sustainable livelihood and welfare of people. 
Specific issues include education and healthcare provision, nutrition 
and food sustainability, and grazing and water access for livestock. 
The challenge is multifarious because of human population growth, 
along with conflicts of interest between land use for agriculture (cur-
rently not permitted), livestock grazing and wildlife conservation. 
Also, there is a contradiction between romanticising the ‘traditional’ 
way of life for people in the NCA that tourists perceive versus im-
proving living standards with modern homes and associated tech-
nologies. Another challenge is the preservation of biodiversity in the 
NCA. While some aspects of ecology in and around the caldera have 
been well studied (e.g. Sinclair et al., 2015), fundamental aspects of 
NCA biology outside of the caldera are less well understood, espe-
cially relating to climate change (but see Moehlman et al., 2020 for 
the caldera), the impact of tourism, and the interaction between hu-
mans, cattle and wildlife. The conflict of interest here is between the 
effects that residents and visitors have on the environment versus 
the economic value of increased tourism. Invasive plants are another 
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priority area, reducing rangeland quality and quantity available to 
wildlife and cattle. While there is awareness of the negative impacts 
of invasive plants (Foxcroft et al., 2006; Ngondya et al., 2017), the 
scale of the problem is alarming and is increasing. A final area of 
great concern is that of livestock and wildlife health and zoonoses. 
With a history of dramatic outbreaks of diseases, such as Peste des 
Petits Ruminants, anthrax, and foot and mouth disease, there is a 
looming threat to both wildlife and human welfare, exacerbated by 
changing land use. Meanwhile, tick-borne infections have become 
more common in both wildlife and livestock since the spread of taller 
grasses in recent decades (Fyumagwa et al., 2007).

2  | THE NC A: A FR AME WORK FOR THE 
FUTURE

Processes where research and management are not closely inter-
twined with local communities are now considered ineffectual 
for nature conservation, especially in rangeland ecosystems (Reid 
et al., 2014). A prominent alternative approach is that of adaptive 
management, which emphasises knowledge creation through the 
scientific method (Walters & Holling, 1990) and which is favoured, 
perhaps unsurprisingly, by ecological scientists. However, while 
popular and conceptually satisfying, application of adaptive man-
agement to conservation challenges suffers inherently from a lack 
of spatial or temporal replication, undermining the scientific method 
(Sutherland, 2006). There is also a lack of evidence as to whether 
it has actually been widely implemented, and disagreement as to 

whether it is successful as a method to solve conservation problems 
(Reid et al., 2014; Westgate et al., 2013). A combination of adap-
tive management with community-based conservation, where the 
social and economic developments of local people are linked with 
the responsibility to carry out conservation goals, leveraging local 
ecological and traditional knowledge while building capacity, is now 
widely considered the way forward. While there is some evidence 
that community-based conservation projects tend to be successful 
when designed to achieve social and economic outcomes along with 
biological ones (Oldekop et al., 2016), there is often a fundamental 
conflict between sustainability of development and the preservation 
of nature (Berkes, 2004).

We propose a solution for the NCA that imparts responsibility 
and acknowledges expertise amongst stakeholder groups (Table 2). 
This solution is inspired by the continual engagement model (Reid 
et al., 2009), with an emphasis on knowledge sharing, where all 
principal stakeholders in the NCA are represented. These stake-
holders are (a) the Ngorongoro Pastoral Council, representing NCA 
residents; (b) tourism industry workers from outside the NCA; (c) 
NCA Authority and government managers, who have direct fiscal 
and operational responsibility; and (d) natural scientists, social sci-
entists and conservation organisations, both local and global, con-
cerned with conservation of the natural resources of the NCA and 
human welfare. We propose a learning network solution that is 
characterised by knowledge exchange between stakeholders (e.g. 
Balint et al., 2011) and informed by continuous scenario-based as-
sessment of outcomes (e.g. Game et al., 2014; Mason et al., 2018). 
For instance, a locally based wildlife manager should monitor 

TA B L E  1   Synthesis of principle management challenges in the NCA, management questions arising from them and reasons for 
wickedness

Management challenge Management questions Reasons for wickedness

Sustainable livelihood and 
welfare for local people

How can food sustainability and improved nutrition 
be achieved? How can education and prospects 
for young people be improved? How can cultural 
tourism be developed? How to mitigate livestock 
grazing, water access and cultivation rights with 
conservation?

• Human population growth and immigration
• Differences in social values
• Political sensitivity
• Divergence of objectives amongst stakeholders
• Cultivation, land-use change and degradation
• Grazing of cattle owned by non-NCA residents
• Development insults the tourist aesthetic

NCA biodiversity Can continuous biodiversity monitoring be 
achieved? How resilient are crater ecosystem 
services? How best to mitigate and monitor 
poaching risk?

• The economic value of tourism and tourism 
growth

• Potential competition between livestock and 
wildlife for forage and water

• NCAA has limited jurisdiction and resources 
outside the NCA to implement strategies

• Increased tourism depletes water resources
• Climate change

Invasive plant species What impact do invasive plants have on NCA 
biodiversity? How best to prioritise and manage 
invasive plant ecology in the NCA?

• Scale of the problem is large and uncertain
• Reduces available forage for wildlife and livestock
• Complex causality from invasion source points
• Long seed bank lag time

Healthy livestock populations and 
zoonotic disease

How to manage and monitor risk of anthrax, Peste 
des Petits Ruminants, foot and mouth, rabies, rift 
valley fever, Brucellosis and other diseases?

• Increase in cattle population increases zoonosis 
risk

• Increased cost of veterinary support
• Epidemiology of outbreaks

Abbreviation: NCA, Ngorongoro Conservation Area
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patterns of wildlife and livestock grazing and report, on a prede-
termined schedule (i.e. bi-monthly), to a committee consisting of 
representatives of all major stakeholders. This committee, chaired 
by an individual with no conflict of interest, will then be able to 
make informed decisions about grazing management, reducing the 
chances of interaction and pathogen transfer between wildlife and 
livestock. This would allow for continuous engagement between 
stakeholders in the decision-making processes and for flexible 
management that can cope with changes in the parameters, such 
as those related to climate change. We believe this can be effec-
tive through generating consensus amongst stakeholders through 
the discussion of acceptable trade-offs between competing man-
agement objectives.

Many of the conservation and human welfare challenges in the 
NCA have been acknowledged and studied in the past. Yet, ongoing 
intensification of population growth and tourism pressures has cre-
ated a unique situation at present, aggravated by the geographical, 
biophysical and political circumstances that have created it. While 
there has been a long history of conservation management in the 
NCA, the nature of continuous change requires continuous adapta-
tion drawn from all-inclusive stakeholder insights. Our goal here, as 
representatives of each major group of stakeholders, was to propose 
a new process in the NCA and to document a consensus to engage 
in it. Therefore, we call for the immediate institution of a process of 
continual engagement (sensu Reid et al. 2009) and learning amongst 
stakeholders based on the learning networks approach leading to 

TA B L E  2   Conventional versus learning networks approach (adapted from Mason et al., 2018)

Conventional Learning networks Application to NCA project

Top-down decision-making Distributed decision-making

Management decisions are made in a 
top-down process

Management decisions are contributed by different 
stakeholders

Aspects of management (e.g. monitoring, key 
species, invasive species, grazing) led by a local 
manager which takes day to day decisions within 
agreed parameters (legal, ethical)

Standard practice Creative practice

Standard management practices, 
applied elsewhere for other 
problems, are used

Creative management practices, suited to the 
specific problems, are developed

Utilise local knowledge and practices from NCA 
residents, evaluate ideas from similar projects 
worldwide, facilitate communication between 
project themes

Restricted expertise Diverse expertise

Management is guided by restricted 
expertise

Management is guided by the learning network. 
Challenge conventional 'best practice'. Maintain 
flexibility in terms of how objectives are achieved. 
Encourage discussion, dissent and diversity in the 
learning network

Establish learning network amongst NCA 
stakeholders. Develop a forum for the open 
discussion continuous knowledge exchange of 
management actions and outcomes

Passive management Predictive management

Management interventions are 
adapted over time as the system is 
altered

Management interventions are guided by 
continuous evaluation of scenario-based 
predictions

Management practice based on competing 
scenarios. For example, evaluate which 
management actions for forest regeneration will 
have the widest beneficial impact and what is 
the scope of potential costs? Preparation must 
be made to completely change strategies rather 
than an inflexible approach

Conventional evidence Pattern-based evidence

Management is informed by 
evidence from single processes

Management is informed by pattern recurrence in 
complex, interactive processes

Evidence-based review of existing research 
outcomes to inform scenario modelling (e.g. 
forest regeneration, rangeland management, 
long-term monitoring)

Strategy-focused Outcome-focused

Management strategy constrained 
by objectives

Focus on outcomes, strategy is flexible Define a discrete set of specific desired outcomes 
for scenario modelling

Objective success Trade-offs in objectives

Focus only on management 
successes

Trade-offs in management success are 
acknowledged

Evaluate outcomes and trade-offs amongst 
scenario alternatives.

Avoid sharing failures Sharing failures

Management failures are not shared 
with stakeholders

Management failures are shared transparently with 
stakeholders

Full disclosure of progress including successes 
and failures in learning networks

Abbreviation: NCA, Ngorongoro Conservation Area.
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a decision for action to secure the future of the NCA. Addressing 
conservation and development challenges in the Ngorongoro 
Conservation Area will necessitate creativity, persistence and long-
term commitment. Our aim here was not to convey a simple solution 
to the huge challenge of reconciling wildlife and human conflict in 
the light of climate change and other land pressures imposed on the 
NCA, but instead to communicate a consilience amongst stakehold-
ers on both the nature of a resolution and the will to work together 
to achieve it. We believe this is possible if we can echo and imple-
ment the famous words of Tanzania's first President Julius Nyerere: 
‘In accepting the trusteeship of our wildlife we solemnly declare that 
we will do everything in our power to make sure that our children's 
grand-children will be able to enjoy this rich and precious inheri-
tance’ (Arusha Manifesto in Watterson, 1961).
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Abstract: Savannahs are heterogeneous environments with an important role in supporting
biodiversity and providing essential ecosystem services. Due to extensive land use/cover changes and
subsequent land degradation, the provision of ecosystems services from savannahs has increasingly
declined over recent years. Mapping the extent and the composition of savannah environments is
challenging but essential in order to improve monitoring capabilities, prevent biodiversity loss and
ensure the provision of ecosystem services. Here, we tested combinations of Sentinel-1 and Sentinel-2
data from three different seasons to optimise land cover mapping, focusing in the Ngorongoro
Conservation Area (NCA) in Tanzania. The NCA has a bimodal rainfall pattern and is composed
of a combination savannah and woodland landscapes. The best performing model achieved an
overall accuracy of 86.3 ± 1.5% and included a combination of Sentinel-1 and 2 from the dry and
short-dry seasons. Our results show that the optical models outperform their radar counterparts,
the combination of multisensor data improves the overall accuracy in all scenarios and this is
particularly advantageous in single-season models. Regarding the effect of season, models that
included the short-dry season outperform the dry and wet season models, as this season is able to
provide cloud free data and is wet enough to allow for the distinction between woody and herbaceous
vegetation. Additionally, the combination of more than one season is beneficial for the classification,
specifically if it includes the dry or the short-dry season. Combining several seasons is, overall,
more beneficial for single-sensor data; however, the accuracies varied with land cover. In summary,
the combination of several seasons and sensors provides a more accurate classification, but the
target vegetation types should be taken into consideration.

Keywords: Sentinel-2; Sentinel-1; radar; seasonality; savannah landscapes

1. Introduction

Savannahs are heterogeneous landscapes combining grassland, open canopy trees and shrubs.
These ecosystems occur in tropical and subtropical climate zones, mainly in the Americas and Australia,
as well as in Africa, where they cover half of the land surface [1]. Savannah ecosystems are important
for biodiversity and the global carbon cycle and provide essential ecosystem services for some of
the world’s poorest communities [2–6]. In recent years, the provision of ecosystems services from
savannahs has increasingly declined due to extensive land use/cover changes and subsequent land
degradation [5,6]. Woody vegetation encroachment or densification, attributed to climate change and
altered rainfall patterns, can have negative impacts on carbon storage, biodiversity, grazing capacity,
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and tourism [7–13]. Additionally, management policies (e.g., fire management), herbivore pressure,
and invasive plant species directly impact savannah dynamics [8,9,14].

Savannahs in southern and eastern Africa are similar in their ecological structure and function, sharing
similar fauna and flora [15,16]. However, there are key differences in conservation land management.
Southern Africa adopted a proactive approach, using fences, culling, fire, and large-mammal translocation
programs [16]. Conversely, East Africa’s protected areas are often unfenced and follow a ‘hands-off’
approach allowing wildlife to roam freely and intervening as little as possible [17]. In this region, around
20% of the land is officially protected [18]; however, due to population growth driving demand
for crop and rangeland, pressure on the savannah is increasing. Sustainable ecosystems require an
understanding of how savannahs work and how losses of function can be mitigated or prevented
through informed management decisions [16]. Therefore, to improve monitoring capabilities, prevent
biodiversity loss and ensure savannah ecosystem services, it is essential to produce high-resolution,
up-to-date and highly accurate land cover information [19,20].

Over small areas, traditional methods of land cover mapping, e.g., ground-based surveys and
aerial photographs, are able to provide information on the dynamics of savannah vegetation structure
and distribution. However, to portray the spatial patterns of vegetation change over larger areas,
these techniques are time consuming, limited in extent and expensive, and therefore, inefficient [19,20].
In the last five decades, satellite Earth observation (EO) data are increasingly used to map and monitor
vegetation cover and its characteristics [21–23]. The use of EO technologies with open-access data
archives provide the opportunity to study inaccessible areas and to assess the vegetative cover and its
evolution through time [19]. Mapping savannah vegetation, however, is challenging due to varying
degrees of vegetation cover, high background soil signal and the spectral similarities between land cover
types [10,24,25]. In East Africa, in particular, high cloud coverage represents an additional challenge [26,27].

For almost 50 years, the Landsat archive has been the workhorse for vegetation and land cover
mapping and monitoring, mainly due to its unparalleled archive. More recently, Sentinel-2 data with
improved spatial and spectral resolution have also been successfully employed to map African savannah
vegetation characteristics [10]. However, optical data come with their limitations, such as the presence
of cloud coverage and the difficulty in discriminating between woody vegetation and grassland [28].
To address these inherent problems, a number of studies have combined Synthetic Aperture Radar
(SAR) data (e.g., from the Advanced Land Observing Satellite Phased Array type L-band Synthetic
Aperture Radar, ALOS PALSAR); or Sentinel-1, with optical data to improve classifications, as SAR
sensors are insensitive to cloud cover, discriminate woody vegetation effectively and are, therefore,
particularly helpful for savannah environments [10,28–31].

In addition to multisensor approaches, previous studies examined the effect of single season and
biseasonal data on classification accuracies [28,29,32]. Biseasonal data provide improved accuracies
in savannah land cover mapping [28,29,32]. If a single season approach is chosen, the dry-season is
preferred due to lower cloud cover and higher contrasts between woody and grassland components [29,32].
However, when the mapping of herbaceous vegetation is of interest, using dry season data only can be
suboptimal, as most of the vegetation is dry. In areas where bimodal rainfall patterns occur, using data
from the short-dry season, which takes place after the short rains, may be beneficial. To our knowledge,
land cover classification performance using short-dry season data has never been studied before but
could be particularly useful due to the availability of cloud free data and herbaceous vegetation being
photosynthetically active [33].

Regardless of the sensors or seasons used, most studies focussing on African savannah consider
either a distinction between woody and non-woody vegetation or represent woody vegetation as
a gradient [10,28–30]. However, such information might not always be meaningful as it might
obscure important differences between ecologically distinct land cover types. Considering the amount
and types of data currently available, there is an opportunity to develop meaningful, detailed
classifications of the savannah environment. Furthermore, recent advancements in computing power,
cloud computing (e.g., Google Earth Engine) and the development of machine and deep learning
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algorithms (e.g., random forests (RF) and support vector machines (SVMs)), have given rise to new
approaches in mapping and monitoring land cover, e.g., spectral-temporal variability metrics [28,34] or
image compositing [35]. These new approaches have proven to be robust in characterising savannah
landscapes [6,25,28,29,33,36–38]. Within this context, the aim of this study is to create a detailed,
high-resolution and highly accurate land cover map of a montane savannah system: the Ngorongoro
Conservation Area (NCA) in Tanzania. We used different combinations of optical (Sentinel-2) and
radar data (Sentinel-1) from different seasons (wet, dry and the short-dry season) and compared the
classification accuracies to address the following research questions:

1. Can Sentinel-1 and Sentinel-2 seasonal imagery be used to accurately map savannah land cover
types at the regional scale?

2. Can the combination of optical and radar data improve classification accuracies?
3. How does the combination of data from different seasons influence the accuracy of the classification?

2. Study Area

The NCA, located in northern Tanzania, is a protected area and a World Heritage Site that forms
part of the Serengeti ecosystem. It covers an area of around 8283 km2 and includes the famous
Ngorongoro Crater, the world’s largest inactive, intact and unfilled volcanic caldera [39,40]. The NCA
boarders Loliondo Game Controlled Area to the North, Serengeti National Park to the West, Lake Eyasi
to the Southwest, the area between Lake Eyasi, Lake Manyara and Manyara National Park to the South
and agricultural communities to the Southeast (Figure 1b,c). The temperature ranges between 7 and
15 ◦C in the wet season and 11–20 ◦C in the dry season [41]. Annual rainfall ranges from 450 mm/year in
the lowlands to 1200 mm/year in the highlands [42] There is a distinctive variation in rainfall patterns,
consisting of two wet seasons from March until May and October to December, and two dry seasons
from January to February and from June to October ([43], Figure 1a). Considering the typical pattern
of bimodal seasons, for 2018/2019 February was particularly wet (Figure 1a).

The NCA is composed of more than 15,000 km2 of savannah habitat [44] and is included in the
Greater Serengeti Ecosystem (GSE), where the great African wildebeest migration takes place [39,44].
The NCA vegetation ranges between highland plains, savannah woodland, forest and savannah
grasslands [45]. The northwest part, bordering with the Serengeti National Park, comprises savannah
grassland plains and some woodland areas. Within the Ngorongoro Crater itself, the vegetation
comprises mostly of short-to-medium grasses, wetlands, and a soda lake, Lake Magadi. Southwest
of the lake is the Lerai Forest, which is degrading and gradually disappearing [46]. Lerai Forest
was dominated by mature Acacia xanthophloea trees, which have not been replaced by young Acacia
trees [41]. A combination of factors, such as high herbivore pressure, high salinity, water availability and
encroachment of invasive species, could explain the forest’s dieback [41,45,46]. In the past, Lerai Forest
was regularly used by black rhinos for shelter, browsing and breeding [41,46]. Due to vegetation
changes or the presence of other herbivores, black rhinos are now rarely seen in this area [41,46].

The NCA is managed by the NCA Authority (NCAA) as a ‘multiple land-use area’ to promote
biodiversity conservation and the interests of the resident Maasai pastoralists [14,47]. In the last
50 years, the NCA followed a ‘hands-off’ management approach. For instance, fire regimes, traditionally
implemented by the Maasai and used to improve pasture, control bush encroachment, and reduce
tick populations, were banned in 1974 [41]. This measure is thought to have contributed to woody
encroachment, grassland growth and the spread of invasive plant species, which consequently favour
species like elephant (Loxodonta africana) and buffalo (Syncerus caffer caffer) [14,41,46]. Fire was used
in 2003 to control invasive plant species as it has been identified as an important step towards
active management. However, an official fire management programme has not been implemented
yet [41]. Cultivation was also banned in 1974 when the Maasai pastoralists were relocated out of the
Ngorongoro Crater [42]. Nonetheless, in order to support the Masaai communities living within the
NCAs boundaries, the cultivation ban was partially lifted in 1992, allowing the cultivation of 1 acre
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per household [41,42]. Nowadays, the NCAA is looking into more active management approaches
to tackle some of the ‘wicked’ problems that the NCA is facing [48], e.g., inbreeding of endangered
species such as black rhino (Diceros bicornis michaeli), changes in habitat suitability, food security and
the spread of invasive species. However, there is a lack of empirical data on these issues that could be
used to support and advise decision making.

Figure 1. (a) ECMWF (European Center for Medium-Range Weather Forecasts) Re-Analysis (ERA)
rainfall average in the study area for 2018/2019, (b) location of the study area in East Africa,
(c) Ngorongoro Conservation Area, Tanzania from Google Earth (Digital Globe).

Herlocker and Dirschl [45] carried out the first detailed land cover study in the NCA in 1960s
and distinguished eight land cover types: (1) Montane heath; (2) Bamboo forest; (3) Evergreen forest;
(4) High woodlands; (5) Low woodlands; (6) Medium grasslands; (7) Short grasslands; (8) Sand dune
grasslands. Here we combined the nomenclature and descriptions of Herlocker and Dirschl (1972; [45])
and Pratt and Gwyne (1966) [49], which enabled the identification of nine land cover types:

• Bareland: areas with minimal plant cover that include bare rock, sand, alpine snow and ice,
saline or alkaline flats or riverine deposits. These areas often experience extreme environmental
conditions, such as low rainfall, high winds, high salinity and toxic or infertile soils that prevent
vegetation from developing.
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• Bushland: areas of woody plants, bushes or trees, with a closed shrub canopy between 3 and 6 m
in height. The closed canopy of bushland thicket has little grazing value and makes it challenging
for large animals to navigate through [49].

• Cropland: areas where natural vegetation has been removed or modified and replaced by other
types of vegetation that requires human activity to maintain it in the long term. Cropland fields
may be fallow at certain times during the year.

• Forest: areas with closed canopy trees of one or more storeys, rising from 7 to ≥40 m in height.
Bushes and shrubs dominate the ground making it difficult for animals to travel through it.

• Grassland: areas dominated by grasses <25 to 150 cm tall, sometimes with herbs, scarred trees or
shrubs, with a high grazing value for both wildlife and livestock. Areas may contain some woody
cover and may be almost bare during the dry season and during drought episodes.

• Montane heath: areas with medium sized woody vegetation (<1 m) that can be shrubs, grasses,
ferns and mosses. Montane heath occurs in environments≥600 m in altitude, usually on mountains,
but also on hills with lower and more variable temperatures and rainfall.

• Shrubland: areas with medium sized woody vegetation (<6 m in [49]), generally open canopy,
surrounded by grassland or dry land. Some occasional trees and bushes are present depending
on location.

• Water: areas that can be lakes, rivers, ponds or reservoirs, which vary with season.
• Woodland: tree-covered area with trees as tall as 20 m and an open canopy surrounded by

grassland and sometimes shrub but not thicket. These areas are sometimes dominated by only a
few species of trees.

3. Materials and Methods

We combined SAR (Sentinel-1) and optical (Sentinel-2) data from three different seasons (dry, wet
and short-dry seasons) and compared the outcomes to optimise land cover mapping in savannahs.
Sentinel-2 data were obtained and processed in the Framework for Operational Radiometric Correction
for Environmental monitoring (FORCE) software version v.2.0 and three Best Available Pixel composites
were created for each targeted season [35]. The NDVI bands were also calculated and added. The Google
Earth Engine computing platform was used to acquire, process and calculate the textural metrics
for Sentinel-1 data for the three target seasons [50,51]. Training data were collected based on our
knowledge of the area and Google Earth (Digital Globe) imagery. The land cover classifications were
produced using random forests (RF; [52]) and validated with a two-stage random sampling procedure
according to best practice guidelines [53]. Figure 2 is a flowchart of our methodological framework.
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3.1. Data

3.1.1. Sentinel-2

Sentinel-2 is an Earth Observation mission from the European Space Agency’s (ESA) Copernicus
Programme. It consists of two satellites, Sentinal-2A and Sentinel-2B, launched in 2015 and 2017,
respectively [10]. Sentinel-2 carries a Multi-Spectral Instrument (MSI) that images 13 spectral bands in
the visible, near infrared and shortwave infrared spectral range (SWIR) at 10–60 m spatial resolution.
The combination of Sentinel 2A and 2B provides a 5-day revisit rate. Sentinel-2 imagery are freely
available and accessible through the Copernicus API Hub.

We obtained all Sentinel 2 images that intersected our study area between 1 January 2019 and
30 September 2019, with less than 75% cloud cover, resulting in 521 images (Table 1). All image
processing was in the Framework for Operational Radiometric Correction for Environmental monitoring
(FORCE) software version v.2.0 [35]. Firstly, Level 1C images were downloaded from the Copernicus
API hub. Secondly, the raw images were processed to Level 2 using the FORCE L2PS module,
applying: atmospheric and topographic correction, cloud and cloud shadow masking, data cubing,
and downscaling of the 20 m bands using the ImproPhe algorithm [54–56].

Table 1. Seasonal temporal windows and number of Sentinel images used in each season.

Season Start Date Target Date End Date N◦ of Images

Short-dry 1 January 2019 27 January 2019 28 February 2019 111
Wet 1 March 2019 17 April 2019 31 May 2019 159
Dry 1 June 2019 17 September 2019 30 September 2019 251

Next, we produced three Best Available Pixel Composites using the L3PS module. The temporal
windows were chosen according to the general climatological patterns in the study area but also
the specific rainfall dynamics for the year of study (i.e., 2019): March to May for the wet season;
June to September for the dry season, and January to February for the short-dry season (Table 1).
These composites score all available observations within the temporal window selecting the optimal
observation based on nonparametric quality scoring. The final products included three composites
with 10 bands each to which a normalised difference vegetation index (NDVI) band was then calculated
and added.

3.1.2. Sentinel-1

Sentinel-1 is an Earth Observation mission from ESA’s Copernicus Programme consisting of two
satellites, Sentinal-1A and Sentinel-1B, launched in 2014 and 2016, respectively [10]. Sentinel-1 carries
a C-band Synthetic-aperture radar (SAR), which is unaffected by clouds and has been successfully
employed in savannah environments for mapping land cover characteristics [10,57]. In comparison to
the ALOS PALSAR 2 L-band, the C-band is a shorter wavelength with a shallower penetration into
open savannah vegetation [31]. The C-band is better at detecting leaves and grasses and therefore
more useful for canopy and cropland studies [31]. The L-band is a long wave band more suitable for
closed canopy forested environments as it successfully detects woody vegetation [31].

The Google Earth Engine (GEE) computing platform [50,51] was used to process the Sentinel-1
data and to calculate the metrics from the VV and VH bands (25th, 50th, and 90th percentiles and
standard deviation). The temporal windows used were the same as for the Sentinel-2 processing.
The final products consisted of three composites, one for each season, with eight bands each.
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3.2. Classification Strategy

3.2.1. Training Samples and Classification

The training data were collected based on our knowledge of the area and high-resolution Google
Earth (Digital Globe) imagery acquired between 2013 and 2019. A total of 4430 training points were
used (306 for ‘Bareland’; 397 for ‘Bushland’; 320 for ‘Cropland’; 370 for ‘Forest’; 1093 for ‘Grassland’;
337 for ‘Montane heath’; 580 for ‘Shrubland’; 301 ‘Water’ and 726 for ‘Woodland’).

Classifications were carried out in the R statistical Software Environment, using the ‘RStoolbox’ and
‘randomforest’ packages [58,59]. The land cover maps were created using the ‘SuperClass’ function [58]
and random forests (RF; [52]). RF is a nonparametric machine learning classifier, that combines decision
trees with bootstrapping and aggregation [28,52,60,61]. It has been proven to be more time effective and
highly accurate in comparison to traditional approaches, such as maximum likelihood, and support
vector machines (SMV) [60,61]. RF was implemented using the ‘SuperClass’ function, which takes as
an input, the training data and the corrected Landsat image [58]. Specifically in African savannahs,
RF classification has successfully been applied in southern Africa [29,36–38] and eastern Africa [62,63].

3.2.2. Modelling Framework: Season and Sensor Combinations

In order to determine the best sensor and seasonal combinations to map savannah landscapes,
we developed 21 models consisting of combinations of three seasons using Sentinel-1 and 2 imagery (Table 2).

Table 2. The 21 combinations of the models tested.

Sensor Data Included Model

Sentinel-2 (S2)

Dry season S2 1
Short-dry season S2 2

Wet season S2 3
Dry + short-dry seasons S2 4

Dry + wet seasons S2 5
Wet + short-dry seasons S2 6

All seasons S2 7

Sentinel-1 (S1)

Dry season S1 8
Short-dry season S1 9

Wet season S1 10
Dry + short-dry seasons S1 11

Dry + wet seasons S1 12
Wet + short-dry seasons S1 13

All seasons S1 14

Sentinel-1 and Sentinel-2 combinations (S1 and S2)

Dry season S1 and S2 15
Short-dry seasons S1 and S2 16

Wet season S1 and S2 17
Dry + short-dry seasons S1 and S2 18

Dry + wet seasons S1 and S2 19
Wet + short-dry seasons S1 and S2 20

All seasons S1 and S2 21

3.2.3. Validation and Accuracy Assessment

The final classified maps were validated using a two-stage random sampling procedure as
recommended the best practice guidelines [53]. First, an initial sample of 675 points (75 per class)
was randomly obtained from the classified map with the preliminary higher overall accuracy (Model
4 in Table 2). The accuracy was calculated together with the size of the area covered by each land
cover class from the same map (Model 4 in Table 2). The second stage used this information as a
basis for identifying a suitable validation sample size. The final validation samples were 2147 in total,
covering seven classes: 82 for ‘Bareland’; 218 for ‘Bushland’; 103 for ‘Forest’; 1262 for ‘Grassland’;
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56 for ‘Montane heath’; 184 for ‘Shrubland’; 242 for ‘Woodland’. The area covered by the ‘Water’ and
‘Cropland’ classes was too small and, therefore, they were not considered in the validation process.

Following the validation, the accuracy assessment was determined by calculating the following
statistics: the overall accuracy, user’s accuracy and producer’s accuracies. A nonparametric McNemar’s
test was carried out to determine if there were statistically significant differences between the
classifications performance [64].

4. Results

4.1. Sentinel-2 and Sentinel-1 Seasonal Imagery to Map Savannah Land Cover Types

The multisensor and multiseason model, incorporating Sentinel-1 and Sentinel-2 data for both the
dry and the short-dry season (Model 18) was the best preforming model, with an overall accuracy
of 86.3 ± 1.5% (Figures 3 and 4). A land cover map produced from this model is shown in Figure 3,
with the associated confusion matrix and accuracy statistics in Table 3. Adjusting the mapped
areas, using stratified area estimation, identified ‘Grassland’ as the predominant land cover type
covering 60% of the study area (5631 ± 106 km2), followed by ‘Woodland’ (1205 ± 90 km2), ‘Shrubland’
(922 ± 111 km2) and ‘Bushland’ (842 ± 63 km2). Smaller classes comprised the remaining 8% of the
NCA, with ‘Forest’ accounting for 5% (507 ± 44 km2), and ‘Bareland’ and ‘Montane heath’ combined
covering 3% (276 ± 30 km2).
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Table 3. Confusion matrix for the best performing model incorporating Sentinel-1 and Sentinel-2 data
for both the dry and the short-dry season (i.e., Model 18).

Reference
User’s Accuracy

Ba Bu Fo G Mh Sh Wo Total

M
ap

pe
d

Bareland (Ba) 73 0 0 8 0 1 0 82 0.89
Bushland (Bu) 0 205 22 9 2 17 16 271 0.76

Forest (Fo) 0 7 78 0 0 1 0 86 0.91
Grassland (G) 4 3 0 1203 2 65 19 1296 0.93

Montane heath (Mh) 0 1 0 1 51 1 2 56 0.91
Shrubland (Sh) 4 1 0 31 1 77 31 145 0.53
Woodland (Wo) 0 1 0 9 0 22 173 205 0.84

Total 81 218 100 1261 56 184 241 2141
Producer’s accuracy 0.70 0.92 0.84 0.95 0.84 0.49 0.73

Models 4, 7, 16, 20 and 21 all achieved accuracies greater than 85%, using different season and
sensor combinations (Table 2, Table S1, Figure 4). These five models, and the best-performing model,
were able to map the majority of the savannah vegetation types, with the exception of ‘Shrubland’
(Figures 5 and 6, Table S2), with comparable accuracies.

In all models, the most reliably mapped class was ‘Grassland’, with maximum producer’s and
user’s accuracies of 96% and 92%, respectively, achieved by Model 21 (Figures 5 and 6). The accuracy of
the remaining six classes varied considerably in several models. ‘Shrubland’, for instance, was mapped
poorly by all models, with a maximum user’s and producer’s accuracy of 59% and 54%, respectively,
achieved by Model 16. The ‘Forest’ class was mapped accurately by Sentinel-2 or multisensor models
(e.g., Models 7 and 18). However, Sentinel-1-only models were unable to map it successfully scoring a
maximum user’s accuracy of 38% and producer’s accuracy of 33% achieved by Model 11 (Figures 5
and 6). The remaining classes, namely ‘Bushland’, ‘Woodland’, ‘Shrubland’ and ‘Montane heath’ were
also mapped more accurately by Sentinel-2 and multisensor models than by the Sentinel-1-only models.
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4.2. The Role of C-Band SAR

Comparing the two different sensors, Sentinel-2 models outperform the Sentinel-1 ones, in all
combinations and land cover types (Figure 4). Sentinel-1 models have much lower overall accuracies
and fail to distinguish most land cover types well, especially ‘Montane heath’, which goes completely
undetected in Model 9 (Figures 5 and 6). In terms of the spatial configuration of the classified land
cover maps, those produced by the Sentinel-1 models also show a higher degree of confusion between
‘Woodland’, ‘Bushland’ and ‘Forest’, and tend to overestimate ‘Shrubland’ (Figure 7(A4, B4 and C4)).
‘Grassland’ was the only land cover type that Sentinel-1-only models were able to identify with higher
accuracies (>76.8%; Model 10; Figures 5 and 6). When combining Sentinel-2 and Sentinel-1 data,
all models scored higher overall accuracies when compared to their single sensor counterparts (Figure 4).
For example, the overall accuracy of Model 2 (i.e., Sentinel-2-only, short-dry season) increased from
82.7% (±1.6%) to 85.7% (±1.5%) after the Sentinel-1 data were added (Figure 4; McNemar test: p < 0.05).
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For single season models, adding radar data improved accuracies for nearly all land cover
types, with few exceptions (Figures 5 and 6). For instance, adding Sentinel-1 data to the short-dry
single-season (Model 2), increased the accuracy for most land cover types, except for the user’s
accuracy of ‘Bushland’ and producer’s accuracy for ‘Forest’ (Figures 5 and 6). For multiseason models,
adding Sentinel-1 data only improved the overall accuracy slightly (Figure 4), and visually the land
cover maps are very similar (Figure 7(A1–C1,A3–C3)). For instance, the overall accuracy for Model 4
(i.e., Sentinel-2, dry and short-dry seasons) increased slightly from 85.5% (±1.5%) to 86.3% (±1.5%)
after the Sentinel-1 data were added; however, this increase is within the respective confidence interval
and is statistically insignificant (Figure 4; McNemar test: p > 0.05). Moreover, adding the SAR data to
Model 4 decreased the producer’s accuracy for ‘Bareland’, ‘Grassland’, ‘Forest’ and ‘Shrubland’ and
decreased the user’s accuracy for ‘Shrubland’ and ‘Montane heath’ (Figures 5 and 6). This decrease in
the per-class accuracies for some land cover types occurs in other models, too: when adding Sentinel-1
data to Model 7 (which combines all three seasons; Figures 5 and 6), a decrease in the producer’s
accuracy for ‘Bareland’, ‘Bushland’, ‘Forest’ and ‘Montane heath’ and a decrease in the user’s accuracy
for ‘Forest’ and ‘Shrubland’ is observed.

4.3. The Role of Season

Unlike their Sentinel-1 counterparts, Sentinel-2 single season models with data from the short-dry
season out-performed dry or wet mono-season ones (Figures 4 and 8). Additionally, all single season
models, using dry or wet season imagery, produced very similar overall accuracies (e.g., Model 1 obtained
77.3% and Model 3 obtained 77.8% (McNemar test: p > 0.05); Figures 4 and 8). Both Sentinel-2 and
multisensor models incorporating the short-dry season, on its own or with other seasons, performed better
than other combinations (Figures 4 and 8; McNemar test: p < 0.05). In Sentinel-2-only models, combining
the short-dry season with either the wet or dry seasons, improved all land cover classes, except for the
producer’s accuracy for ‘Bareland’, in Model 6 and ‘Woodland’, in Model 4, which performed better
with the short-dry season on its own (Figures 5 and 6). Regarding the SAR-only models, season does
not seem to have a clear effect on overall accuracies (Figures 4 and 8). However, when optical and SAR
data were combined, the models that incorporated the short-dry season, obtained overall accuracies
>85.6%—this included the best performing model (Model 18; Figures 4 and 8).
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Figure 8. Overall accuracy results for the 21 models according to sensor and season combinations.

Combining imagery from more than one season increased model accuracy (Figures 4 and 8).
For Sentinel-2-only models, using only the dry and short-dry seasons produced accuracies of 77.3 ± 1.8%
and 82.7± 1.6%, respectively, while a combination of both, increased the accuracy by 2.8% (to 85.5 ± 1.5%;
Figures 4 and 8; McNemar test: p < 0.05). In addition, this combination obtained similar results to the
best performing model (Figure 7(A1–C1,A3–C3)). For Sentinel-1-only models, the dry and short-dry
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season models produced accuracies of 58.5% (±2.1%) and 57.6% (±2.1%), respectively; when combined
this rises to 63.7 ± 2.1% (Figures 4 and 8; McNemar test: p < 0.05).

The models that combined more than one season scored lower commission and omission errors
for most land cover classes (Figures 5 and 6). For Sentinel-2-only models, the combination of dry and
short-dry seasons (i.e., Model 4), increased the accuracy for most land cover types, with the exception
of the producer’s accuracy of ‘Woodland’ (Figures 5 and 6). In addition, the combination of wet and
short-dry season (Model 6) increased the accuracy for nearly all land cover types, except for the producer’s
accuracy of ‘Bareland’ (Figures 5 and 6). On the other hand, for multisensor models, combining more
than one season increased overall accuracies slightly but these varied depending on the land cover type.
For instance, the combination of dry and short-dry season data in multisensor models (Models 15 and
16) decreased the user’s accuracy for ‘Bareland’ by 8%, of ‘Shrubland’ by 6%, of ‘Woodland’ by 1% and
of ‘Bushland’ by 5%. Producer’s accuracy also decreased for ‘Bareland’ (7%), ‘Shrubland’ (6%) and
‘Woodland’ (3%; Figures 5 and 6). Despite the statistics, there are areas where the opposite holds true,
as in the case of the mountains northeast of the Crater (Figure 7C). In that area the inclusion of the dry
season data corrected the wrongly classified ‘Woodland’ for ‘Bushland’ (Figure 7(C1,C2)).

Interestingly, the combination of all three seasons did not significantly improve the overall
accuracy for most of the models (McNemar test: p > 0.05). However, this combination performed
better than the combination of data from the dry and wet seasons (Figures 4 and 8; McNemar test:
p < 0.05). Nonetheless, the three-season models seem to be beneficial for the mapping of specific land
cover classes (Figures 5 and 6). Considering only the Sentinel-2 models, the three-season combination
increases the user’s accuracy for ‘Forest’, ‘Bareland’ and ‘Grassland’ and increases the producer’s
accuracy for ‘Montane heath’, when compared to single- or biseason combinations (Figures 5 and 6).

5. Discussion

5.1. Can Sentinel-2 and Sentinel-1 Seasonal Imagery Be Used to Accurately Map Savannah Land Cover Types
at the Regional Scale?

To improve habitat monitoring, preserve biodiversity and sustain ecosystem services, the provision
of moderate-resolution land cover maps across savannah environments is essential. Mapping savannahs
is a challenging task, due to varying vegetation densities, high background soil signal, and the spectral
similarities between the dominant land cover types [10,24,25]. Our results demonstrate that imagery
from the Sentinel constellation (optical and C-band SAR) has good utility for mapping complex
savannah systems at moderate resolution. Our best performing model—using a combination of
Sentinel-2 and Sentinel-1 data from the dry and short-dry seasons—achieved an overall accuracy of
86.3 ± 1.5%. This compares favourably with other studies in savannah environments (e.g., [10,28,29,37]).
The land cover type most accurately mapped was ‘Grassland’ obtaining a maximum producer’s and
user’s accuracy of 96% and 92%, respectively, achieved by Model 21 (three seasons). This is consistent
with previous research (Figures 5 and 6, [28]). On the other hand, the performance of ‘Shrubland’ was
relatively poor, scoring a maximum user’s accuracy of 59% and producer’s accuracy of 54%, achieved
by Model 16 (Figures 5 and 6). A study carried out by Mishra (2014; [37]) found that lower vegetation
density/height, such as ‘Shrubland’, performed poorly at finer scales. Spectral similarities, similar
ecological composition and the fact that ‘Shrubland’ vegetation is highly variable and difficult to
identify using Google Earth imagery, can also explain the confusion between ‘Shrubland’, ‘Woodland’
and ‘Grassland’ [65]. To investigate the reliability of mapping savannahs using Sentinel imagery that
comes with an undisputed spatial resolution advantage compared to Landsat or MODIS, we examined
the role of different sensor and season combinations on mapping accuracies.

5.2. Can the Combination of Optical and Radar Data Improve Classification Accuracies?

Our results show models using solely Sentinel-1 data underperformed their Sentinel-2 counterparts,
for all seasons and all land cover types (Figure 4). The best Sentinel-2 only model (dry and short-dry
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season) produced an 85.5% overall accuracy compared to 64.7% for the best Sentinel-1 only model (all
seasons): a nontrivial difference (McNemar test: p < 0.05). This agrees with both Lopes et al. (2019; [66])
and Higginbottom et al. (2018; [29]) who compared optical with radar imagery in West and South
Africa, respectively. This could be attributed to SAR-only models incurring errors caused by incidence
angle variation, speckle, geolocation accuracy and moisture content [29]. The results from Naidoo et al.
(2016; [30]) who mapped woody vegetation cover in southern African savannahs show the opposite
result, but they employed longer wavelength L-band data (ALOS PALSAR), which are more sensitive
to the dense woody vegetation structure [25,28,29].

The SAR-only models were able to successfully identify only the ‘Grassland’ land cover type
(accuracies above 76.8%). ‘Montane heath’ on the other hand, obtained accuracies as low as 0% in
Model 9 and was often confused for ‘Grassland’, likely due to textural similarities between the two land
cover types and their lack of dense or woody plants. Interestingly, the woody classes also scored low
accuracies in the SAR-only models, with open ‘Woodland’ achieving a maximum of 57.5% (Model 10),
‘Bushland’ 47.2% (Model 8) and closed ‘Forest’ 37% (Model 10) (Figures 5 and 6). The relatively large
number of woody classes in our study area and the land cover nomenclature we adopted might explain
the confusion between them, as previous research shows that combining such classes can improve
mapping accuracy from SAR data [67,68]. In addition, Huttich et al. (2011; [69]) suggested that using
inter-annual metrics of over one or two years could increase accuracies of ‘Shrubland’ and ‘Grassland’
classes. Our results also show that SAR only models overestimated ‘Shrubland’, specifically in low
vegetated areas (Figure 7(A4–C4)). This can be attributed to the high surface roughness that produces
similar signals for trees and shrubs [10,70]. Zhang et al. (2019; [10]) and Urban et al. (2020; [70]),
also showed that radar data overestimate the presence of woody vegetation, for the Sahel and South
Africa, respectively.

Previous research recommends combining SAR with optical data for improved land cover
mapping [10,28,67]. Our results show that the combination of Sentinel-2 and Sentinel-1 data achieves
higher overall accuracies when compared to single sensor models. Model 2 (Sentinel-2, short-dry
season), scored an overall accuracy of 82.7%, increased by 3% when Sentinel-1 data were added
(Figure 4; McNemar test: p < 0.05). The addition of SAR data increased the accuracies for most
vegetation types, with the UA for ‘bushland’ and PA of closed ‘forest’ being the only two exceptions.
These results are consistent with previous research carried out by Laurin et al. (2013; [67]) and
Symeonakis et al. (2018; [28]), finding that combining SAR and optical data also decreased the omission
and commission errors for all land cover types. Zhang et al. (2019; [10]) suggested adding SAR to
optical data as they can correct errors particularly in highly productive areas (e.g., wetlands, irrigated
fields and perennial grasses) which can be misclassified as trees.

Our findings agree with the emerging consensus that multisensor approaches to land cover
mapping perform best. However, we found the benefits of multisensor approaches were most evident
in mono-temporal models. For instance, adding SAR data to Model 4 (Sentinel-2 data, dry and short-dry
seasons), improved its overall accuracy by only 0.8% (Figure 4; McNemar test: p > 0.05). This slight
increase is within the confidence interval of both models (Models 4 and 18) and produce a very similar
spatial configuration of the mapped land cover classes (Figure 7(A1–C1,A3–C3)). Our results, therefore,
support those of Higginbottom et al. (2018; [29]), who found that the multisensor approach was only
marginally beneficial (≈1%), and at fine scales (30m) the addition of PALSAR data to Landsat may
reduce accuracies. Chatziantoniou et al. (2017; [71]) achieved similar results to ours, suggesting that
although SAR data are solely impacted by wind, droughts might also influence the data quality thereby
negatively affecting the overall classification accuracy. Therefore, if multiseason data is available,
combining more than one sensor might be unnecessary and even counterproductive for specific land
cover types (e.g., ‘Shrubland’).
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5.3. How Does the Combination of Data from Different Seasons Influence the Accuracy of the Classification?

Savannah mapping studies generally use data from the dry season, due to significantly lower
cloud contamination and heightened contrasts between woody and grassland components [29,32].
We found only small differences in accuracy, less than 1%, between wet and dry season models,
for Sentinel-2 and multisensor scenarios (Figures 4 and 8; McNemar test: p > 0.05), which agrees with
Symeonakis et al. (2018; [29]). Interestingly, Sentinel-2 imagery from the short-dry season, which occurs
between January and February was highly effective, preforming comparably to the multisensor
models and outperforming the other single season Sentinel-2 models by 5% (Figure 8). The short-dry
season, which occurs right after the short rains (from October to December), is characteristic of East
Africa and, to our knowledge, this is the first study to examine its utility in mapping savannahs.
This season is particularly useful for land cover mapping due to it having cloud free data and being
wet enough for herbaceous vegetation to be photosynthetically active, which is not the case during the
dry season [33]. In the Ngorongoro Conservation Area (NCA), during the short-dry season the grasses
in the North-West of the NCA starts to emerge, attracting the great wildebeest migration. Moreover,
this season is dry enough to provide noticeable differences in the spectral characteristics of woody and
herbaceous vegetation [30].

We found that models combing dry and wet season imagery outperform their single season
counterparts in all scenarios (Figure 8). However, compared to other model combinations,
Sentinel-2-only and multisensor models were improved by including the short-dry season data
(Figure 8). The dry season (Model 1) and the short-dry season model (Model 2) produced an overall
accuracy of 77.3% and 82.7%, respectively. Once combined, the overall accuracy increased to 85.5%
(≈2.8%, McNemar test: p < 0.05), which is very close to the best performing model (Figure 4; McNemar
test: p > 0.05). This agrees with Haro-Carrión and Southworth (2018; [32]) and Symeonakis et al.
(2018; [28]), who also reported higher accuracies when combining biseasonal data. Adding multiseason
data provides additional spectral information and, if available, should be preferred for successfully
distinguishing between spectrally similar savannah vegetation classes [32].

Multiseason models generally scored higher overall accuracies; however, multisensor models
were less improved. For instance, the increase in the overall accuracy from the combination of Models
15 and 16, which include multisensor data for the dry and short-dry seasons, was ≈0.6% (p > 0.0.5).
This agrees with Symeonakis et al. (2018; [28]) who reported the same increase of 0.6% in the overall
accuracy for their multisensor dry season model by combining sensors and seasons. Regardless of
the impact on the overall accuracy, our results show that adding more than one season to multisensor
models solved misclassification problems in specific areas within the NCA (Figure 7). For instance, in
the mountains northeast of the Crater (Figure 7C), Model 16 overestimated the open ‘Woodland’ cover:
by adding the dry season data, the classification was improved (Figure 7(C1,C2)). These errors in the
spatial configuration of the mapped classes can go unnoticed, as the calculation of accuracy statistics is
carried out over a limited number of locations compared to the much larger total number of pixels of
the study area.

Most multiseason mapping studies consider only the wet and dry seasons or a combination of the
two. Our results show that the triseasonal models performed better than the wet and dry season models
(McNemar test: p < 0.05) and improved the accuracies for several specific land cover types (e.g., closed
‘Forest’ and ‘Grassland’ achieved 92% and 90.6%, respectively, in Model 7). However, the overall
accuracy did not increase significantly when compared to other biseasonal models. For example,
Model 21 (three seasons) achieved an overall accuracy of 85.6%, which is higher than Model 19 (dry
and wet; 81.2%, McNemar test: p < 0.05), but (insignificantly) lower than Model 18 (dry and short-dry;
86.3%, McNemar test: p > 0.05) (Figures 4 and 8). These results contrast with Hüttich et al. (2011; [69])
who found that increasing the length of the observation period and interseasonal data increases the
accuracy of the classification. However, the scholars also mention that highly dynamic classes, such as
‘Grassland’ and ‘Bareland’, benefit when longer time series are used which our results support. Whilst
there are benefits from using triseasonal imagery, it must be noted that the amount of data and time
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required for preprocessing also increases significantly. Unless triseasonal data provide improvements
for mapping specific vegetation types of interest, using a combination of the dry and short-dry seasons
should suffice.

5.4. Implications for Biodiversity Monitoring/Ecosystem Monitoring Challenges in the Area

This study has demonstrated that Sentinel imagery can reliably map land cover in the Ngorongoro
Conservation Area (NCA), and the wider Serengeti region. The NCA is globally important for
biodiversity conservation due to the presence of iconic megafauna, such as the Eastern black rhino and
African elephant. It is among the best locations in the world to see black rhino in the wild, attracting
thousands of tourists every year. The NCA supports the largest black rhino population in Tanzania
and in recent years this population increased to 56 individuals [72]. Currently, there is emerging
evidence of a decrease in the quality and quantity of preferable browse and, consequently, a decrease in
suitable habitat for black rhino [14,41,73]. Unsuitable habitats and limited browse promote intra- and
interspecific competition for resources and emigration of rhinos out of the Crater and the NCA [73].
Our derived land cover map could help monitor black rhino habitat quality and identify new locations
within the NCA which the population could expand into. In addition, land cover maps can infer
rhino home ranges and support antipoaching efforts in the NCA. Previously, the only detailed land
cover survey in the NCA was completed in 1972 [45], before several major management policies
were introduced that brought about significant environmental changes, e.g., the displacement of
pastoralists from the Ngorongoro Crater [14,46]. Therefore, our accurate and up-to-date land cover
map could have considerable conservation implications for the NCA, in general, and the black rhino
population, in particular, as it provides information essential for the development of sustainable
management strategies.

6. Conclusions

Savannahs are heterogeneous environments providing essential ecosystem services to communities.
Currently, they are threatened by extensive land use/cover changes and subsequent land degradation.
Mapping these environments is challenging but essential in order to improve monitoring capabilities,
prevent biodiversity loss and ensure savannah ecosystem service provision. In this study, we tested
how combinations of imagery from different seasons and sensors affects the accuracy of land cover
maps for the NCA and provide guidance for future attempts to monitor and understand savannah
landscapes. We conclude that the combination of Sentinel-1 and 2 data from the dry and short-dry
seasons successfully maps most of the land cover types in the NCA, with ‘Shrubland’ remaining
a challenge. Additionally, we found that if SAR data are unavailable, multiseason Sentinel-2 data
provide a good alternative, whilst if no multiseasonal data can be used, a combination of SAR and
optical data can be used to accurately map savannah environments with similar results to the best
performing model. Finally, we advise that the short-dry season should be preferred over the wet and
dry seasons for both multisensor combinations and optical data. In conclusion, we provide much
needed and highly accurate, medium resolution land cover maps for the NCA, which will support
sustainable management and conservation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/23/3862/s1,
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Abstract

The Ngorongoro Conservation Area (NCA) of Tanzania, is globally significant

for biodiversity conservation due to the presence of iconic fauna, and, since

1959 has been managed as a unique multiple land-use areas to mutually benefit

wildlife and indigenous residents. Understating vegetation dynamics and ongo-

ing land cover change processes in protected areas is important to protect bio-

diversity and ensure sustainable development. However, land cover changes in

savannahs are especially difficult, as changes are often long-term and subtle.

Here, we demonstrate a Landsat-based monitoring strategy incorporating (i)

regression-based unmixing for the accurate mapping of the fraction of the dif-

ferent land cover types, and (ii) a combination of linear regression and the

BFAST trend break analysis technique for mapping and quantifying land cover

changes. Using Google Earth Pro and the EnMap-Box software, the fractional

cover of the main land cover types of the NCA were accurately mapped for the

first time, namely bareland, bushland, cropland, forest, grassland, montane

heath, shrubland, water and woodland. Our results show that the main changes

occurring in the NCA are the degradation of upland forests into bushland: we

exemplify this with a case study in the Lerai Forest; and found declines in

grassland and co-incident increases in shrubland in the Serengeti Plains, sug-

gesting woody encroachment. These changes threaten the wellbeing of livestock,

the livelihoods of resident pastoralists and of the wildlife dependent on these

grazing areas. Some of the land cover changes may be occurring naturally and

caused by herbivory, rainfall patterns and vegetation succession, but many are

linked to human activity, specifically, management policies, tourism develop-

ment and the increase in human population and livestock. Our study provides

for the first time much needed and highly accurate information on long-term

land cover changes in the NCA that can support the sustainable management

and conservation of this unique UNESCO World Heritage Site.

Introduction

African savannah environments provide essential ecosys-

tem services to communities, sustain endemic biodiversity

and play a critical role in regulating carbon cycles (Liu

et al., 2015; McNicol et al., 2018; Poulter et al., 2014;

Schneibel et al., 2017). In recent years, the provision of

ecosystem services from many savannah regions has pro-

gressively declined due to agricultural expansion, wood-

land degradation, invasive species, bush encroachment,

climate change and management policies, all of which can

place wildlife and communities at risk (Schneibel

et al., 2017; Symeonakis & Higginbottom, 2014; Tsalyuk

et al., 2017).
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The Ngorongoro Conservation Area (NCA) in North-

ern Tanzania is a designated United Nations Educational,

Scientific and Cultural Organisation (UNESCO) World

Heritage Site for exceptional natural and cultural values

(UNESCO, 2010). It is part of the world’s largest intact

savannah systems, the Greater Serengeti Ecosystem, which

includes the Serengeti National Park and the Maasai

Mara, where one of Africa’s largest animal migrations

takes place (Masao et al., 2015; Swanson, 2007). The

NCA also supports the largest population of the critically

endangered Eastern Black Rhinoceros Diceros bicornis

michaeli in Tanzania (Amiyo, 2006; Goddard, 1968; Mills

et al., 2006). The density and diversity of wildlife in the

NCA is of global importance for biodiversity conservation

and economically important for Tanzania. For instance,

in 2016 over 1 million tourists visited the NCA, generat-

ing revenue of approximately $70 million

(Slootweg, 2016, 2017). The NCA is also unique as it

operates as a multiple land-use model designed to protect

not only wildlife but also the lifestyle of the resident Maa-

sai pastoralists (Niboye, 2010).

The NCA vegetation is composed of a combination of

highland forests around the Ngorongoro Crater, savannah

woodland and shortgrass plains (Herlocker &

Dirschl, 1972). Over the last 50 years, African savannahs

have undergone considerable land cover changes, including

forest degradation, spread of invasive plant species, and

woody encroachment (Amiyo, 2006; Higginbottom

et al., 2018; Ludwig et al., 2019; Mills et al., 2006; Symeon-

akis et al., 2018; Venter et al., 2018). In the NCA high-

lands, forest degradation is of particular concern, as these

forests provide ecosystem services to the Maasai through

the provision of fuel wood, traditional medicinal plants,

and forage for livestock (Swanson, 2007). Additionally,

upland forests provide shelter for wildlife and regulate

water resources (Swanson, 2007). Meanwhile, in the grass-

land plains, woody encroachment and invasive species can

reduce rangeland carrying capacity, directly affecting wild-

life and the Maasai livestock (Venter et al., 2018).

Land cover changes in the NCA are driven by a combi-

nation of local and global drivers (Homewood

et al., 2001; Masao et al., 2015; Niboye, 2010). Firstly, the

Maasai community within the NCA increased from

roughly 8000 in 1959 to almost 100 000 in 2018, with an

accompanying livestock population of approximately

800 000 in 2018 (Lyimo et al., 2020; Manzano &

Yamat, 2018). Population growth has led to the expan-

sion of settlements, livestock bomas and demand for

water resources (TAWIRI & NCAA, 2020). In addition,

tourism, grazing pressure, climate change and manage-

ment decisions also seem to be contributors to change

(Homewood et al., 2001; Masao et al., 2015;

Niboye, 2010). Many of these changes have led to the

decline in habitat quality (Amiyo, 2006; Estes et al., 2006;

Niboye, 2010). Less suitable habitats with limited oppor-

tunities for browsing and grazing encourage inter- and

intraspecific competition for resources, threatening wild-

life populations and their distribution, and subsequently

raising concerns of biodiversity loss and increasing

human-wildlife conflicts (Amiyo, 2006; Kija et al., 2020;

Makacha et al., 1979; Niboye, 2010). In addition, for the

Maasai pastoralists these changes threaten the quantity

and quality of pasture resources for livestock and conse-

quently food security. Previous small-scale studies have

mentioned ongoing land cover changes within the NCA,

but the large-scale dynamics remain poorly understood

(Boone et al., 2006; Homewood et al., 2001; Masao

et al., 2015). The research available for the NCA is mostly

based on field surveys and aerial photography, which pro-

vide highly detailed information at the species level but

do not offer large-scale, holistic coverage (Amiyo, 2006;

Herlocker & Dirschl, 1972).

Over the last five decades, Earth-observation (EO) data

have increasingly been used to map and monitor land

cover (Adole et al., 2016; Woodcock et al., 2008; Wulder

et al., 2012). In particular, the Landsat archive provides

open-access, long-term data, with 30-metre spatial resolu-

tion and six spectral bands that are well suited for vegeta-

tion mapping. However, savannah landscapes are

challenging to map due to their heterogeneous and com-

plex characteristics, incorporating a mixture of woody veg-

etation (trees, bushes and shrubs), different grass species

and bare land (Borges et al., 2020; Ludwig et al., 2019;

Mathieu et al., 2013; Settle & Drake, 1993; Symeonakis

et al., 2018; Venter et al., 2018). Mapping and monitoring

change in savannah environments is even more challeng-

ing, as most changes occur gradually and incrementally,

resulting in subtle spectral changes that are difficult to

detect using imagery with a moderate spatial resolution.

Recently, the combination of synthetically generated mixed

samples with machine learning regression methods has

proved effective for mapping fractional cover in complex

environments (Okujeni et al., 2013; Senf et al., 2020; Suess

et al., 2018). Meanwhile, the development of time-series

methodologies has facilitated a more ecologically meaning-

ful quantification of landscape change detection. These

time-series approaches exploit the higher observation den-

sities that are now available, to detect changes in either

spectral bands, vegetation indices or derived layers such as

class probabilities or fractional coverage. (Schneibel

et al., 2017; Schwieder et al., 2016; Souverijns et al., 2020).

There is a pressing need to quantify the extent and

magnitude of land cover changes within the NCA, to

identify vulnerable areas and prevent potential threats to

habitats and livelihoods. The NCA’s multiple-use

approach, which attempts to reconcile biodiversity
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protection and the needs of local people, is a notoriously

challenging task (Harris et al., 2020). Moreover, in the

context of protected area management, an improved

understanding of land cover dynamics is imperative for

sustainable development, to support effective land use

planning, conserve and manage biodiversity and ensure

the long-term survival of wildlife and the prosperity of

resident human communities.

The main aim of the paper is to support the sustain-

able management of the NCA by developing an Earth-

observation-based approach for monitoring multi-faceted

land cover changes occurring over the past 35 years. We

employ the approach of Okujeni et al. (2013) to produce

near-annual fractional cover maps for nine constituent

land cover classes of the NCA. To identify the various

change processes, we employ two pixel level time-series

analyses. Firstly, we employ monotonic linear trend analy-

sis to detect long-term changes in land cover (Herrmann

et al., 2005; Higginbottom & Symeonakis, 2014). Sec-

ondly, we used the Breaks For Additive Season and Trend

(BFAST) piece-wise linear regression method to detect

possible breakpoints, specifically for upland forest cover

(Grogan et al., 2016; Lewi�nska et al., 2020; Morrison

et al., 2018; Schmidt et al., 2015; Wu et al., 2020). We

use the linear trend analysis to detect long-term, incre-

mental land cover changes, such as shrub encroachment

and grassland decline. Meanwhile, BFAST is well-suited to

identifying abrupt shifts and reversals in trends that may

be obscured by monotonic analysis, such as deforestation

and regrowth (Verbesselt, Hyndman, Zeileis, et al., 2010).

Study area

The NCA covers an area of around 8283 km2 (Swan-

son, 2007, Fig. 1). It contains the largest, intact volcanic

caldera in the Ngorongoro Crater and has highly abun-

dant and diverse wildlife (Estes et al., 2006, Fig. 1C).

Annual rainfall ranges from 450 mm/year in the lowlands

to 1200 mm/year in the highlands (Boone et al., 2007;

Fig. S1). Rainfall follows a bimodal pattern, characteristic

of East Africa, comprising two wet seasons: the main

between March and May, and a shorter one between

November and December (Pellikka et al., 2018). During

the dry season, temperature ranges between 11 and 20°C,
while in the wet season it ranges between 7 and 15°C
(Amiyo, 2006).

Materials and Methods

Landsat image acquisition and processing

We acquired and processed Landsat Collections Level 1

Tier 1 imagery from 1985 to 2020. Based on our previous

study, we selected images from the short dry season (Jan-

uary–April), which enables the highest separability of the

land cover types (Borges et al., 2020). For the 35-year

study period, we obtained 26 images with cloud cover less

than 75%, acquisition dates ranged from 9 January to 28

April (Fig. 2). No suitable images were available for 1986,

1988, 1991–1994 and 1996–1999. The Landsat collections

are pre-processed for atmospheric corrections using the

Landsat Ecosystem Disturbance Adaptive Processing Sys-

tem (LEDAPS) routine (Masek et al., 2006). Cloud mask-

ing was provided by F-mask (Schmidt et al., 2013). We

topographically corrected the images using a Sun Canopy

Sensor (Gu & Gillespie, 1998) and C-correction approach

(Teillet et al., 1982). The Normalised Difference Vegeta-

tion Index (NDVI; Tucker, 1979) was calculated using the

standard equation and added to the spectral bands, NDVI

is useful in savannahs that do not feature dense forest

canopies (Prince & Tucker, 1986). We used the Google

Earth Engine cloud-computing environment for all Land-

sat processing (Gorelick et al., 2017; Moore &

Hansen, 2011).

Fractional cover mapping

Our approach focusses on the generation of near-annual

fractional land cover maps, where each pixel represents

the 0%–100% coverage of the constituent land cover

types. The production of fractional land cover maps

requires predictive models quantifying the relationship

between the input satellite imagery products and the tar-

get classes as fractions. Previous studies have generated

fractional training data by the manual interpretation or

classification of imagery with a finer spatial resolution

than the input predictive layers; however, this is a time-

consuming exercise (Baumann et al., 2018). More

recently, Okujeni et al. (2013) developed an approach to

generate mixed samples from pure spectra representing

100% class coverage, producing synthetic samples of

mixed fractions for the desired land cover types. This syn-

thetic training data can be combined with modern

machine learning models and has proved highly effective

in a range of settings (Okujeni et al., 2013; Senf

et al., 2020; Suess et al., 2018).

Here, we expand on the methodology developed by

Okujeni et al. (2013). First, we developed a spectral

library for a land cover schema of the NCA. We focussed

on ecological meaningful land cover types comprised of

mixed vegetation communities which are spectrally sepa-

rable. Second, we generated synthetically mixed training

data using the approach proposed by Okujeni

et al. (2013). Finally, we input these synthetic samples

into a Random Forest regression model. To guide our

analysis, we employed a land cover map of the NCA
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Figure 1. The Ngorongoro Conservation Area (A) and its location within Africa (B), Tanzania and the Greater Serengeti ecosystem (C).

Figure 2. Methodological flowchart of our study.
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Table 1. Description of the nine main land cover types of the NCA, according to Herlocker and Dirschl (1972) and Pratt et al. (1966).

Land cover types Description Examples of land cover

Bareland Minimal or no vegetation cover including bare

rock, sand, saline or alkaline flats or riverine

deposits.

Bushland Closed shrub canopy comprising woody plants,

bushes or trees, ranging from 3 to 6 m in

height.

Cropland Natural vegetation has been removed and replaced

by other types of vegetation cover that require

human activity to maintain it.

Forest Closed canopy trees ranging between 7 and 40 m

or more in height. The ground is mostly

covered by bushes and shrubs making it

difficult for animals to move through it.

Grassland Grasses that vary between short (<25 cm) and tall

(150 cm). In certain areas, herbs, scarred trees,

or shrubs can occur. During the dry season and

during droughts, it can be almost bareland.

Montane heath Medium-sized vegetation (<1 m) including shrubs,

grasses, ferns, and mosses, usually at higher

altitudes.

Shrubland Open canopy with medium-sized woody vegetation

(<6 m in Pratt), surrounded by grass or

bareland. Some trees and bushes can occur.

(Continued)
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produced in an earlier study (Borges et al., 2020). This

map was based on multi-temporal Sentinel-1 and 2 com-

posites for 2019 with a 10 m spatial resolution. With

higher quality input data used in its production and

achieving high per-class and overall classification accura-

cies, we consider this dataset to be the best available and

most suitable reference for informing our Landsat-based

methodology in the present study.

Spectral library development

We employed a land cover classification schema based on

the detailed surveys of the NCA undertaken in the 1960s

by Herlocker and Dirschl (1972) and Pratt et al. (1966).

This aligns with our previous work on land cover classifi-

cation in the area (Borges et al., 2020), and is ecologically

relevant both in terms of habitat usage by species and the

management of the park. For instance, the highest densi-

ties of black rhino occur in bushland areas

(Emslie, 2020), but in the NCA they can also be found in

shrubland, open grasslands and closed-canopy forest, as

such it becomes increasingly important to distinguish

between these classes (Gadiye et al., 2016). In total, we

assigned samples to nine land cover types, detailed in

Table 1.

For the development of the spectral library, we collected

890 polygon samples from across the NCA, covering the

nine land cover classes, based on our knowledge of the area,

spectral information (Figs. S2 and S3), visualisation of

high-resolution imagery within Google Earth Pro and the

processed Landsat images (Fig. 2). The samples were dis-

tributed as follows: 20 for Bareland; 94 for Bushland; 11 for

Cropland; 50 for Forest; 498 for Grassland; 19 for Montane

heath; 82 for Shrubland; 13 for Water, and 103 for

Woodland. The sample size was proportional based on our

earlier land cover map (Borges et al., 2020). Using a pro-

portional sample size accommodates the greater spectral

variability within the large classes (e.g. grassland) relative to

the smaller more classes (e.g. montane heath). We com-

pared multi-temporal Landsat images and aerial photogra-

phy to select only pixels that remained unchanged

throughout the study period (i.e. pseudo-invariant fea-

tures). For each Landsat image, we extracted pixel values to

produce an independent annual-level spectral library, creat-

ing a total of 26 libraries.

Synthetic mixing

To create fractional training data from our spectral library

we used the EnMAP-box (version 3.6; EnMAP-

Box Developers, 2019) software to generate synthetic mix-

ture samples (Okujeni et al., 2013; Van der Linden

et al., 2015). For each class, we generated 1000 synthetic

samples, comprised of different fractional mixtures of all

classes. The following processes, described in (Cooper

et al., 2020), produced each synthetically mixed sample:

1. We established the likelihood for different multi-class

combinations across each pixel and included endmem-

bers according to this weighting. We set a 20% chance

for a two classes mixture, 40% for a three classes mix-

ture and 40% for a four classes mixture.

2. From the target class spectral library, one random end-

member was pulled.

3. This selected endmember was randomly allocated a

mixing fraction between 0 and 1.

4. Additional endmembers were randomly selected from

the additional classes and added.

Table 1. Continued.

Land cover types Description Examples of land cover

Water Ponds, lakes, rivers and swamps (with little or no

vegetation cover).

Woodland Open or continuous canopy with trees as tall as

20 m, often surrounded by shrubs, bushes or

grass but not thicket.
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5. The newly added endmembers were randomly assigned

mixing fraction, with the sum of all fractions equalling

one.

6. Synthetically mixed spectra were generated based on

linear combinations of the assigned mixing frac-

tions.We repeated this process for every synthetic spec-

tra. Finally, we added the original endmembers to the

synthetic samples and assigned mixing fractions of one

or zero for spectra belonging to target and non-target

classes, respectively.

Regression-based unmixing

We used a Random Forest regression to map vegetation

class fractions (Breiman, 2001). The Random Forest is a

non-parametric machine learning model based on ensem-

bles of regression trees, popular for image classification

and land cover mapping (Li et al., 2015; Rodriguez-

Galiano et al., 2012; Symeonakis et al., 2018).

The regression-based unmixing was carried out in the

EnMAP-Box 3.6 (EnMAP-Box Developers, 2019), an

open-source QGIS plugin designed for advanced pro-

cessing workflows of optical remote sensing data (Van

der Linden et al., 2015). We repeated the unmixing

procedure 10 times and averaged the predictions for

each year, produced using the correspondent spectral

library. This allowed the inclusion of multiple types of

synthetic mixtures into the unmixing process while

keeping the training sample size low (Okujeni

et al., 2017).

Figure 3. Fractional cover maps for the nine main land cover classes of the NCA in the year 2020. (A) Bareland, (B) Bushland, (C) Cropland,

(D) Forest, (E) Grassland, (F) Montane heath, (G) Shrubland, (H) Water, (I) Woodland.
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Validation of fraction maps

A validation dataset centredon 2010 and 2020 was developed

based on visual interpretation of high-resolution imagery in

Google Earth Pro (Ludwig et al., 2016). Due to limited Goo-

gle Earth imagery and uncertain dates for certain images,

imagery between 2009 and 2014 was aggregated and com-

pared to the 2010 fraction layers, and imagery between 2015

and 2020 was aggregated and compared to the 2020 layer.

Validation of model predictions prior to 2010 was not possi-

ble as earlier images had substantially lower resolution or

were unavailable. We validated the model predictions by

using a stratified random sampling, based on best practise

(Olofsson et al., 2014). We collected 416 reference pixels for

each epoch, resulting in 832 reference pixels. For each refer-

ence pixel, a 10 9 10 grid of 3 m squares (Fig. S4) was used,

and the class fractions were estimated by a researcher with

local knowledge. For statistical validation, we calculated the

bias, the coefficient of determination (R2) and the mean

absolute error (MAE) between the reference fractions and

predicted fractions.

Change mapping

To detect changes in the fractional land cover, we

employed two complementary time series analyses. Firstly,

to detect the general land cover change, we performed a

linear regression against time on the annual fractional

cover maps of each land cover class (Herrmann

et al., 2005). Changes that were statistically (p > 0.05) or

ecologically (cover in 2020 < 5%) insignificant were

masked.

Secondly, to provide more detailed information on

changes specifically in the upland forests, we applied the

Break For Additive Season and Trend (BFAST) method

(Verbesselt, Hyndman, Newnham, et al., 2010). BFAST is

a piecewise linear regression approach that combines

time-series decomposition with structural breakpoint

detection. The statistical basis of BFAST is the decompo-

sition of a time-series into trend, seasonal and residual

components; with significant changes in the trend compo-

nent detected by a moving sum of residuals (MOSUM)

test. BFAST was originally developed for NDVI time-

series, however, it is not specific for any type of data

(Verbesselt, Hyndman, Newnham, et al., 2010) and has

been applied to other vegetation indexes, rainfall data or

Landsat bands. (Che et al., 2017; Higginbottom & Syme-

onakis, 2020; Horion et al., 2016; Morrison et al., 2018;

Platt et al., 2018). We used the ‘BFAST01’ implementa-

tion of BFAST, which is tailored for non-seasonal (i.e.

annual) data, and allowed for a single breakpoint to occur

in the time series using a P < 0.05 significance threshold.

The breakpoints identified by BFAST were then classified

into six change types, based on de Jong et al. (2013): (1)

Figure 4. (A) RGB composite of the aggregated three main components of savannah landscapes: trees (G, forest and woodland), shrubs (R, bushland

and shrubland) and grasses (B) for the year 2020; locations 1 and 2 are example subsets. (B) Land cover (‘hard’) classification for the year 2020.

Table 2. Accuracy of the fractional land covers for the NCA for the years 2010 and 2020.

Land cover Bareland Bushland Cropland Forest Grassland Montane heath Shrubland Water Woodland

2010 MAE 2.80 5.08 5.34 4.69 14.18 5.64 6.00 4.47 6.70

R2 0.90 0.92 0.43 0.88 0.83 0.64 0.77 0.81 0.61

Bias �3% �6% �8% �6% �1% �8% �3% �6% �8%

2020 MAE 2.97 6.13 6.72 6.09 13.67 5.24 6.23 1.63 6.42

R2 0.89 0.91 0.33 0.84 0.82 0.76 0.76 0.95 0.73

Bias �2% �10% �9% �7% �1% �8% �2% �10% �8%
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monotonic: increase, (2) monotonic: decrease, (3) reversal:

increase to decrease, (4) reversal: decrease to increase, (5)

interruption: increase with negative break, and (6) inter-

ruption decrease with positive break.

Our logic for employing two time-series analyses is as

follows: gradual changes (e.g. shrub encroachment, grass-

land degradation) will be best identified using monotonic

trend analysis (Lewi�nska et al., 2020), whereas BFAST is

well suited for identifying sudden changes and reversals

that may be obscured within the long-term analysis. How-

ever, grasslands and non-woody areas will fluctuate more

on an annual basis, due to climatic variation and benefit

from a simpler change model. Furthermore, we employ

trend analysis over direct comparison of the fractional

cover maps to ensure our analysis is robust to variation

and noise in the input maps. We expect our annual frac-

tional maps to contain errors and noise which may distort

bi-temporal comparisons. This is analogous to post-

classification cleaning of hard classification change detec-

tions, by removing illogical transitions (e.g. Griffiths

et al., 2018) or applying statistical techniques such as Hid-

den Markov Models (e.g. Abercrombie & Friedl, 2016).

Results

Fraction maps

The predicted fractional land cover maps (Fig. 3) success-

fully distinguished the nine land cover types (Table 1),

and a discrete land cover map shown in Figure 4B was

Figure 5. Land cover changed according to the linear trend analysis in the NCA between 1985 and 2020 for all land cover classes. (A) Bareland,

(B) Bushland, (C) Cropland, (D) Forest, (E) Grassland, (F) Montane heath, (G) Shrubland, (H) Water, (I) Woodland.
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estimated from the fractional map of 2020 (Fig. 3). We

were able to identify transitional areas with highly hetero-

geneous land cover (Fig. 3). For instance, most of the

NCA is dominated by grassland (Fig. 3), which transi-

tions into shrubland around the centre. The Highland

area (Fig. 1A) is dominated by woody classes (bushland,

woodland, forest). Figure 4A shows a red-green-blue

composite of the land cover layers aggregated into three

main components of savannah landscapes: trees (forest

and woodland), shrubs (bushland and shrubland) and

grasses (grassland). For bushland and forest, there are

areas of clear separation (Fig. 4A) but there is also some

degree of mixture (Fig. 3). The West side of the NCA

mostly comprises grassland (e.g. the Serengeti Plain) with

some patchy shrubland around the Ang’ata Salei plain.

Validation statistics for the fractional land cover maps

of 2010 and 2020 (MAE and R2) are shown in Table 2

(full statistics in Tables S1 and S2 and scatterplots in

Figs. S5 and S6). Most classes performed well, achieving

accuracies between R2 0.61 and 0.95 (Figs. S5 and S6).

The lowest absolute errors occurred in the bareland class

with an MAE of 2.8 for 2010 and water with an MAE of

1.63 for 2020. Cropland had the highest relative errors

with R2 of 0.43 and 0.33 for 2010 and 2020, respectively.

Most cross-class confusion occurred in transition eco-

zones between grassland-bareland and grassland-

shrubland. This was expected due to the highly heteroge-

neous nature of these regions.

Linear trends

Linear trends for the NCA

Figure 5 shows the statistically significant (p < 0.05) linear

trends for each individual and cover type. Areas with <5%
cover in the respective class for 2020 were masked. There

were notable increases and decreases for all land cover types

with most of the change in the �25% range (Fig. 6) The

most common change in the NCA was decreasing forest by

~25% coverage, which affected roughly 900 km2 (Figs. 5

and 6). The second most common change was grassland

coverage declining by 25%, which affected roughly 782 km2

(Figs. 5 and 6). A sizeable amount of grassland also experi-

enced a decline of up to 50% (~493 km2), mostly in the Ser-

engeti plains (Figs. 5 and 6).

A majority of forest cover is located in the eastern part

of the NCA. Figures 7B and C show a clear reduction in

fractional cover, particularly visible around Mount Old-

eani, throughout the highlands and on the south-east side

of the Crater rim (Fig. 7D). There is also some patchy

increase in forest cover, ranging between 25% and 75%

cover in the highlands, outside the NCA border near

Mount Oldeani and in the montane areas (Fig. 7D).

Linear trends: the case of Lerai Forest

Contrarily to its name, the Lerai Forest mostly comprises

low woodland and bushland with some forest and

Figure 6. Statistically significant (p < 0.05) changes in land cover between 1985 and 2020 for forest, bushland, shrubland, and grassland.
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shrubland. According to our findings, there were both

increases and decreases in the fractional cover of forest,

bushland and woodland (Figs. 8A and C). The most obvi-

ous change in the Lerai Forest was the decrease in bush-

land cover, ranging between �25% and � 75% (covering

1.6 km2), and the increase in woodland (+25% covering

1 km2; Figs. 8B and C). However, the expansion of

woody vegetation, specifically forest and woodland

occurred mostly in the southwest side of the Lerai Forest

(Fig. 8A and C; Figure S7).

BFAST trends

BFAST trends in the NCA

Most of the forest change detected by BFAST consisted of

monotonic increases and decreases (Fig. 9A). Forest loss

was widespread with some focal points in the rim of the

Crater, around Mount Oldeani and Empakai Crater.

Throughout the highlands, there was also a reversal where

forest cover increased but then started to decrease. These

shifts in the vegetation occurred mostly between 2004 and

2009 (Fig. 9B).

BFAST trends: the case of Lerai Forest

The change map produced using BFAST for the Lerai

Forest is shown in Figure 10. In the northeast side of

the Lerai Forest, BFAST detected a consistent monotonic

decrease in forest cover (Fig. 10). Additionally, a large

cluster that experienced a monotonic increase occurred

on the southwest side of the Forest (Fig. 10). Although

significant, some of those changes were subtle (<25%;

Fig. 10, location A2) when compared to others (Fig. 10,

location A1). For instance, in location A2 (Fig. 10) there

was a consistent increase in cover which remained low.

In A1, forest cover increased until 2008, when it started

to decrease but the changes were more pronounced than

in A2.

Figure 7. True colour composite Landsat image for the year 2000 (A). Fraction of forest cover in the NCA in the years 2000 (B) and 2020 (C).

Forest cover change according to the linear trend analysis between 1985 and 2020 in the southeast of the NCA (D).
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Discussion

Understanding land cover dynamics is increasingly impor-

tant to improve habitat monitoring, preserve biodiversity

and ensure sustainable development (Reed et al., 2009).

Over the last 30 years, the NCA has undergone consider-

able changes but these remain poorly understood due to

lack of robust information and detailed maps. Here, we

demonstrate a Landsat-based monitoring strategy, com-

bining synthetic unmixing, machine learning regression

and time-series analysis, to quantify sub-pixel change in

nine land cover classes. Our fractional cover maps for

2010 and 2020 achieved high accuracies for most land

cover types (Table 2, Tables S1 and S2 and Figs. S5 and

S6), distinguishing the nine main land cover classes but

also identifying transitional areas with heterogeneous vege-

tation (Figs. 3 and 4A). Out of our nine land cover types,

only cropland scored low accuracies (R2 0.43 and 0.33 for

2010 and 2020, respectively), while the other classes high

accuracies (R2 > 0.6, Table 2). Souverijns et al. (2020)

and Senf et al. (2020) achieved similar accuracies for com-

parable land cover types, but Nabil et al. (2020) reported

low accuracies for cropland in the Sahel regions. Using

fractional cover maps has proven advantageous, as it

allows for the detection of more subtle land cover variabil-

ity and changes that cannot be captured by discrete classi-

fications (Senf et al., 2020; Souverijns et al., 2020; Suess

et al., 2018).

Figure 8. (A–C) and respective plots (A1 to C2): linear trend changes in forest, bushland, and woodland in the Lerai Forest (this area is the

example Location 1 shown in Fig. 4).
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Between 1985 and 2020, we identified significant land

cover changes; in particular, declines in forest and grass-

land cover (Figs. 5–7). The most common change using

the linear trend analysis was a decrease in forest coverage

by ~25%, which affected roughly 900 km2 (Fig. 6). BFAST

also detected a similar trend in the highlands, with a

monotonic decrease in forest throughout the period

(Fig. 9A). Contrarily, there was an increase in bushland

cover by 25%, covering 440 km2 (Fig. 6). These changes

are consistent with field studies that have identified forest

conversion into bushland due to the removal of larger

trees (Amiyo, 2006; Masao et al., 2015; TAWIRI &

NCAA, 2020). A report by the Tanzania Wildlife Research

Institute (TAWIRI) and the Ngorongoro Conservation

Area Authority (NCAA) in 2020 also found a decrease in

forest cover between 1978 and 2018. These changes were

linked to human disturbances namely clearing for settle-

ment or cultivation and searching for thatching materials

and fuel wood (Kija et al., 2020; Masao et al., 2015;

TAWIRI & NCAA, 2020). In addition (Mills, 2006), stud-

ied the dieback of Acacia xanthophloea (commonly known

as fever tree which can reach 25 metres) in Ngorongoro

Crater identified natural disturbances, specifically her-

bivory (mainly by elephants, Loxodonta africana), disease

and salinity as contributors for the demise of large trees.

Forest degradation has been reported across Africa and

is a common indicator of land degradation (Ahrends et al.,

2021; Bukombe et al., 2018; McNicol et al., 2018). In

addition, forests promote carbon sequestration and there-

fore, directly affect global carbon budgets and climate

change (McNicol et al., 2018; Venter et al., 2018). In the

NCA, degradation of forests threatens the availability of

good habitat for wildlife species adapted to such particular

forest type. Souverijns et al. (2020) mapped 30 years of

land cover changes over the Sudano-Sahel and detected

forest degradation based on fractional land cover maps.

Meanwhile, McNicol et al. (2018), used radar data to study

losses in carbon in savannahs, identifying deforestation

and degradation proximate to roads and urban areas but

gains in remote regions. Our results support those findings

and show that Landsat data and fractional cover maps can

be used to detect and monitor forest degradation. The use

of Landsat to map forest degradation processes is highly

beneficial, due to the temporal length of the Landsat

archive relative to radar data.

Serengeti plains

The loss of palatable grasses has been identified as a

threat to wildlife, the Maasai pastoralists and the NCA

ecosystem as a whole (Amiyo, 2006; Mills et al., 2006).

We found that grassland cover decreased in the NCA dur-

ing the study period (Figs. 5 and 6). Figure 6 shows

between 25% and 50% decrease in grassland cover

(493 km2 to 782 km2), mostly located in the Serengeti

plains (Figs. 5 and 6). In the same area, the increase in

Figure 9. (A) BFAST trend analysis results for the southeast side of the NCA showing the type of change in forest cover; (B) the year of change

in forest cover.
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shrubland (~345 km2) and woodland cover (~497 km2) is

also visible (Figs. 5 and 6). Previous research reported a

decline in grassland and woody encroachment in the

NCA which supports our findings (Amiyo, 2006; Masao

et al., 2015; Niboye, 2010). The no-burning policy

imposed in the 1980s was identified as the main driver

for land cover changes, specifically woody encroachment

in the NCA (Amiyo, 2006; Homewood et al., 2001). In

addition, grazing pressure, by wildlife and livestock, also

facilitates the development of woody plant communities

by removing fine fuels and reducing fire frequency and

intensity (Archer et al., 2017; Smit et al., 2010).

Shrub encroachment, often linked to grassland decline

and land degradation, is a serious threat to ecosystem ser-

vices and biodiversity (Higginbottom & Symeonakis, 2020;

Symeonakis et al., 2018). Previous research found an

increasing trend of woody cover throughout Africa (Hig-

ginbottom et al., 2018; Ludwig et al., 2019; Symeonakis

et al., 2018). Venter et al. (2018) reported that encroach-

ment is accelerating over time and that African savannahs

are at high risk of widespread vegetation change. Stevens

et al. (2016) measured woody cover change between 1940

and 2010 and found similar results in areas with low rain-

fall (<650 mm). Contrarily to forest degradation, shrub

encroachment can have a positive impact on aboveground

carbon storage (McNicol et al., 2018). However, the loss of

grassland areas raises issues for wildlife, the Maasai pas-

toralists and their livestock (Niboye, 2010). In the Serengeti

plains, densification and encroachment of woody cover can

have a negative effect on groundwater recharge, grazing

potential (Angassa & Baars, 2000; Stevens et al., 2017),

tourism (Gray & Bond, 2013), and is related to increase

costs for woody vegetation clearing (Grossman & Gan-

dar, 1989). Woody encroachment into grasslands can

potentially be reversed by a combination of management

(frequent fires) and climatic events (drought; Roques

et al., 2001). In these areas using fire as a management

strategy can decrease shrub and invasive species, and has

been successfully employed throughout the continent (San-

karan et al., 2005; Venter et al., 2018). Additionally, reduc-

ing grazing pressure by decreasing livestock numbers can

positively affect grassland areas (Archer et al., 2017). As

such, given the infeasibility of reducing livestock numbers,

trailing fire management to assess the potential for limiting

encroachment and improving rangeland condition may be

beneficial.

Lerai Forest

The earliest records of change in the NCA date back to the

1960s when the dieback of the Lerai forest was first sug-

gested (Amiyo, 2006; Mills, 2006). Our results show con-

trasting trends: a significant decline in woody cover within

Figure 10. Outcome of the trend analysis using BFAST for the Lerai

Forest (A). Locations A1–A3 are used as examples of time-series plots

at the individual pixel level.

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 821

J. Borges et al. Land Cover Dynamics in the Ngorongoro, Tanzania



the original range of Lerai Forest (Fig. S7) and an overall

increase in forest cover in the periphery (Figs. 8A and 10).

These results suggest that Lerai Forest is re-establishing

outside its original range (Amiyo, 2006). Historically,

mature fever trees Acacia xanthophloea, which can reach

heights up to 25 meters and require high water tables

(Homewood et al., 2001), dominated the Lerai Forest,

however since their decline they have not been replaced by

young Acacia xanthophloea trees (Amiyo, 2006). The

decrease in groundwater availability, due to a higher influx

of tourism and diversion of streams, as well as floods of the

salt lake, Lake Magadi, contributed to an increase in soil

salinity, which negatively affects vegetation (Amiyo, 2006;

Boone et al., 2007; Mills, 2006). Mills (2006) suggested

that sodicity (e.g. the accumulation of sodium salt in the

soil) can exacerbate salinity-induced drought stress in vege-

tation, by limiting entry of rainwater into the soil, which

was already low due to a reduced rainfall (Fig. S1). Further-

more, sodicity can promote sodium concentrations in trees,

which has an additional detrimental effect by attracting ele-

phants and other herbivores (Homewood et al., 2001;

Mills, 2006). Management strategies were implemented

and in 2006, the stream was diverted back to supplying the

Forest (Mills, 2006, Fig. 10, location A1). This increased

the freshwater supply to the area and promoted the flush-

ing of salts from the soil (Mills, 2006). The southwest side,

closer to the Crater rim, is more fertile and has a lower soil

salinity due to its proximity to the stream, which explains

the increase in forest and woodland cover (Fig. 8A and C;

10 location A1; Elisante et al., 2013, Mills, 2006). Exclusion

of elephants from Lerai was considered in 2006 but was

never implemented (Mills, 2006). The dieback in Lerai may

be jeopardising the long-term conservation of the black rhi-

noceros Diceros bicornis michaeli population in the caldera

(Mills, 2006). Historically, the Lerai Forest was used for

shelter and browse by the rhinos and it has been suggested

it was also critical for hiding newborn rhinos from preda-

tors (Goddard, 1967, 1968). Consequently, the recovery of

the Lerai Forest is an essential priority for the success of

black rhino population in the NCA (Mills et al., 2006).

Conclusion

Mapping and quantifying land cover change is important

to support habitat monitoring, preserve biodiversity and

ensure sustainable development (Reed et al., 2009). Savan-

nah landscapes, such as the NCA, however, are complex

heterogeneous combinations of vegetation. Here we

demonstrate that a regression-based unmixing with syn-

thetic training data-based approach is effective in the frac-

tional mapping of spectrally similar land cover types. In

addition, the combination of linear trend and BFAST time-

series analysis provided highly detailed and complimentary

insights into land cover change dynamics throughout the

35-year study period. We identified two dominant land

change dynamics: the degradation of uplands forest into

bushland, and a transition from grassland to shrubland in

the Serengeti Plains. These changes threaten the wellbeing

of livestock, and consequently the livelihoods of pastoralists

but also grazing dependent wildlife. These changes are

likely due to a combination of climate change, shifting rain-

fall patterns, herbivory; and human activities, namely, man-

agement policies, tourism and increasing human

populations and livestock. In conclusion, we provide much

needed and highly accurate information on long-term land

cover changes in the NCA, which can support sustainable

management and conservation. In addition, our method-

ological approach can be applied elsewhere to understand

savannah landscape changes.
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Figure S2. Example of spectral data using near-infrared,

green and red bands for bushland, forest, montane heath,
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land and woodland for the year 2020.

Figure S4. Grid used for validation.

Figure S5. Validation 2010.

Figure S6. Validation 2020.

Figure S7. Lerai Forest range: (A) Landsat imagery in

December 1985; (B) Landsat imagery in February 2020;

(C) CNES/Airbus in January 2020.
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