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Abstract: Efforts to identify suitable habitat for wildlife conservation are crucial for safeguarding
biodiversity, facilitating management, and promoting sustainable coexistence between wildlife and
communities. Our study focuses on identifying potential black rhino (Diceros bicornis) habitat within
the Ngorongoro Conservation Area (NCA), Tanzania, across wet and dry seasons. To achieve this,
we used remote sensing data with and without field data. We employed a comprehensive approach
integrating Sentinel-2 and PlanetScope images, vegetation indices, and human activity data. We
employed machine learning recursive feature elimination (RFE) and random forest (RF) algorithms
to identify the most relevant features that contribute to habitat suitability prediction. Approximately
36% of the NCA is suitable for black rhinos throughout the year; however, there are seasonal shifts in
habitat suitability. Anthropogenic factors increase land degradation and limit habitat suitability, but
this depends on the season. This study found a higher influence of human-related factors during the
wet season, with suitable habitat covering 53.6% of the NCA. In the dry season, browse availability
decreases and rhinos are forced to become less selective of the areas where they move to fulfil their
nutritional requirements, with anthropogenic pressures becoming less important. Furthermore, our
study identified specific areas within the NCA that consistently offer suitable habitat across wet and
dry seasons. These areas, situated between Olmoti and the Crater, exhibit minimal disturbance from
human activities, presenting favourable conditions for rhinos. Although the Oldupai Gorge only has
small suitable patches, it used to sustain a large population of rhinos in the 1960s. Land cover changes
seem to have decreased the suitability of the Gorge. This study highlights the importance of combining
field data with remotely sensed data. Remote sensing-based assessments rely on the importance of
vegetation covers as a proxy for habitat and often overlook crucial field variables such as shelter or
breeding locations. Overall, our study sheds light on the imperative of identifying suitable habitat for
black rhinos within the NCA and underscores the urgency of intensified conservation efforts. Our
findings underscore the need for adaptive conservation strategies to reverse land degradation and
safeguard black rhino populations in this dynamic multiple land-use landscape as environmental
and anthropogenic pressures evolve.

Keywords: black rhino; land degradation; Ngorongoro Conservation Area; habitat suitability; field
data; recursive feature elimination; Sentinel-2; random forest

1. Introduction

The conservation and management of critically endangered species is an urgent prior-
ity due to escalating threats to biodiversity worldwide. To promote recovery, it is essential
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to manage a species under the ecological carrying capacity (ECC) and understand habitat
requirements and the factors influencing animal distribution [1,2]. These requirements
comprise a range of ecological factors, including food availability, water sources, breeding
areas, and shelter [3,4]. Additionally, understanding these parameters provides valuable
insights for land-use planning, protected area establishment, and the creation of wildlife cor-
ridors [2]. Such measures promote gene flow, reduce habitat fragmentation, and facilitate
movement between suitable habitats, which are vital for the genetic diversity and viability
of wildlife populations [2,5]. By identifying and preserving areas that fulfil population
requirements, conservation efforts can focus on targeting strategies that maintain or restore
degraded critical habitats to ensure species recovery.

The black rhino is a critically endangered species with a global population of circa
5630 individuals, approximately 1000 of which are Eastern black rhinos (D. b. michaeli),
mostly in Kenya and Tanzania [2,6]. They are generally solitary or form small family
groups, reaching sexual maturity at around 5–7 years with a lifespan of approximately
35–40 years [7,8]. Black rhinos are selective browsers, generally preferring the woody
species found in savannah and bushveld areas [2]. They can browse up to 220 species
of plants, but a great portion of their diets relies on three or four plant species, making
their diets less diverse than the species available [9–11]. Although the primary threat
to the black rhino is poaching—driven by a high demand for rhino horn—habitat loss
from deforestation, livestock grazing, human settlement development, and agricultural
expansion lead to land degradation and pose an increasing threat to rhino populations
mboxciteB12-remotesensing-3114046,B13-remotesensing-3114046. Habitat degradation and
loss also increases intra-species competition for limited resources, further exacerbating
the population’s vulnerability to external pressures [14]. Additionally, black rhinos have
the highest mortality from intra-sexual competition of any mammal, which is one of
the key indicators (combined with declining inter-calving intervals) of the ECC being
exceeded [15–17].

The Ngorongoro Conservation Area (NCA) in Tanzania serves as a stronghold for the
Eastern black rhino, hosting approximately 30% (161 individuals) of the country’s total
population [5]. In recent years, increased anti-poaching patrols and monitoring in the NCA
have allowed the black rhino population to reach 55 individuals [5]. Given this recent
population growth, it is essential to identify habitat areas capable of supporting a growing
rhino population [5,18]. By pinpointing these areas, conservation efforts can prioritise
their protection and that of the rhinos’ preferred habitat, thus promoting a favourable
environment for black rhino conservation [19,20].

Seasonal shifts significantly impact plant growth and availability, influencing the
nutritional content and abundance of preferred browse for black rhinos [9,19,21]. During the
dry season, the reduction in green browse prompts rhinos to seek areas with higher browse
density or to adapt their movement patterns to find alternative food sources, and therefore,
investigating seasonal patterns becomes crucial in evaluating habitat suitability [9,19,21].

Black rhinos avoid areas of human activity, such as settlements and roads [22]. In
2022/2023, the NCA received over 752,232 visitors, with recent (for 2023/2024) numbers
approaching one million (NCAA, 2023). This growth has generated substantial economic
revenue and facilitated extensive infrastructure growth, but also led to higher rates of
disturbance in and around the Crater [23]. The Maasai community residing in the NCA
also increased from approximately 8000 people in 1959 to nearly 100,000 by 2018 [24,25].
Alongside this demographic expansion, the estimated livestock population associated
with the community surpassed 800,000 in 2018 [24,25]. The combination of these factors
provides a unique opportunity to study how human disturbances impact black rhino
habitat suitability.

Species distribution models (SDMs) combine species occurrences with spatial data
based on environmental and ecological variables of a given geographic area to predict
species distributions [26]. SDMs are widely used in invasive species management, climate
change impact assessment, habitat restoration, ecological research, land use planning,
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and wildlife management [27–32]. SDMs can provide information to facilitate efficient
conservation management by pinpointing key habitats, potential migration corridors, and
areas that require increased protection [29,33]. For instance, [34] showed how combining
SDMs with dispersal scenarios could provide valuable information regarding the potential
habitat expansion of large carnivores. Hybrid models combining SDMs with population
dynamics have also been used in Canada to identify essential habitat areas for the Ord’s
kangaroo rat (Dipodomys ordii [35]).

Previous conservation efforts for black rhinos have focused on establishing protected
areas and increasing security using anti-poaching patrols and fencing [36]. However, habitat
quality and food availability are equally important factors that need to be considered to
sustain and promote population growth [9,37,38]. Within this framework, the overarching
aim of this research is to provide the NCA management with accurate data to support black
rhino population expansion and conservation. We do this by providing answers to the
following research questions: (i) how does seasonal variability impact habitat suitability
for the black rhino; (ii) how do human disturbances impact habitat suitability; and (iii) in
the absence of field data, can theoretical models be used to predict habitat suitability?

2. Study Area

The NCA is a protected area located in northern Tanzania. During the wet season,
temperatures fluctuate between 7.5 ◦C and 14.5 ◦C, while in the dry season, they range
from 10.6 ◦C to 19.6 ◦C [39]. Rainfall demonstrates distinct patterns featuring two wet
seasons from March to May and October to December, as well as two dry seasons from
January to February and June to October [40]. Annual rainfall varies from 450 mm/year
in lowlands to 1200 mm/year in the highlands [41]. The NCA boundary was adapted
from [41] and a 2 km buffer was added (Figure 1).

The NCA includes diverse vegetation types, including highland grassland plains,
open canopy woodland, closed canopy forests, and savannah grasslands (Figure 1; [42–44]).
The vegetation suitable for grazing is essential for wildlife but also Maasai livestock that
either reside within or are passing through the NCA [45]. The NCA has an open border
policy that allows grazing livestock for resident and non-resident Maasai; however, the
Northern Highland Forest Reserve and the Crater floor are restricted areas [45].

The evolution of management policies over time has often resulted in disagreements
between communities and the Ngorongoro Conservation Area Authority [39,41]. For
example, the decision to ease restrictions on cultivation resulted in a rise in cultivated ar-
eas [41,46,47]. The conversion of land to cultivation fields creates environmental pressures
through vegetation changes and habitat patchiness [48,49]. Additionally, a fire ban imple-
mented in 1976 contributed to shrub growth and the spread of invasive plant species as
there was no vegetation control other than herbivory [39,47]. For rhinos, the absence of fire
and shrub growth positively impacts habitat, but for cattle the effect is the opposite [45,50].
Shrub growth and the spread of invasive unpalatable species decreases suitable pasture so
the pastoralists resort to cultivation to sustain their households [45]. A shift from traditional
pastoral systems to cultivation, combined with an increase in human population, could
cause land degradation and be detrimental to the ecosystem in the long-term [37,47].

The NCA has undergone significant habitat changes, particularly experiencing forest
loss and woody encroachment [44]. While some of these changes may be natural, driven by
herbivory, rainfall, and vegetation succession, many are attributed to human activities, in-
cluding management policies, tourism development, and the expanding human population
and livestock [37].

With regard to rhino populations, in 1966, the Crater and Oldupai Gorge areas within
the NCA (Figure 1) supported 108 and 69 rhinos, respectively [8]. By 1993, poaching
had reduced the rhino population to 13 individuals [5]. More recently, a relatively high
population rate of growth has been reported, leading to the current total of 55 animals as of
2018 [5].
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Figure 1. (A) True colour composite (RGB) of a Landsat image with the zoomed in areas of interest
(A1,A2); (B) Topography of the study area (ESRI World Hillshade); (C) Land cover classification of
the study area for the year 2020 [44] and zoomed in areas of interest (C1,C2).

3. Datasets and Methods

Field data on the presence/absence of animal species are invaluable for habitat suit-
ability modelling. However, it is often the case that conducting fieldwork is not feasible as
it is labour-intensive, requires expertise on the ground, is time-consuming, and expensive.
We mapped rhino habitat suitability in the NCA with and without field data on rhino
presence and compared the outcomes to assess whether a theoretical habitat suitability
model can be used without field data. The Crater was included in the analysis but was
filtered out from the maps for safety reasons for the resident rhinos.

To model habitat suitability with field data, we first assumed that areas currently used
by rhinos are suitable and used satellite imagery to identify other suitable areas beyond
their current range. We employed a comprehensive approach integrating Sentinel-2 (10 m,
European Space Agency’s (ESA) Copernicus Programme) and PlanetScope (4.7 m, Planet
Team, 2022) images, vegetation indices and human activity data (https://www.nbs.go.tz/,
accessed on 2 June 2023; Google Earth Pro (v. 7.3.6.9326, [51]). We employed machine
learning recursive feature elimination (RFE) and random forest (RF) algorithms to identify
the most relevant features (Table 3) that contribute to habitat suitability prediction [52–54].
RFE systematically evaluates different combinations of features and eliminates the least
significant ones, reducing model complexity [54]. The model was trained with point
location presence and pseudo-absence data collected in the field. To assess the effect of
seasonal variability on habitat suitability, we used satellite data from both the dry and
the wet seasons and assessed them separately. In the NCA, human presence has been

https://www.nbs.go.tz/
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suggested as a possible driver of rhino distribution [37,55]. To investigate how humans and
livestock impact habitat suitability, we ran RFE and RF with two versions of the human
activity data: one with the current situation and a simplified one with all settlements and
livestock removed and some of the roads (only tourism-related roads were kept). The
output was four suitability maps: one for each season, the current human activity data, and
the simplified less intense version.

To map habitat suitability without field data, we employed fuzzy logic using land
cover data scored according to their ability to fulfil rhino diet requirements (bushland
and shrubland) and human disturbances, using both the current situation as well as the
simplified, less intense version [22,42,56]. Fuzzy logic analysis is widely used in predictive
modelling to map habitat suitability [57–60]. The fuzzy approach assigns a probability score
to classes identifying the ranges between boundaries of each class and can be employed in
the absence of field data [61,62]. The output was two suitability maps: one with the current
human activity data and one with the simplified one.

3.1. Datasets
3.1.1. Sentinel-2

We used all Sentinel 2 images (10 m) acquired over the study area between 1 March
2022 and 30 September 2022 with less than 75% cloud cover. Level 2 images were processed
into analysis-ready data products using the Framework for Operational Radiometric Cor-
rection for Environmental monitoring (FORCE) software version v.3.7 [63], following the
approach and parameters detailed in the work by Borges et al. 2020 [42].

Finally, we calculated 14 vegetation indices (VIs, Table 1) employed in vegetation
studies to detect habitat types. These were then added to the Sentinel-2 spectral bands.
Different vegetation indices have their own nuances and strengths, making them valuable
tools for accurately mapping various types of land cover. For instance, VIs such as the
Normalised Difference Vegetation Index (NDVI), Green Normalised Difference Vegetation
Index (GNDVI), and Enhanced Vegetation Index (EVI) are commonly used to assess general
vegetation health and density across various habitats, including forests, grasslands, and
savannas [64–66]. Water-related indices, such as the Modified Normalised Difference Water
Index (MNDWI) and Normalised Difference Water Index (NDWI), highlight wetlands and
other water-abundant areas, indicating habitats that support lush vegetation critical for
rhinos, especially during the dry season [67,68].

Table 1. List of vegetation indices calculated from the Sentinel-2 spectral bands to be tested using
the recursive feature elimination procedure. R—Red; G—Green; B—Blue; NIR—Near-infrared;
WIR1—Shortwave Infrared 1; RE1—Red Edge 1; RE2—Red Edge 2.

Name Equation and Derivation Reference

Normalised Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [64]
Green Normalised Difference Vegetation Index (GNDVI) (NIR − G)/(NIR + G) [65]

Normalised Difference Red Edge (NDRE) (NIR − RE1)/(NIR + RE1) [69]
Modified Normalised Difference Water Index (MNDWI) (G − SWIR1)/G + SWIR1) [67]

Normalised Difference Water Index (NDWI) (NIR − SWIR1)/(NIR + SWIR1) [68]
Inverted Red Chlorophyll Index (IreCI) (NIR − R)/(RE1/RE2) [70]
Pigment Specific Simple Ratio (PSSRa) NIR/R [71]

Normalised Difference Index 4 and 5 (NDI45) (RE1 − R)/(RE1 + R) [72]
Chlorophyll Index Red-Edge (CIRE) ((NIR/RE1) − 1.0) [73]

Sentinel-2 Red-Edge Position (S2REP) 705 + 35 × ((((NIR + R)/2) − RE1)/(RE2 − RE1)) [70]
MERIS Terrestrial Chlorophyll Index (MTCI) (NIR − RE1)/(RE1 − R) [74]

Modified Soil-Adjusted Vegetation Index 2 (MSAVI2) [(RE1 − R) − 0.2 × (RE1 -G)] × (RE1/R) [75]
Modified Chlorophyll Absorption in Reflectance

Index (MCARI) 2.5 × ((NIR − R)/((NIR + 6× R − 7.5 × B) + 1)) [76]

Enhanced Vegetation Index (EVI) (2.5 × ((NIR − R)/((NIR + (2.4 × R) + 1)) [66]
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3.1.2. Planet Scope

Planet data were extracted from the Planet Labs Public Benefit Corporation (PBC)
database for the dry (October 2022) and the wet season (March 2022) at a spatial resolution
of 4.7 m (Planet Team, 2022). Adding the Planet data to the analysis enhances the spatial
resolution (from 10 m to 4.7 m), facilitating the distinction of spectrally similar habitats [77].

3.1.3. Human Activity

Settlement data were incorporated in the habitat suitability analysis, including the
location of villages, towns, tourism infrastructure, and any other building identifiable in the
high-resolution Google imagery (CNES/Airbus, Figure S1). The initial settlement data from
the 2012 Population and Housing Census were extracted from the Tanzania National Bureau
of Statistics database (“https://www.nbs.go.tz/”, accessed on 2 June 2023) and updated
using Google Earth Pro (v. 7.3.6.9326) to account for changes since the initial census.

In protected areas, black rhinos are known to avoid areas frequented by humans,
namely those surrounding lodges, camping sites, or roads due to disturbances [22]. This be-
haviour has been suggested in the NCA as a possible driver of rhino distribution [37,55,78].
To establish how settlements impact habitat suitability, a new simplified settlement layer
was created, including the lodges and ranger stations and excluded villages (Figure S2).
The settlements that border the Northern Highland Forest Reserve, below Mount Oldeani
(Figure S2), were also kept as they part of Karatu town and were included in the original
boundary and its buffer [41].

We created the road network data via manual digitisation over Airbus imagery ac-
quired between 2016 and 2022 using Google Earth Pro (v. 7.3.6.9326, [51]). We identified all
existing main roads used for tourism as well as smaller roads used by the local population
to reach villages and towns (Figure S1). To assess the effect of roads on habitat suitability, we
also developed a simplified road dataset (Figure S2), which included only tourism-related
roads, as these roads are expected to continue being used in the foreseeable future.

Finally, the livestock presence/absence data were created based on current NCA
policies—livestock is permitted anywhere except in the Ngorongoro Crater and the North-
ern Highland Forest Reserve [39]. For the reduced activity version, livestock was removed
from all the NCA. Overall, the reduced human activity version excluded villages, non-
tourist roads and livestock.

The human activity layers (settlements, roads, and livestock) were treated as presence
or absence data for each variable. The predictive model employed the “real” comprehen-
sive dataset, while the simplified version employed the same model but applied to the
simplified dataset.

3.1.4. Land Cover Layer

The land cover layer we used in our modelling came from our previous work in the
area [42]: this dataset was based on Sentinel 1 and Sentinel 2 data from the dry and short-
dry seasons and comprises nine land cover classes at a 10 m resolution (overall accuracy of
86.3 ± 1.5%). For black rhinos in the NCA, bushland and shrubland are highly relevant land
cover classes due to their high browse availability, which is easy to access. These habitats
also provide essential shelter and access to water sources. Woodland is also significant as
it offers browse, shelter, and water sources, albeit to a slightly lesser extent compared to
bushland and shrubland. In contrast, while forests have abundant foliage, much of it is
often out of reach for rhinos, which diminishes their suitability as primary habitats.

3.1.5. Rhino Presence Data

The training samples were collected between March and September 2023 to cover wet
and dry seasons, excluding the short-dry season (January to February) and the second wet
season (October–December, [40,42]). The locations comprised areas known to be frequented
by rhinos (following monitoring teams’ advice), areas where direct observations occurred
or rhino signs were found (e.g., bites in plants, dung piles, tracks). A total of 272 samples

https://www.nbs.go.tz/


Remote Sens. 2024, 16, 2855 7 of 17

were collected: 109 presence and 163 pseudo-absences. Of these 272, there were 39 collected
in shrubland, 128 in grassland, 40 in woodland, 21 in forest, and 44 in bushland. Each
data point comprised 30 m diameter circular plots collected randomly on the ground. As
there are only 55 rhinos (2018), presence data were established through the identification of
direct signs, such as rhino sightings, and indirect signs, like bites on vegetation (black rhino
bites have a distinct sharp-cut edge at a 45◦ angle), tracks, or dung [5]. Pseudo-absence
data were collected in areas where no sightings of black rhinos were recorded by the NCA
monitoring team over the years. Pseudo-absence data were randomly collected in areas
that exhibited comparable conditions in terms of vegetation composition, geography, water
presence, etc., known to be suitable for black rhinos [79,80].

3.2. Methods
3.2.1. Recursive Feature Elimination

We used recursive feature elimination [54] in R language (v. 4.3.1) to identify the
optimal band combination for the highest accuracy out of the 31 available bands (10 Sentinel-
2, 14 VIs, 4 PlanetScope, 3 human disturbance) for the two distinct seasons. The random
forest algorithm, embedded in RFE, is an efficient non-parametric machine learning model
based on ensembles of regression trees, commonly used for image classification and land
cover mapping [81–83].

Each season had its training data and 80% of them were allocated to train the model,
with the remaining 20% left aside for validation. RFE systematically evaluates different
combinations of bands by eliminating the least significant bands and assessing their impact
on model performance [54]. This approach helps identify the most informative bands for
accurate classification of the habitat [84]. The RFE process was conducted separately for the
dry and wet seasons to determine the best band combination for each season. Validation
was then performed, and the prediction maps were produced for each season using the
best band combinations identified through the RFE using the raster package in R.

3.2.2. Fuzzy Analysis

To assess rhino habitat suitability, each land cover type was assigned a score based on
available information on habitat use in the NCA (Table 2, [56]). The scoring system ranged
from 0.0 to 1.0 (Table 2), with 0.0 representing unsuitable habitat and 1.0 representing
highly suitable habitat, as suggested by Gwynn (2022; [58]), for the allocation of fuzzy
membership scores.

Table 2. Suitability score for each land cover type considering the black rhino biological requirements
in the NCA.

Land Cover Type Score Biological Relevance for Black Rhino in NCA

Bareland 0.0 No browse available
Bushland 1.0 High browse available, shelter, water sources
Cropland 0.0 No browse available, human–wildlife conflicts

Forest 0.4 Moderate browse available, shelter, water sources
Grassland 0.0 Little browse and no shelter

Montane heath 0.0 Little browse available
Shrubland 1.0 High browse available, shelter, water sources

Water 0.0 Usually salt water, no browse available
Woodland 0.6 Browse available, shelter, water sources

We applied fuzzy logic to develop scored maps based on land cover types expected
to fulfil rhino food requirements and the distribution of human disturbances with the
aim of identifying areas that were expected to be suitable [22,42,56]. Fuzzy membership
(linear) was applied separately to the current and simplified versions of the roads and
settlements datasets, generating suitability maps for each variable. Distances from the roads
or settlements between 0 km and 2.5 km were scored as unsuitable (=0), while distances
over or equal to 2.5 km were assigned a value of 1.0 (i.e., suitable). These values were based
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on expert knowledge and corroborated by the presence data during the fieldwork. The
categorical land cover data were reclassified according to Table 2, followed by the fuzzy
membership steps described above. Finally, fuzzy overlaying was employed, and the three
outputs were added together to create the habitat suitability map without field data.

4. Results
4.1. Habitat Suitability Using Field Data

The best combination for predicting black rhino habitat suitability in the wet season
(Table 3) included 11 layers (four spectral bands, four indices, and three anthropogenic
layers) and achieved an accuracy of approximately 76.2%. For the dry season, the best
data combination comprised 13 predictors (nine spectral bands, three indices, and one
anthropogenic layers) and achieved an accuracy of 88.2%.

Table 3. Recursive feature elimination results showing the best combination of layers for suitability
mapping for both seasons.

Wet Season Dry Season

Roads Sentinel-2 REDEDGE3
MSAVI2 Sentinel-2 REDEDGE1

Settlements Sentinel-2 BROADNIR
NDVI Sentinel-2 Red
NDWI Sentinel-2 Green

Planet Scope NIR Planet Scope NIR
NDRE Settlements

Livestock Sentinel-2 SWIR1
Planet Scope Blue Sentinel-2 Blue
Planet Scope Red Planet Scope Blue

Sentinel-2 REDEDGE1 CRE
PSSRa

GNDVI

Based on these models, the NCA has approximately 3377 km2 (36.9%) of potentially
suitable habitat for the black rhino during the wet season (Figure 2A). Similarly, during
the dry season, the suitable habitat covers approximately 3263 km2 (35.6%) of the NCA.
The area that remains suitable through both seasons covers 1912 km2. This includes the
Ngorongoro Crater (NC), which has been filtered out at the request of the Ngorongoro
Conservation Area Authority (NCAA) to ensure animal safety. The Serengeti plains, west
of the NCA, are suitable mostly during the wet season but there are also areas that can
support black rhino presence throughout the year (Figure 2A). The Oldupai Gorge is mostly
unsuitable except for a few patches during the dry season and around the Gorge during the
wet season (Figure 2(A1,B1)). The area between Olmoti Crater and the NC (Figure 2(A2,B2))
remains suitable for the black rhino throughout both seasons.

Under simplified human disturbances, the suitable area during solely the wet season
increases by 1526.5 km2 (16.7%) covering 4903 km2 (53.6%) of the entire area (Figure 2B).
During the dry season, the NCA remains almost unchanged, covering approximately
3344 km2 (35.5%) once the human disturbances are simplified (Figure 2B). The area that
remains suitable through both seasons improved by 312 km2, covering 2224 km2. The
Oldupai Gorge and surrounding area becomes more suitable once human disturbances are
simplified during the wet season (Figure 2(B1)). The area between Olmoti Crater and the
NC is suitable for the black rhino under both seasons (Figure 2(B2)).

4.2. Habitat Suitability without Field Data

When comparing the models, the model with field data shows results that are contrary
to the model without field data. The suitability maps of the fuzzy membership analysis
show woody vegetation areas as dark green (>90% suitability, Figure 3A). Most of the NCA,
including the Serengeti plains and the NC, is comprised of open grasslands with little or
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no vegetation and is classified as unsuitable (<27% suitability, Figure 3A). When human
disturbances are reduced, the suitable area increases throughout (Figure 3B). The Oldupai
Gorge and highlands between the NC and Olmoti Crater also become more suitable
(Figure 3(A1,A2,B1,B2)), but overall remain less suitable when compared to Figure 2.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 18 
 

 

during the wet season (Figure 2(A1,B1)). The area between Olmoti Crater and the NC 
(Figure 2(A2,B2)) remains suitable for the black rhino throughout both seasons. 

 
Figure 2. Suitable habitat based on rhino presence/absence data with current human disturbances 
(A); and with simplified human disturbances (B). (A1,A2,B1,B2) are example subsets. The Ngoron-
goro Crater has been removed for safety reasons. 

Under simplified human disturbances, the suitable area during solely the wet season 
increases by 1526.5 km2 (16.7%) covering 4903 km2 (53.6%) of the entire area (Figure 2B). 
During the dry season, the NCA remains almost unchanged, covering approximately 3344 
km2 (35.5%) once the human disturbances are simplified (Figure 2B). The area that remains 
suitable through both seasons improved by 312 km2, covering 2224 km2. The Oldupai 
Gorge and surrounding area becomes more suitable once human disturbances are simpli-
fied during the wet season (Figure 2(B1)). The area between Olmoti Crater and the NC is 
suitable for the black rhino under both seasons (Figure 2(B2)). 

4.2. Habitat Suitability without Field Data 
When comparing the models, the model with field data shows results that are con-

trary to the model without field data. The suitability maps of the fuzzy membership anal-
ysis show woody vegetation areas as dark green (>90% suitability, Figure 3A). Most of the 
NCA, including the Serengeti plains and the NC, is comprised of open grasslands with 
little or no vegetation and is classified as unsuitable (<27% suitability, Figure 3A). When 
human disturbances are reduced, the suitable area increases throughout (Figure 3B). The 
Oldupai Gorge and highlands between the NC and Olmoti Crater also become more suit-
able (Figure 3(A1,A2,B1,B2)), but overall remain less suitable when compared to Figure 2.  

Figure 2. Suitable habitat based on rhino presence/absence data with current human disturbances (A);
and with simplified human disturbances (B). (A1,A2,B1,B2) are example subsets. The Ngorongoro
Crater has been removed for safety reasons.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 3. Suitable habitat based only on remote sensing data with current human disturbances (A); 
and with simplified human disturbances (B). (A1,A2,B1,B2) are example subsets. The Ngorongoro 
Crater has been removed for safety reasons. 

5. Discussion 
Identifying optimal suitable habitat is paramount for targeted conservation efforts, 

to halt land degradation, safeguard biodiversity, and promote sustainable coexistence be-
tween wildlife and communities [2]. In the context of critically endangered species, such 
as the black rhino, it becomes increasingly important to detect key habitat that can support 
growing populations [2,5]. Here, we identified potential black rhino habitat, for the wet 
and dry seasons, and assessed how human activities impact habitat quality within the 
NCA.  

5.1. Seasonal Differences  
Our results show that, when mapping habitat, dry season data produce higher accu-

racy (88.2%) than during the wet season (76.2%). Dry season data are often preferred due 
to the lower cloud cover and higher contrasts between grass and woody plants [84,85]. 
Additionally, dry season availability is the key population limiting factor from an ecolog-
ical perspective, because if it can sustain rhinos in the dry season, then it will also be able 
to in the wet season [86,87]. 

There are also differences between the best combination of data for each season (Table 
3). For instance, during the dry season, the spectral bands are more relevant than anthro-
pogenic factors when mapping suitability (Table 3). The natural seasonal shifts can explain 
this, as the decrease in browse availability may force the animals to frequent areas with 
different vegetation [88,89]. During the wet season, when plenty of browse is available, 
the anthropogenic factors (roads, settlements, and livestock presence) become more im-
portant in identifying suitable habitat as the availability of more food often means that the 
rhinos can be more selective (Table 3).  

During the dry season potentially suitable habitat for black rhino covers 35.6% (3263 
km2) of the NCA (Figure 2A). However, in context of conservation, it is essential to account 
for seasonal changes as wildlife is often confined to protected areas and unable to migrate 

Figure 3. Suitable habitat based only on remote sensing data with current human disturbances (A);
and with simplified human disturbances (B). (A1,A2,B1,B2) are example subsets. The Ngorongoro
Crater has been removed for safety reasons.



Remote Sens. 2024, 16, 2855 10 of 17

5. Discussion

Identifying optimal suitable habitat is paramount for targeted conservation efforts,
to halt land degradation, safeguard biodiversity, and promote sustainable coexistence
between wildlife and communities [2]. In the context of critically endangered species, such
as the black rhino, it becomes increasingly important to detect key habitat that can support
growing populations [2,5]. Here, we identified potential black rhino habitat, for the wet and
dry seasons, and assessed how human activities impact habitat quality within the NCA.

5.1. Seasonal Differences

Our results show that, when mapping habitat, dry season data produce higher ac-
curacy (88.2%) than during the wet season (76.2%). Dry season data are often preferred
due to the lower cloud cover and higher contrasts between grass and woody plants [84,85].
Additionally, dry season availability is the key population limiting factor from an ecological
perspective, because if it can sustain rhinos in the dry season, then it will also be able to in
the wet season [86,87].

There are also differences between the best combination of data for each season
(Table 3). For instance, during the dry season, the spectral bands are more relevant than
anthropogenic factors when mapping suitability (Table 3). The natural seasonal shifts
can explain this, as the decrease in browse availability may force the animals to frequent
areas with different vegetation [88,89]. During the wet season, when plenty of browse is
available, the anthropogenic factors (roads, settlements, and livestock presence) become
more important in identifying suitable habitat as the availability of more food often means
that the rhinos can be more selective (Table 3).

During the dry season potentially suitable habitat for black rhino covers 35.6% (3263 km2)
of the NCA (Figure 2A). However, in context of conservation, it is essential to account for
seasonal changes as wildlife is often confined to protected areas and unable to migrate long
distances [88,89]. Surprisingly, the suitable area was only 1.4% higher (114 km2) during the
wet season than the dry season (Figure 2B). This is unexpected given that rhino diet in the
Ngorongoro Crater during the wet season is composed mostly of herbs, forbs, and legumes,
which tend to disappear or dry up during the dry season [55,56]. In the NCA, bushland
cover often includes palatable browse, water resources, and shelter, and is therefore suitable
for rhinos [43,44,56]. Most of the bushland cover on the rim of the Crater is comprised of
evergreen species and we may expect fewer seasonal changes (Figure 2, [42,43]).

The Serengeti plains, west of the NCA, are suitable mostly during the wet season but
become unsuitable as the season changes (Figure 2A). This shift in suitability is expected
as the vegetation comprises seasonal species that lose their leaves or die during the dry
season [43]. The area surrounding Oldupai Gorge remains mostly unsuitable throughout
both seasons except for a few patches (Figure 2(A1)). In the 1960s, the Gorge supported a
population of 69 black rhinos [8]. Compared to the Crater population, these individuals
probably occupied larger home ranges to fulfil the nutritional requirements, suggesting
that the vegetation was already less desirable than in the Crater [8]. In addition, in recent
decades, the Oldupai Gorge has experienced changes in vegetation, specifically the loss of
woody cover [44]. Land cover changes impact vegetation composition and likely contribute
to the disappearance of the black rhino population from the Oldupai area.

Historically, the Gorge was part of a corridor between the NCA and the Serengeti
National Park and, considering that rhinos used to inhabit this area, the suitability of the
Serengeti and Oldupai plains (Figure 2A) should be further investigated with the aim of
restoring connectivity between protect areas.

5.2. Anthropogenic Factors

Anthropogenic activities profoundly influence wildlife habitats, often leading to land
degradation and posing significant challenges to the conservation of endangered species
such as rhinos [2,22]. One of the main drivers for rhino distribution is browse availability;
however, areas with adequate browse may be deemed unsuitable due to anthropogenic
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factors [90]. In Namibia, for example, human presence has been linked to an increase in calf
mortality due to limited movement patterns, home range establishment, social structure,
resource selection, and habitat use by black rhinos [90,91]. As such, human disturbances
should be considered when identifying areas that could support a black rhino population.
Our findings support previous studies suggesting that human activities are major drivers
in rhino location and habitat stability but there are seasonal variations [8,19,22,92].

We used a categorical threshold (below/above 2.5 km from the nearest road/settlement)
as an index of human disturbances for its simplicity, interpretability, and practical utility for
conservation efforts. This approach ensures a robust analysis despite data limitations and
provides clear guidelines for management decisions. During the wet season, our analysis
pinpointed roads as the predominant predictor of rhino habitat suitability, with the location
of settlements and livestock presence also playing a role (Table 3). Once human activities
are removed from the model, there is an apparent increase (16.7%) in suitable habitat and
53.6% of the NCA becomes suitable (Figure 2B). Conversely, the dry season presents a
contrasting scenario, wherein limited browse resources, due to seasonal shifts, reduce the
importance of human disturbances (Table 3, Figure 2B). Settlements, however, continue to
play a role but to a lesser extent than that observed during the wet season (Table 3).

Rainfall variability between the wet and dry seasons is closely linked to vegetation
growth and rainfall, impacting browse availability for large herbivores in arid and semi-
arid environments [93]. During the wet season, due to higher rainfall, there is a higher
availability of browse, so rhinos can afford to seek alternative areas with reduced human
disturbance [8,90,93]. When the dry season arrives and browse is limited, rhinos are forced
to become less selective and frequent different areas (e.g., nearer the roads) in order to fulfil
their nutrient requirements [8,90,93].

5.3. Habitat Suitability with and without Field Data

Over small protected areas, field-based mapping provides essential information on
the dynamics of savannah vegetation structure and distribution. However, in larger areas,
techniques are time-consuming, expensive, and inefficient [94,95]. Earth Observation data
are increasingly used to identify and monitor habitat cover and its characteristics, and even
in the absence of ground data, they still provide important information [96–98]. Black rhinos
can survive in a wide range of habitats, including marsh areas, forests, and even deserts,
and browse availability is a driver of their distribution and habitat preference [20,56,99–101].
However, the highest densities of black rhinos occur in savannah areas and bushvelds,
mainly due to the higher availability of woody species [2]. Our results show that areas
with higher bushland cover, namely the Highland Forest reserve, NC rim, and between
Olmoti Crater and the NC, are the most suitable areas to sustain a black rhino population
(Figure 3(A2,B2)), in agreement with Figure 2(A2,B2). These areas have an abundance of
browse and are located away from human activities and, as seen in Figure 2A,B, removing
these from the model positively impacts habitat suitability (Figure 3A,B).

SDMs that integrate field-collected data with remotely sensed data have been shown
to improve model accuracy [102,103]. Using only remote sensing data often overpredicts
species distributions due to landscape-level similarities [102,103]. Accurate habitat suit-
ability mapping becomes increasingly important when considering endangered species
threatened by land degradation [29,33]. Within the NCA, when comparing the models
in areas like the Oldupai Gorge area and the Serengeti plains, the model with field data
(Figure 2A) shows results that are contrary to the model without field data (Figure 3A). The
Oldupai Gorge is classified as a suitable habitat as it comprises woodland and shrubland
cover (Figure 3(A1), Table 2). Additionally, areas such as the Serengeti plains, primarily
grasslands, appear unsuitable (white, Figure 3A) due to lower woody cover with little to
no feeding value for rhinos [7]. Grassland scored zero because black rhino diets comprise
woody plant species (Table 2, [7,9,10]). However, the NCA black rhino population is unique
in that, for safety reasons, they spend a significant amount of time on the Crater floor, which
is mostly grassland, feeding on herbs or sleeping [8,56]. Without field data, the Gorge and
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the Serengeti plains would have been misidentified, potentially posing significant threats to
the NCA’s long-term rhino population growth. To enhance the accuracy of our findings, it is
imperative to combine field data with remotely sensed data. Remote sensing heavily relies
on theoretical data that favour browse availability and often overlook crucial field variables
such as shelter locations. These locations may not necessarily offer the best browsing condi-
tions and may incorrectly be classified as unsuitable, despite their essential role in rhino
conservation. Therefore, integrating approaches that combine field data with remotely
sensed data ensures more precise and reliable results in habitat suitability assessments.

5.4. Limitations

Our study utilised remote sensing data in conjunction with field data to identify poten-
tial black rhino habitats within the NCA. While remote sensing provides extensive spatial
and temporal coverage, it has inherent limitations that must be acknowledged [104,105].
For instance, the spatial resolution may not be sufficient to detect smaller habitat patches
that are crucial for rhino conservation. The resolution of freely available remote sensing
data, such as Sentinel-2 (10 m), remains one of the main constraints. Other datasets, such as
Pléiades at 0.5 m (Airbus Defence and Space) or Satellite pour l’Observation de la Terre
(SPOT) at 1.5 m (European Space Agency), offer much higher resolution, but the costs
associated with acquiring these data are significantly higher.

Additionally, temporal resolution, or the frequency of data acquisition, both remote
sensing and field work, can affect the accuracy of habitat suitability models, especially in
dynamic environments wherein conditions change rapidly [106]. Our field season lasted
7 months, covering both wet and dry seasons, which is comprehensive but may still miss
certain temporal dynamics.

Integrating additional environmental layers, such as detailed soil data and precise
water availability metrics, into our SDMs may ensure a more comprehensive assessment
of habitat suitability by addressing factors beyond vegetation covers [106]. For instance,
black rhinos are water-dependent, and mapping water availability in the Ngorongoro
Conservation Area (NCA) is particularly challenging due to difficulties in distinguishing
between saltwater (e.g., Lake Magadi in the Ngorongoro Crater) and freshwater sources.
Having precise water availability data would be crucial for accurately identifying suitable
habitats for rhinos.

Lastly, this study is focused on the Ngorongoro Conservation Area, which may limit
the applicability of findings to other rhino habitats, and extrapolation to different regions
may require caution. However, our methods can be replicated in other locations, which
would provide more site-specific information.

6. Conclusions

Despite an increase in rhino numbers, there is emerging research that shows a decline
in the quality and quantity of browse in the NCA, and consequently a decrease in suitable
habitat for black rhinos [5,39,44]. If there is an increase in competition for resources, rhinos
may be driven out of the Crater to potentially dangerous areas; therefore, there is an urgent
need to identify suitable areas that can support an increasing black rhino population [5].
Approximately 36% of the NCA is suitable for black rhinos throughout the year (Figure 2A).
Currently, the rhinos are mostly located in the Ngorongoro Crater, but there are areas
outside the Crater that could potentially support future populations. Anthropological
factors impact habitat suitability, but this depends on the season (Figure 2A,B). During the
wet season, when the influence of human factors are reduced, habitat suitability increases
to 53.6% which agrees with previous research (Figure 2, [88,89]). However, in the dry
season, browse availability decreases and rhinos become less selective of areas where they
move to fulfil their nutritional requirements, with anthropological pressures becoming less
important (Figure 2, [88,89]).

Our study also identified areas that are consistently suitable throughout seasons and
not severely impacted by human factors, such as between the Olmoti and Ngorongoro
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Craters (Figure 2(A2,B2)). In recent decades, the area experienced a decrease in forest cover,
and increase in bushland and the vegetation has not been surveyed since the 1960s [43,44,56].
Since bushland is associated with browse availability, areas such between the Olmoti and
Ngorongoro Craters are likely to contain suitable browse. Contrastingly, the Oldupai Gorge
currently only supports suitable small patches (Figure 2(A1)), even though it housed a
large population of rhinos in the 1960s [8]. Land cover changes, namely encroachment and
spread of invasive species, seem to have decreased the suitability of the Gorge, but the
area should be studied further before being deemed unsuitable. Ultimately, areas that are
deemed suitable for rhinos require increased security and detailed vegetation surveys to
detect the presence or absence of the browse preferred by rhinos. Areas that are deemed
unsuitable should be surveyed more thoroughly, particularly if in the past they used to be
occupied by black rhinos.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16152855/s1, Figure S1: Current roads and settlements in the NCA;
Figure S2: Reduced roads (only tourist roads) and reduced settlements (only lodges and ranger
facilities and buffer areas near Karatu).
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and Random Forest Classification of Natura 2000 Grasslands in Lowland River Valleys of Poland Based on Airborne Hyperspectral
and LiDAR Data Fusion. Remote Sens. 2020, 12, 1842. [CrossRef]

54. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification Using Support Vector Machines. Mach.
Learn. 2002, 46, 389–422. [CrossRef]

55. Gadiye, D.; Eshiamwatta, G.W.; OdadiI, W.O. Spatial-Temporal Distribution of the Black Rhino Population in the Ngorongoro
Crater, Tanzania. Int. J. Biol. Res. 2016, 4, 232–236. [CrossRef]

56. Goddard, J. Food Preferences of Two Black Rhinoceros Populations. East Afr. Wildl. J. 1968, 6, 1–18. [CrossRef]
57. Adriaenssens, V.; Baets, B.D.; Goethals, P.L.M.; Pauw, N.D. Fuzzy Rule-Based Models for Decision Support in Ecosystem

Management. Sci. Total Environ. 2004, 319, 1–12. [CrossRef] [PubMed]
58. Gwynn, V.; Symeonakis, E. Rule-Based Habitat Suitability Modelling for the Reintroduction of the Grey Wolf (Canis Lupus) in

Scotland. PLoS ONE 2022, 17, e0265293. [CrossRef]
59. Pestka, Z.; Zbyryt, A.; Menderski, S.; Jakubas, D. Habitat Suitability Mapping of White Stork Ciconia Ciconia in One of Its Key

European Breeding Areas. Ecol. Indic. 2023, 151, 110278. [CrossRef]
60. Zabihi, K.; Paige, G.B.; Hild, A.L.; Miller, S.N.; Wuenschel, A.; Holloran, M.J. A Fuzzy Logic Approach to Analyse the Suitability

of Nesting Habitat for Greater Sage-Grouse in Western Wyoming. J. Spat. Sci. 2017, 62, 215–234. [CrossRef]
61. Qiu, F.; Chastain, B.; Zhou, Y.; Zhang, C.; Sridharan, H. Modeling Land Suitability/Capability Using Fuzzy Evaluation. GeoJournal

2014, 79, 167–182. [CrossRef]
62. Woodcock, C.E.; Gopal, S. Fuzzy Set Theory and Thematic Maps: Accuracy Assessment and Area Estimation. Int. J. Geogr. Inf. Sci.

2000, 14, 153–172. [CrossRef]
63. Frantz, D. FORCELandsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sens. 2019, 11, 1124. [CrossRef]
64. Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8,

127–150. [CrossRef]
65. Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS.

Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]
66. Liu, H.Q.; Huete, A. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise.

IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [CrossRef]
67. Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery.

Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]
68. Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens.

Environ. 1996, 58, 257–266. [CrossRef]

https://doi.org/10.3390/rs12010198
https://doi.org/10.1007/s10745-006-9031-3
https://doi.org/10.3390/rs12233862
https://doi.org/10.1002/rse2.277
https://doi.org/10.5897/IJBC2015.0837
https://doi.org/10.2174/1874923201003010015
https://doi.org/10.1111/j.1442-9993.2011.02249.x
https://doi.org/10.4102/koedoe.v56i1.1165
https://doi.org/10.1017/S0030605318000388
https://doi.org/10.1016/j.jag.2016.03.003
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/rs12111842
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.14419/ijbr.v4i2.6659
https://doi.org/10.1111/j.1365-2028.1968.tb00898.x
https://doi.org/10.1016/S0048-9697(03)00433-9
https://www.ncbi.nlm.nih.gov/pubmed/14967497
https://doi.org/10.1371/journal.pone.0265293
https://doi.org/10.1016/j.ecolind.2023.110278
https://doi.org/10.1080/14498596.2017.1292965
https://doi.org/10.1007/s10708-013-9503-0
https://doi.org/10.1080/136588100240895
https://doi.org/10.3390/rs11091124
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1109/TGRS.1995.8746027
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1016/S0034-4257(96)00067-3


Remote Sens. 2024, 16, 2855 16 of 17

69. Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.
Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground-Based Multispectral Data. In
Proceedings of the 5th International Conference on Precision Agriculture and Other Resource Management, Bloomington, MN,
USA, 16–19 July 2000.

70. Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of
Biophysical Variables in Vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [CrossRef]

71. Blackburn, G.A. Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral
Approaches. Remote Sens. Environ. 1998, 66, 273–285. [CrossRef]

72. Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI
and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [CrossRef]

73. Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-Band Model for Noninvasive Estimation of Chlorophyll, Carotenoids, and
Anthocyanin Contents in Higher Plant Leaves. Geophys. Res. Lett. 2006, 33, L1140. [CrossRef]

74. Dash, J.; Curran, P.J. The MERIS Terrestrial Chlorophyll Index. Int. J. Remote Sens. 2004, 25, 5403–5413. [CrossRef]
75. Richardson, A.J.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens.

1977; 43, 1541–1552.
76. Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration

from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [CrossRef]
77. Symeonakis, E.; Veron, S.; Baldi, G.; Banchero, S.; de Abelleyra, D.; Castellanos, G. Savannah Land Cover Characterisation: A

Quality Assessment Using Sentinel 1/2, Landsat, PALSAR and PlanetScope. In Proceedings of the Living Planet Symposium,
Milan, Italy, 7 January 2019.

78. Gadiye, D. Population Dynamics and Feeding Ecology of the Black Rhino (Diceros Bicornis) in Ngorongoro Conservation Area,
Tanzania. Master’s Thesis, Egerton University, Nakuru, Kenya, 2016.

79. Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample Selection Bias and Presence-Only
Distribution Models: Implications for Background and Pseudo-Absence Data. Ecol. Appl. 2009, 19, 181–197. [CrossRef] [PubMed]

80. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006,
190, 231–259. [CrossRef]

81. Li, X.J.; Cheng, X.W.; Chen, W.T.; Chen, G.; Liu, S.W. Identification of Forested Landslides Using LiDar Data, Object-Based Image
Analysis, and Machine Learning Algorithms. Remote Sens. 2015, 7, 9705–9726. [CrossRef]

82. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a
Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]

83. Symeonakis, E.; Higginbottom, T.P.; Petroulaki, K.; Rabe, A. Optimisation of Savannah Land Cover Characterisation with Optical
and SAR Data. Remote Sens. 2018, 10, 499. [CrossRef]

84. Higginbottom, T.P.; Symeonakis, E.; Meyer, H.; van der Linden, S. Mapping Fractional Woody Cover in Semi-Arid Savannahs
Using Multi-Seasonal Composites from Landsat Data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 88–102. [CrossRef]

85. Haro-Carrion, X.; Southworth, J. Understanding Land Cover Change in a Fragmented Forest Landscape in a Biodiversity Hotspot
of Coastal Ecuador. Remote Sens. 2018, 10, 1980. [CrossRef]

86. Makaure, J.; Makaure, C. Biological Sciences Department, Midlands State University Dry Season Browse Preference for the Black
Rhinoceros (Diceros Bicornis): The Case of the Midlands Black Rhino Conservancy (MBRC), Zimbabwe. Greener J. Biol. Sci. 2013, 3,
031–047. [CrossRef]

87. Oloo, T.W.; Brett, R.; Young, T.P. Seasonal Variation in Feeding Ecology of Black Rhinoceros (Diceros Bicornis) in Laikipia, Kenya.
Afr. J. Ecol. 1994, 32, 142–157. [CrossRef]

88. Baltensperger, A.P.; Joly, K. Using Seasonal Landscape Models to Predict Space Use and Migratory Patterns of an Arctic Ungulate.
Mov. Ecol. 2019, 7, 18. [CrossRef] [PubMed]

89. Van Moorter, B.; Engen, S.; Fryxell, J.M.; Panzacchi, M.; Nilsen, E.B.; Mysterud, A. Consequences of Barriers and Changing
Seasonality on Population Dynamics and Harvest of Migratory Ungulates. Theor. Ecol. 2020, 13, 595–605. [CrossRef]

90. Odendaal-Holmes, K.; Marshal, J.P.; Parrini, F. Disturbance and Habitat Factors in a Small Reserve: Space Use by Establishing
Black Rhinoceros (Diceros Bicornis). S. Afr. J. Wildl. Res. 2014, 44, 148–160. [CrossRef]

91. Hearn, M.E.; Loutit, B.D.; Uri-Khob, S. The Black Rhinoceros of North-Western Namibia (Diceros Bicornis Bicornis): The Role of
Density-Dependence and Its Management Implications. J.-Namib. Sci. Soc. 2000, 48, 11–39.

92. Mukinya, J.G. Feeding and Drinking Habits of the Black Rhinoceros in Masai Mara Game Reserve. Afr. J. Ecol. 1977, 15, 125–138.
[CrossRef]

93. Beytell, P.C. Reciprocal Impacts of Black Rhino and Community-Based Ecotourism in North-West Namibia. Master’s Thesis,
University of Stellenbosch, Stellenbosch, South Africa, 2010.

94. Eisfelder, C.; Kuenzer, C.; Dech, S. Derivation of Biomass Information for Semi-Arid Areas Using Remote-Sensing Data. Int. J.
Remote Sens. 2012, 33, 2937–2984. [CrossRef]

95. Yang, J.; Prince, S.D. Remote Sensing of Savanna Vegetation Changes in Eastern Zambia 1972–1989. Int. J. Remote Sens. 2000, 21,
301–322. [CrossRef]

96. Adole, T.; Dash, J.; Atkinson, P.M. A Systematic Review of Vegetation Phenology in Africa. Ecol. Inform. 2016, 34, 117–128.
[CrossRef]

https://doi.org/10.1016/j.isprsjprs.2013.04.007
https://doi.org/10.1016/S0034-4257(98)00059-5
https://doi.org/10.3390/s110707063
https://doi.org/10.1029/2006GL026457
https://doi.org/10.1080/0143116042000274015
https://doi.org/10.1016/S0034-4257(00)00113-9
https://doi.org/10.1890/07-2153.1
https://www.ncbi.nlm.nih.gov/pubmed/19323182
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.3390/rs70809705
https://doi.org/10.1016/j.isprsjprs.2011.11.002
https://doi.org/10.3390/rs10040499
https://doi.org/10.1016/j.isprsjprs.2018.02.010
https://doi.org/10.3390/rs10121980
https://doi.org/10.15580/GJBS.2013.1.112212285
https://doi.org/10.1111/j.1365-2028.1994.tb00565.x
https://doi.org/10.1186/s40462-019-0162-8
https://www.ncbi.nlm.nih.gov/pubmed/31183112
https://doi.org/10.1007/s12080-020-00471-w
https://doi.org/10.3957/056.044.0208
https://doi.org/10.1111/j.1365-2028.1977.tb00386.x
https://doi.org/10.1080/01431161.2011.620034
https://doi.org/10.1080/014311600210849
https://doi.org/10.1016/j.ecoinf.2016.05.004


Remote Sens. 2024, 16, 2855 17 of 17

97. Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.;
Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [CrossRef]

98. Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the Archive: How Free Data Has Enabled the
Science and Monitoring Promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [CrossRef]

99. Klingel, H.; Klingel, U. The Rhinoceroses of Ngorongoro Crater. Oryx 1966, 8, 302–306.
100. Kotze, D.C.; Zacharias, P.J.K. Utilization of Woody Browse and Habitat by the Black Rhino (Diceros Bicornis) in Western Itala

Game Reserve. Afr. J. Range Forage Sci. 1993, 10, 36–40. [CrossRef]
101. Leader-Williams, N. Conservation—Deserts Rhinos Dehorned. Nature 1989, 340, 599–600. [CrossRef]
102. Cord, A.; Rödder, D. Inclusion of Habitat Availability in Species Distribution Models through Multi-Temporal Remote-Sensing

Data? Ecol. Appl. 2011, 21, 3285–3298. [CrossRef]
103. Schwager, P.; Berg, C. Remote Sensing Variables Improve Species Distribution Models for Alpine Plant Species. Basic Appl. Ecol.

2021, 54, 1–13. [CrossRef]
104. Wang, Y.; Lu, Z.; Sheng, Y.; Zhou, Y. Remote Sensing Applications in Monitoring of Protected Areas. Remote Sens. 2020, 12, 1370.

[CrossRef]
105. Boyle, S.A.; Kennedy, C.M.; Torres, J.; Colman, K.; Pérez-Estigarribia, P.E.; de la Sancha, N.U. High-Resolution Satellite Imagery Is

an Important yet Underutilized Resource in Conservation Biology. PLoS ONE 2014, 9, e86908. [CrossRef]
106. Pennino, M.G.; Vilela, R.; Bellido, J.M. Effects of Environmental Data Temporal Resolution on the Performance of Species

Distribution Models. J. Mar. Syst. 2019, 189, 78–86. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1126/science.320.5879.1011a
https://doi.org/10.1016/j.rse.2012.01.010
https://doi.org/10.1080/10220119.1993.9638319
https://doi.org/10.1038/340599a0
https://doi.org/10.1890/11-0114.1
https://doi.org/10.1016/j.baae.2021.04.002
https://doi.org/10.3390/rs12091370
https://doi.org/10.1371/journal.pone.0086908
https://doi.org/10.1016/j.jmarsys.2018.10.001

	Introduction 
	Study Area 
	Datasets and Methods 
	Datasets 
	Sentinel-2 
	Planet Scope 
	Human Activity 
	Land Cover Layer 
	Rhino Presence Data 

	Methods 
	Recursive Feature Elimination 
	Fuzzy Analysis 


	Results 
	Habitat Suitability Using Field Data 
	Habitat Suitability without Field Data 

	Discussion 
	Seasonal Differences 
	Anthropogenic Factors 
	Habitat Suitability with and without Field Data 
	Limitations 

	Conclusions 
	References

