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The relative importance of the different processes that determine the distribution of 
species and the assembly of communities is a key question in ecology. The distribution 
of any individual species is affected by a wide range of environmental variables as well 
as through interactions with other species; the resulting distributions determine the 
pool of species available to form local communities at fine spatial scales. A challenge in 
community ecology is that these interactions (e.g. competition, facilitation, etc.) often 
are not directly measurable. Here, we used hierarchical modelling of species communi-
ties (HMSC), a recently developed framework for joint species distribution modelling, 
to estimate the role of biotic effects alongside environmental factors using latent vari-
ables. We investigate the role of these factors determining species distributions in com-
munities of Artiodactyla, Perissodactyla and Proboscidea in the Afrotropics, an area of 
peak species richness for hoofed mammals. We also calculate pairwise trait dissimilar-
ity between these species, from a mixture of morphological and behavioural traits, and 
investigate the relationship between dissimilarity and estimated residual co-occurrence 
in the model. We find that while ungulate distributions appear to be predominantly 
determined (~ 70%) by climatic variables, such as precipitation, a substantial propor-
tion of the variance in ungulate species distributions (~ 30%) can also be attributed 
to modelled latent variables that likely represent a combination of dispersal barriers 
and biotic factors. Although we find only a weak relationship between residual co-
occurrence and trait dissimilarity, we suggest that our results may show evidence that 
biotic factors, likely influenced by historical barriers to species dispersal, are important 
in determining species communities over a continental area. The HMSC framework 
can be used to provide insight into factors affecting community assembly at broad 
scales, and to make more powerful predictions about future species distributions as we 
enter an era of increasing impacts from anthropogenic change.
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Introduction

A central challenge in community ecology is understanding 
the factors that determine the assembly of species communi-
ties. A community, generally defined as the total assemblage 
of the species that co-occur at the same place at the same time 
(Krebs 2009), is determined by the individual distributions 
of the species that comprise it. The factors that influence 
community assembly are varied, including phylogeographic 
effects (such as speciation, extinction and dispersal), envi-
ronmental conditions and biotic interactions among species 
(Lawton 1999, Hubbell 2001, Vellend 2010, Stegen  et  al. 
2013). In community ecology, these effects are often viewed 
as a series of filters (Zobel 1997), with historical phylogeo-
graphic effects such as speciation and dispersal acting as the 
first filter to create a regional pool of species that are theo-
retically able to be part of a community. Local environmental 
conditions act as a second filter to further limit the regional 
pool to the subset of species that are adapted to an area’s cli-
matic or geophysical conditions. Finally, interactions among 
species, such as competition among ecologically similar spe-
cies or plant-pollinator mutualisms, can further affect com-
munity assembly by excluding species that would otherwise 
be able to persist given an area’s environmental conditions, 
or alternatively, by promoting their presence through facili-
tation. While these factors all influence community com-
position (Lortie et al. 2004, Sexton et al. 2009, Meier et al. 
2010), their relative importance is often unclear. 

The importance of biotic effects in determining species 
distributions has been a particular source of debate (Wiens 
2011, Pigot and Tobias 2013, Louthan  et  al. 2015). Not 
only is it unclear to what extent biotic effects might influ-
ence distributions, it is also unclear at what scale such effects 
might be predicted to act. Some suggest that biotic effects 
are typically likely to be significant only at highly local 
scales (i.e. < 10 km2) rather than on ecoregion or biome-
wide scales (i.e. >100 000 km2; Pearson and Dawson 2003, 
Soberón and Nakamura 2009). Others, however, stress the 
importance of biotic effects at broader spatial extents (i.e. > 
10 km2; Wisz et al. 2013). Empirical evidence remains incon-
clusive, with some studies suggesting weaker but still present 
biotic effects at broader spatial scales (Bullock  et  al. 2000, 
Belmaker  et  al. 2015, Staniczenko  et  al. 2017, Mod  et  al. 
2020, Cosentino et al. 2023), while others have suggested a 
key role for biotic effects in determining range limits, espe-
cially at lower latitudes (Sirén  et  al. 2021, Freeman  et  al. 
2022), with competition in particular highlighted as the 
most important biotic effect in determining community 
composition (Staniczenko et al. 2018). Understanding how 
and at what scales biotic factors affect species distributions 
and hence the assembly of species communities remains a key 
goal in community ecology.

Joint species distribution models (JSDMs) offer a prom-
ising approach to investigating questions about the relative 
importance of environmental and biotic factors in determin-
ing species distributions, by allowing the responses of mul-
tiple species to their environment and to each other to be 

modelled simultaneously (Ovaskainen  et  al. 2017). These 
models use commonly collected and readily available eco-
logical data, such as presence–absence data or count data. 
Although JSDMs are a powerful method for understanding 
species distributions, biotic effects can still only be inferred 
with the use of latent variables, rather than being directly mea-
sured (Warton et al. 2015). If competition plays a meaningful 
role in determining ungulate ranges, we would expect eco-
logically similar species to be less likely to occur together after 
controlling for the effect of the environment. Environmental 
filtering will overall lead to similar environments having spe-
cies with more similar traits (Sutton et al. 2021). However, 
by using a JSDM with a latent variable approach, we expect 
to control for the effect of environmental filtering. As species 
with more similar functional traits are more likely to show 
niche overlap and therefore competitively exclude each other, 
this should limit the overlap of distributions relative to that 
expected from environment alone (Hardin 1960, Abrams 
1983, Booth and Murray 2008). Therefore, as part of inves-
tigating the relative influence of biotic effects and abiotic 
effects on community composition, here, we assess the extent 
to which latent variables can be attributed to biotic effects by 
testing how residual associations they capture correlate with 
trait dissimilarity. 

We expect the residual associations between species 
(defined by the latent variables) to fall generally along bio-
geographic boundaries as outlined by Lorenzen et al. (2012). 
These boundaries will roughly reflect differences in commu-
nities due both to dispersal limitations imposed by geograph-
ical barriers and range limits due to biotic effects, therefore 
we predict that the model will reflect these after controlling 
for climate variables. Further, we predict that species with 
more similar traits are less likely to co-occur than would be 
expected from environmental conditions alone.

The Afrotropics are the most diverse region on Earth for 
ungulates (Du Toit and Cumming 1999) with close to 30 
species occurring in sympatry in areas of peak species rich-
ness (IUCN 2022). The importance of biotic factors among 
ungulate species in determining their distributions is unclear. 
There is often a high degree of dietary overlap between ungu-
late species, generally feeding on grass, browse and fruit. 
This overlap suggests potentially high levels of competition 
among ecologically similar species. However, African ungu-
lates show significant variation in morphology, both in body 
size, digestive system and dietary specialisation (i.e. browsing 
versus grazing), which may reduce interspecific competition 
(Veldhuis et al. 2019). Furthermore, in comparison to other 
mammalian clades, wild ungulates rarely exhibit direct inter-
specific interference (Ferretti and Mori 2020); although we 
note that this is not the only mechanism by which competi-
tion can occur. One reason for the relatively limited evidence 
of competitive interference in ungulates may be predation 
pressure favouring the evolution of mutualistic antipredator 
strategies, such as herding, rather than competitive behav-
iour (Sinclair 1985, Caro 2005). Other forms of facilitation 
between ungulate species may also promote co-existence 
and reduce competition. It is therefore unclear the extent 
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to which biotic effects will affect range limits in ungulates. 
Understanding all relevant factors is crucial for predicting 
the impact of future changes in ungulate distributions result-
ing from climate change and anthropogenic pressure. This is 
especially pertinent, given the multiple ungulate species in 
Africa that are of conservation concern. For example, 61% 
of the 90 species of antelope currently recognised by IUCN 
SSC Antelope Specialist Group have decreasing populations 
(IUCN SSC Antelope Specialist Group 2022). Furthermore, 
previous work has highlighted that already threatened ungu-
late species are likely to be disproportionately affected by 
climate change related range reductions (Payne and Bro-
Jørgensen 2016). Here, we use species range data collected 
from the IUCN Red List together with publicly available 
climate data to investigate the factors determining ungulate 
distributions and hence, ungulate community composition 
over a continental area using JSDMs.

Material and methods

Method framework

This study uses JSDMs to assess the factors that shape species 
distributions at a continental scale. JSDMs require data on 
species distributions to act as the dependent variable, either 
in the form of presence/absence or abundance data. At a 
broad spatial scale, the former is widely available for many 
vertebrate species through the species geographic range poly-
gons provided in the International Union for Conservation 
of Nature (IUCN) Red List (IUCN 2023). However, using 
IUCN range data places some limitations on this work. The 
IUCN range for a species indicates that the species likely 
occurs within these limits, but does not imply it is distrib-
uted evenly across that range or that it occurs at all points 
within it, and this is particularly problematic at finer spa-
tial scales (IUCN SSC Red List Technical Working Group 
2021). Previous studies have also suggested that the IUCN 
data may sometimes overestimate the extent of species ranges 
(Ramesh  et  al. 2017). Using IUCN range data also means 
that only presence/absence in species distributions can be 
considered and not abundance, which may vary substantially 
across a species’ range, particularly at range limits (Yancovitch 
Shalom et al. 2020). Both of these factors mean that nega-
tive associations among species may be underestimated due 
to lack of information on how competition among species 
impacts abundance and the finer-scale spatial segregation 
between species that may occur even if their ranges overlap at 
coarser scales. Because of this latter point, it is important to 
remember that positive co-occurrences discussed in this paper 
do not imply that species are necessarily co-occurring at finer 
resolutions than the one presented here. Despite these limita-
tions, we consider the IUCN range data to be the best source 
currently available for ungulate ranges in the Afrotropics as 
it is available for all species and all areas of the region, in 
contrast to other sources that are biased towards the Global 
North (e.g. global biodiversity information facility; GBIF).

Data collection

We included all ungulate species (orders Artiodactyla and 
Perissodactyla) that had at least some of their native range 
in continental Africa (n = 98). In addition to ungulates, we 
included both species of African elephant (Loxodonta cyclotis 
and Loxodonta africana) because, although not closely related 
to other species in the model, as mega-herbivores they are 
plausible candidates for competition with predominantly 
herbivorous ungulates (Ferry et al. 2016). Shapefiles for all 
species ranges (aside from the two African rhino species) were 
taken from the IUCN Red List (IUCN 2021), selecting only 
shapefiles for parts of the range where the species was both 
extant and native. For the rhino species, we used historical 
range maps produced by Rookmaaker and Antoine (2012), 
as the IUCN range maps for these species only show coun-
tries where these species are present rather than exact dis-
tributions due to risks from poachers. Regardless of source, 
these shapefiles were converted into a presence–absence 
matrix with a resolution of 10 arcminutes using the R pack-
age ‘letsR’ (Vilela and Villalobos 2015). To focus exclusively 
on the Afrotropics, we selected only points south of 15°N.

To control for the effect of human activities on ungulate 
distributions, we selected only points that fell within highly 
protected areas, reasoning that these areas were most likely to 
have ‘natural’ ungulate communities, with ungulate presence/
absence relatively unaffected by human activity. We down-
loaded shapefiles for African protected areas from the World 
Database on Protected Areas (WDPA; UNEP-WCMC and 
IUCN 2022). These were filtered to select only IUCN cat-
egory Ia (Strict Nature Reserve), Ib (Wilderness Area) and II 
(National Park) protected areas. Data on the IUCN category 
was not available for all protected areas in WDPA. Therefore, 
we also selected protected areas with the self-described des-
ignation ‘national park’. To further control for the effect of 
human influence, we used the FAO’s Global Land Cover-
SHARE database (Latham  et  al. 2014) to remove points 
where the dominant land cover was cropland or urban sur-
face, and removed points where land cover was not recorded 
or where the dominant cover was open water, i.e. lakes.

All bioclimatic variables used as fixed effects in the model 
were taken from WorldClim (Fick and Hijmans 2017). 
Previous work (Payne 2015) used a variable importance anal-
ysis on 30+ variables and found that the most important vari-
ables for use in predicting distributions of African antelope 
were hottest annual temperature, coldest annual temperature, 
mean annual temperature, range of temperature and log of 
mean annual precipitation. Because hottest annual tempera-
ture and coldest annual temperature both strongly correlate 
with mean annual temperature, for simplicity we selected this 
single variable. Likewise, within-year range in temperature 
correlates almost perfectly with mean diurnal range, hence 
we chose this latter variable. Additionally, we thought it 
important to capture variability with respect to precipitation, 
so we initially included both precipitation seasonality (coef-
ficient of variation), i.e. variation in precipitation from year 
to year, and precipitation range within a year (precipitation 
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of wettest quarter – precipitation of driest quarter). However, 
in our checks for multicollinearity the within-year precipita-
tion range had a high variance inflation factor, so this variable 
was removed from the analysis. The final variables used in the 
model therefore were mean annual temperature (°C), annual 
precipitation (mm), mean diurnal range (°C) and precipita-
tion seasonality (coefficient of variation; mm). We calculated 
the variance inflation factor for each of these variables; all 
were between 1 and 1.4, indicating no multicollinearity in 
the model.

At a simplified level, the Afrotropics can be divided into 
two broad vegetation zones, savannahs and tropical rainfor-
ests (Lorenzen et al. 2012), with the difference between the 
two largely determined by level of precipitation and wildfire 
(Staver  et  al. 2011). We reasoned that biotic interactions 
would be especially prominent in determining the distribu-
tion of species within a biome, rather than between biomes 
(as here the climatic differences between the highly different 
habitats would be expected to be pre-eminent in determin-
ing the distributions). Therefore, for the JSDMs, we fitted 
models for different Afrotropical biomes separately, fitting 
two models. One used only points from within the Tropical 
and Subtropical Moist Broadleaf Forests biome (hereaf-
ter, the tropical forests model), including 30 species, and 
one that contained all points not in this biome, covering a 
range of open and semi-open habitats (hereafter, the open 
habitats model), which included 57 species. We obtained 
data on biomes using shapefiles taken from the RESOLVE 
Ecoregions map (Dinerstein et al. 2017). 

We collected data on eight different traits for each spe-
cies: adult body mass (g), adult body length (m), percentage 
of diet consisting of fruit, percentage of diet consisting of 
dicots, percentage of diet consisting of monocots, whether 
diet showed geographic or seasonal variability (yes/no), the 
digestive system for each species (monogastric, ruminant or 
pseudoruminant) and lastly, whether the species was migra-
tory (yes/no). Trait data for body mass and body length were 
taken from COMBINE, a database of intrinsic and extrinsic 
mammalian traits (Soria et al. 2021). This database did not 
recognise the African forest elephant Loxodonta cyclotis as a 
distinct species from the African bush elephant (Loxodonta 
africana), so this species was excluded from dissimilarity anal-
yses (below). Data on diet for most species was taken from 
Gagnon and Chew (2000). From this paper, we recorded 
the proportion of fruit, dicotelydon plants, and monocoty-
ledon plants in the diets of all extant African Bovidae (aside 
from Caprinae), which made up the majority of species in 
our models. From this paper, we also recorded whether diet 
showed seasonal and/or geographic variability (a binary yes/
no). For species not covered by Gagnon and Chew (2000), 
i.e. all non-bovid species covered by the models, we estimated 
these variables with reference to Kingdon et al. (2013). For 
all species, we recorded the digestive system (monogastric, 
ruminant or pseudoruminant) using Kingdon et al. (2013). 
Finally, we recorded whether each species was migratory 
using Abraham  et  al. (2022), although we were only able 
to record data for 75 species in our dataset. Overall, for the 

open habitats model we were able to record complete trait 
data for 48 out of 57 species included in the model and for 
the tropical forests model, we had complete trait data for 24 
out of 30.

Analyses

All analyses used R ver. 4.1.1 (www.r-project.org). All 
data used is available on Dryad (Cranston et al. 2024). All 
code used is available at https://zenodo.org/doi/10.5281/
zenodo.12739431. The core analyses in HMSC (below) were 
conducted using a modified version of the HMSC pipeline 
made publicly available by the package authors and avail-
able at www.helsinki.fi/en/researchgroups/statistical-ecology/
software/hmsc.

Joint species distribution models

We used joint species distribution models (JSDMs) to evalu-
ate the relative impact of biotic and abiotic factors on ungulate 
species distributions, specifically using the hierarchical model-
ling of species communities (HMSC; Ovaskainen et al. 2017) 
approach. We chose HMSC due to its relative ease of use and 
excellent predictive power in comparison to other compara-
ble methods (Norberg et al. 2019). An overview of the basic 
workflow and key outputs from HMSC is presented in Fig. 1, 
but to summarise HMSC uses generalised linear mixed mod-
els (GLMMs), fitted using Bayesian inference, where latent 
variables are estimated by HMSC to explain the residual vari-
ation in species’ occurrences, i.e. the variation not explained 
by the fixed effects of the model (Tikhonov  et  al. 2020). 
Typically, these fixed effects are directly measurable environ-
mental variables, while the latent variables may estimate vari-
ables that are difficult or impossible to measure directly, such 
as biotic factors like competition or facilitation among spe-
cies. However, it is important to note that these latent factors 
may also capture unexplained environmental variation and 
it is not possible to interpret them as representing a specific 
variable with 100% confidence. Mathematically, these latent 
factors consist of two parameters, η (eta), and λ (lambda). 
Eta is the spatially explicit part of the latent variable with a 
different value at each site in the model; it is mathematically 
equivalent to the values of the various fixed effects provided 
to the model, in that each sample site has its own value of 
eta and this value varies over space. It is best interpreted as 
reflecting differences in species communities after controlling 
for the fixed effects. Lambda is the response of the species 
to the random effect; it is mathematically equivalent to the 
response of the species to the various fixed effects provided to 
the model. Species with more similar values of lambda will 
have higher residual association, i.e. they will associate more 
than expected given the fixed effects alone. HMSC derives 
an additional parameter, 𝝮 (omega), by comparing pairwise 
values of lambda between species to give a value for residual 
species association. Alongside these parameters, HMSC also 
estimates a final parameter, β (beta), which describes the 
response of each species to each fixed effect.

www.r-project.org
https://zenodo.org/doi/10.5281/zenodo.12739431
https://zenodo.org/doi/10.5281/zenodo.12739431
www.helsinki.fi/en/researchgroups/statistical-ecology/software/hmsc
www.helsinki.fi/en/researchgroups/statistical-ecology/software/hmsc
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Using HMSC, we fitted a probit model to estimate the 
probability of presence for each species at each point in our 
dataset. Each model used a random sample of 300 points for 
each model from our overall dataset to make running the 
models computationally feasible. HMSC has lower accu-
racy in explaining the distribution of very rare species and 
including such species can increase computational times and 
complicates MCMC convergence (Ovaskainen and Abrego 
2020). Therefore, for each model, we included only spe-
cies that occurred in at least 2.5% of sites in the sample of 
data used. After removing species with low prevalence, we 
noted that for the tropical forests model, 24 species typi-
cally regarded as savannah or open habitat specialists, were 
still included in the model, e.g. common eland Tragelaphus 
oryx and plains zebra (Equus quagga; see the Supporting 
information for full species list). To a lesser extent, the same 
problem occurred for the open habitats model with inclu-
sion of closed forest specialists, albeit with a much smaller 
number of species (n = 4). Inspection of maps revealed that 
this was probably due to the spatial resolution of both the 
IUCN and RESOLVE Ecoregions map which – combined 
with a degree of error at range/biome boundaries due to their 
broadscale nature – led to an artefactual degree of overlap 
of these savannah species’ ranges with the tropical and sub-
tropical moist broadleaf forests biome in the boundary area 
between open and closed habitats, and vice versa for the 
tropical forest species. Therefore, we manually removed all 
species regarded as inhabitants of savannahs rather than for-
ests, based on Kingdon et al. (2013), from the tropical forest 
model (n = 24), and removed four closed canopy specialists 
from the open habitats model (retaining those considered 
to inhabit the forest–savannah ecotone), again consulting 
Kingdon et al. (2013). We opted not to increase the prevalence 
threshold, as setting this threshold any higher in an effort to 

remove all unwanted species would lead to also removing spe-
cies of interest, such as Jentink’s duiker Cephalophus jentinki 
and zebra duiker Cephalophus zebra, which have very limited 
ranges. For a full list of species removed from both models, 
please see the Supporting information.

In addition to our fixed effects (mean annual tempera-
ture, annual precipitation, mean diurnal range and pre-
cipitation seasonality), we used HMSC’s ability to estimate 
spatially explicit latent variables in the random effect part 
of the model to model the residual associations between 
ungulate species. HMSC uses a Markov chain Monte Carlo 
(MCMC) approach to sample the posterior distribution for 
each parameter estimated by the model. For our models, we 
used four chains, and each was run for 37 500 iterations. 
We discarded the first 12 500 iterations as burn-in and then 
thinned by 100 to yield 250 posterior samples for each chain. 
We checked MCMC convergence for each model using 
a potential scale reduction factor. In each model for each 
parameter inspected, the maximum value of this factor was 
close to 1 and MCMC convergence was satisfactory, with the 
sole exception of the omega parameter in the tropical forests 
model, where the maximum potential scale reduction factor 
was 3.054, indicating these parameter estimates representing 
residual species associations may be less reliable than other 
parameters that we consider here. However, as our models 
were already taking around 100 h to run, a longer run time to 
achieve full convergence was unfeasible in the time available.

We evaluated model fit for each species in the model using 
root mean squared error (RMSE), and Tjur’s R2. After run-
ning the models, we estimated the relative importance of 
environmental versus biotic factors in determining species 
distributions by partitioning the variance explained by each 
of the fixed effects and the latent variables. We also examined 
the residual associations among ungulate species captured 

Figure 1. A general overview of our workflow in HMSC with all relevant inputs and outputs. Presence–absence data derived from the 
IUCN species range maps act as the dependent variables. Climatic variables sourced from WorldClim (annual mean temperature, annual 
precipitation, mean diurnal range, and precipitation seasonality) act as our independent variables (fixed effects). HMSC then fits the model, 
estimating values for all parameters using MCMC sampling, and crucially, estimating the latent variables that make up the random effect 
part of the model. The key outputs of HMSC for our purposes in this study are: β, or beta, the set of parameters estimating the response of 
each species to each fixed effect; η, or eta, the spatially explicit part of the latent variable or random effect, with a different value at each site 
in the model, λ, or lambda, the set of parameters estimating the response of each species to each random effect; Ω, or omega, the residual 
species associations, i.e. the predicted association between species after controlling for the fixed effects (this is derived directly from lambda).
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by the latent variables, plotting these as a correlation matrix 
using the gplots package (Warnes et al. 2005), with positive 
values indicating a higher degree of co-occurrence than would 
be expected from environmental conditions alone (and vice 
versa), with only values with over 95% support considered 
statistically significant. 

Trait dissimilarity analysis

We calculated pairwise dissimilarity in our chosen traits 
between species using Gower’s distance (Gower 1971), 
implemented in R using the package gower (van der Loo 
2022). Gower’s distance gives a value of 1 for species that 
had maximally dissimilar traits and 0 for species where the 
traits were identical. We then ran a linear regression of omega 
values, estimated by HMSC, against these Gower distance 
values. As omega values are pairwise estimates of the residual 
association between species (i.e. the extent to which spe-
cies are expected to co-occur after controlling for the fixed 
effects), with higher values of omega indicating higher asso-
ciation, a positive association would support our hypothesis 
that more dissimilar species were more likely to associate with 
each other. For this analysis we excluded omega values with 
less than 95% support.

Results

Joint species distribution models

The explanatory and predictive power of both models was rela-
tively high (explanatory power: open habitats: RMSE = 0.19, 
mean Tjur’s R2 = 0.65; tropical forests: RMSE = 0.12, mean 
Tjur’s R2 = 0.80; predictive power: open habitats model: 
mean Tjur’s R2 = 0.54; tropical forests model: mean Tjur’s 
R2 = 0.66) although this varied significantly across species; 
for example, in the open habitats model, Tjur’s R2 for the 
explanatory power ranged from 0.22 for the lechwe Kobus 
leche to 0.95 for the East African oryx Oryx beisa. There was 
no relationship between extent of occupancy and Tjur’s R2 
for the explanatory power in either model (open habitats: R2 

= 0.0001, F1,55 = 0.008, p = 0.93; tropical forests: R2 = 0.018, 
F1,28 = 0.50, p = 0.48). 

In both models, the majority of the explained variance was 
attributable to the climatic fixed effects. In the open habitats 
model, 71% was explained by the climate factors versus 29% 
by spatial random effects, while in the tropical forests model, 
the proportion was 70–30%. Again, in both models there was a 
great deal of variation across species, with some species in some 
models having the majority of their explained variance attrib-
uted to the spatial random effects. For example, the impala 
Aepyceros melampus in the open habitats model and Peters’s 
duiker Cephalophus callipygus in the tropical forests model have 
86 and 72% respectively of their explained variance attribut-
able to the spatial random effects (Supporting information)

The residual associations among species were plotted in a 
correlation plot for both models (Fig. 2–3). These plots were 
arranged using hierarchical clustering, with more similar rows 
and columns (each one representing a species in the model) 

grouped together. This helped us identify patterns in the data 
as species with more similar associations group together in 
the plot. The dendrogram at the top and left of the plot shows 
this hierarchical clustering, although we note that our inter-
pretation of the number of clusters is based on our biological 
interpretation of the plots rather than any formal analysis of 
the optimal number of clusters, i.e. k-means clustering. 

The open habitats model (Fig. 2) had four clusters (plus 
six species that did not appear to belong to any cluster). 
Working through the clusters from the bottom left to top 
right of the plot, the first cluster (A) consisted largely of spe-
cies with most of their distribution occurring in West Africa 
and across the Sudanian savannah belt, such as the kob Kobus 
kob, giant eland Tragelaphus derbianus and the red-flanked 
duiker Cephalophus rufilatus. The second (B) consisted largely 
of species with most of their distribution occurring in arid 
regions of the Horn of Africa (Ethiopia, Somalia, north-east 
Kenya), such as Günther’s dik-dik Madoqua guentheri, lesser 
kudu Tragelaphus imberbis and East African oryx Oryx beisa. 
The third (C) consisted largely of species with their distribu-
tion in southern African savannahs, such as the puku Kobus 
vardoni and southern reedbuck Redunca arundinum, but also 
including some with a more widespread distribution such as 
the roan antelope Hippotragus equinus. Finally, the fourth (D) 
was made up primarily of species with their distribution in 
eastern, and most also extending into southern, African savan-
nahs, including the Kirk’s dikdik Madoqua kirki, Thomson’s 
gazelle Eudorcas thomsoni and Grant’s gazelle Nanger granti. 
We note that despite these general patterns, some of the spe-
cies in clusters A, B, C and D showed positive associations 
with each other – we attribute this to the fact that, although 
these clusters were made of species with most or all of their 
ranges in the discrete parts of the biome, they also contained 
species with more widespread distributions such as the com-
mon duiker Sylvicapra grimmia and the giraffe Giraffa camel-
opardalis that may drive these associations. 

In the tropical forests model (Fig. 3) there were four clus-
ters (plus nine species that did not appear to cluster with any 
other). The first cluster (A) consisted largely of species with 
a significant part of their distribution in the Guinean forests 
of West Africa, such as Jentink’s duiker Cephalophus jentinki, 
royal antelope Neotragus pygmaeus and Maxwell’s duiker 
Philantomba maxwellii. The second (B) consisted largely of 
species with the bulk of their distribution in the East African 
montane or coastal tropical forests, such as Harvey’s duiker 
Cephalophus harveyi, suni Nesotragus moschatus and red for-
est duiker Cephalophus natalensis. The third and fourth clus-
ters (C and D) consisted largely of species with a significant 
part of their distribution occurring in the Congolian rain-
forest region, such as Peters’s duiker Cephalophus callipy-
gus, white-bellied duiker Cephalophus leucogaster and Bates’ 
pygmy antelope Nesotragus batesi. We also note that many of 
the species in these last two clusters showed positive associa-
tions with each other. It is worth restating at this point that 
these residual associations correlation plots are based on the 
omega parameter estimated by HMSC and, in the case of this 
model, the maximum potential scale reduction factor for this 
parameter was well above the ideal value of 1, indicating the 
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MCMC chains had not fully converged so these estimates 
should be interpreted cautiously.

We plotted the eta values of the latent variables at each 
point in the model (Fig. 4–5), with Kriging interpolation to 
more easily visualise gradients over the entire biome. Each 
model estimated a total of five latent variables to explain the 
residual variation in species occupancy; however, in the open 
habitats model, only the first two latent variables made a 
substantial contribution to the model, while in the tropical 
forests model, only the first one did. Therefore, only these 
variables are discussed here.

In the open habitats model, the first latent variable 
(Fig. 4A) shows that the main axis of difference was between 
the west/central African and the southern/eastern African 
savannahs. The second latent variable (Fig. 4B) shows the 
secondary axis of difference as between the Horn of Africa 
and the rest of the biome. Additionally, in both variables, 
the Namib Desert in southwest Africa appears to stand out 
as distinct from the rest of southern Africa. Taken together, 
this suggests that these four regions (West African savannahs, 
Horn of Africa, eastern/southern African savannahs and the 
Namib) all have differences in ungulate community composi-
tion not explained by climate effects alone.

In the tropical forests model, the first latent variable 
(Fig. 5) shows that the main axis of difference was between 
the Congolian rainforests areas and the western Guinean 
rainforest, while the East African coastal and montane rain-
forests had no clear pattern. Overall, this suggests that these 
two regions (Congolian rainforests and western Guinean for-
ests) have differences in ungulate community composition 
not explained by climate effects alone, with differences also 
existing between parts of the East African coastal and mon-
tane rainforests and Congolian rainforests.

Trait dissimilarity analysis

There was a very weak but significant negative relation-
ship between pairwise trait dissimilarity (measured using 
Gower’s distance) and residual association (measured using 
the omega parameter estimated in HMSC) in the open 
habitats model (R2 = 0.018, F1,843 = 15.78, p < 0.001), sug-
gesting that, contrary to our hypothesis, more dissimilar 
species were less likely to co-occur with each other, albeit 
only marginally so. In the tropical forests model, there 
was no significant relationship (R2 < 0.001, F1,115 = 0.007, 
p = 0.93).

Figure 2. Correlation plots showing residual associations between species in the open habitats model. Red indicates that the residual associa-
tion between two species is significant and positive, i.e. species are more likely to co-occur than would be expected from the environmental 
factors included as fixed effects in the model. Blue indicates the reverse, i.e., species are less likely to co-occur than would be expected from 
the environmental factors included as fixed effects in the model. Only significant values are shown, white indicates non-significant values. 
The dendrograms on the top and left axes show clustering of species with similar values, i.e. species that are broadly associated with each 
other. Clusters have been labelled from left to right/bottom to top and separated with dashed lines for visual clarity. Note that six species in 
the centre of the graph do not cluster with any other and so are not labelled as a cluster.
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Discussion

Our results indicate that while climate is the primary deter-
minant of ungulate distribution in the Afrotropics (after con-
trolling for the influence of human activity), it is not the only 
important factor with the latent variables revealing signifi-
cant differences in ungulate community composition even 
after controlling for climatic conditions, with around 30% 
of all explained variance attributable to these latent effects. 
Contrary to our expectations, however, trait dissimilarity did 
not correlate positively with the residual variation. In fact, 
in the open habitat model a very weak negative association 
was found, with more dissimilar species being marginally less 
likely to be significantly associated after controlling for the 
environment; however, this association was so weak that it 
is unlikely to be biologically meaningful and may be statis-
tically significant simply due to our high sample size. The 
tropical forests model showed no significant relationship. 

This study uses HMSC to estimate the proportion by 
which species distributions are determined by climate (mod-
elled by the fixed effects) versus other factors such as biotic 
interactions (modelled by the latent variables). We find that, 
consistent with other recent studies (Cosentino et al. 2023), 
there is evidence for a substantial role for non-climatic factors 

in determining species distributions at broad as well as fine-
scale spatial extents. However, we note two important caveats 
in our estimate. Firstly, the exact values of these estimated pro-
portions will be influenced by the extent over which one con-
siders the species ranges. Here, we have considered the tropical 
forest and open habitat biomes in two separate models, and 
this has likely influenced the relative influence of these factors 
in our results, as the influence of climate on species distribu-
tions is likely to be different than if we had combined these 
areas in a single model. Secondly, as mentioned previously, the 
interpretation of these latent variables as representing biotic 
factors alone is not straightforward, as they may represent 
unexplained environmental variation. In the remainder of this 
paper, we will discuss the results of the latent variables in more 
detail and propose how they might best be interpreted. 

HMSC successfully detects biogeographic patterns

Our results show geographical differences between ungulate 
communities across the Afrotropics beyond that predicted 
from climatic differences. In the tropical forests model, more 
significant differences exist between ungulate communities in 
the Congolian rainforests and the western Guinean and parts 
of the eastern African montane and coastal rainforests than 
would be expected from the climatic fixed effects alone. This 

Figure 3. Correlation plots showing residual associations between species in the tropical forests model. Red indicates that the residual asso-
ciation between two species is significant and positive, i.e. species are more likely to co-occur than would be expected from the environmen-
tal factors included as fixed effects in the model. Blue indicates the reverse, i.e. species are less likely to co-occur than would be expected 
from the environmental factors included as fixed effects in the model. Only significant values are shown, white indicates non-significant 
values. The dendrograms on the top and left axes show clustering of species with similar values, i.e., species that are broadly associated with 
each other. Clusters have been labelled from left to right/bottom to top and separated with dashed lines for visual clarity.
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result was not unexpected as the African tropical rainforest 
biome is non-contiguous, with the areas of tropical grassland 
potentially acting as barriers between areas of rainforest, such 
as the Dahomey Gap between the western Guinean region 
and the Congolian region (Salzmann and Hoelzmann 2005). 
It is likely that the latent variables in our model are capturing 
these barriers to dispersal that result in differences in com-
munity composition even after controlling for climate. These 
barriers have not been stable over evolutionary history; pol-
len records indicate that the Dahomey Gap, for example, has 
fluctuated in size over the last 150 000 years, including disap-
pearing completely during periods of maximum forest expan-
sion (Dupont and Weinelt 1996). Furthermore, multiple lines 
of evidence suggest expansion of open savannah grasslands, 
and corresponding contraction of wooded habitats, in East 
Africa over the last 10 million years (Cerling et al. 1997, 2011, 
Bobe et al. 2002, Uno et al. 2016). These fluctuations in for-
est cover, and the expansion and contraction of barriers of 

unsuitable habitat, have likely led to some community dif-
ferences between regions while still allowing some admix-
ture, with species such as the bay duiker Cephalophus dorsalis 
distributed across both the Congolian and Guinean forests. 
Genetic differentiation in other taxa, such as coffee Coffea 
canephora (Gomez et al. 2009, Labouisse et al. 2020), supports 
the idea that the Dahomey Gap acts as a biogeographic barrier 
to dispersal and gene flow. Similar differentiation can be seen 
in primates between populations in Congolian forests and in 
Kenyan and Tanzanian coastal rainforests (McDonald  et  al. 
2022).

Historical biogeographic barriers may offer a similar 
explanation for the results seen in our open habitats model. 
Correlation plots and the site loadings from the latent vari-
ables suggest differences in community composition between 
West African savannahs and East Africa, and differences 
between the Horn of Africa and the rest of the continent. 
The Great Rift Valley lies perpendicular to the main gradi-
ent in the first latent variable from the open habitats model 
(Fig. 4). The Great Rift Valley acts as both a topographical 
and climatic barrier for some highland specialist species in 
Ethiopia (Evans et al. 2011, Freilich et al. 2016) and a mos-
quito species in Kenya (Lehmann et al. 1999). However, the 
extent to which it has posed a barrier to ungulate populations 
over evolutionary history requires more research. 

In addition to the Great Rift Valley, historical vegeta-
tion barriers may explain the results seen in this model. As 
described above, extent of tropical forests in sub-Saharan 
Africa has fluctuated significantly, with alternating periods 
of relative dryness and relatively high precipitation (Dupont 
2011), with climate modelling suggesting that in wet peri-
ods, tropical forest may have expanded to cover most of cen-
tral Africa in a continuous belt from the west to east coasts 
(Cowling et al. 2008). This would have prevented species dis-
persal between remaining areas of savannah habitat in West 
Africa and the Horn of Africa with savannah habitats in south-
ern Africa. Additionally, there is fossil evidence from sites in 
East Africa indicating dry phases with expanded grassy cover 
relative to modern conditions, indicating considerable flux 
in this region over recent geological time (Faith et al. 2020).

The boundary between these regions of differing community 
structure in the open habitats model appears to match closely 
the proposed boundaries between Sudanian, Somalian and 
Zambesian biogeographic regions proposed by Linder  et  al. 
(2012; see their Fig. 2). As well as representing boundaries 
between areas with distinct ungulate community composi-
tion, these boundaries reflect genetic differences within species 
that range across these zones which have been shown to have 
genetic differentiation between populations in West Africa and 
South/East Africa, e.g. the common warthog Phacochoerus afri-
canus (Lorenzen et al. 2012). Similar genetic differentiation is 
seen in savannah species other than ungulates, such as ostriches 
(Miller et al. 2011) and lions (Barnett et al. 2006). 

Do biotic effects influence ungulate communities?

Taking the above context into account, we conclude the 
latent variables estimated by HMSC are likely capturing a 

Figure 4. The site loadings values, or eta parameter, of the first (A), 
second (B) latent variable from the open habitats model for all 
points in the model interpolated across the Afrotropics (excluding 
tropical forests) using Kriging interpolation. These site loadings 
show differences in ungulate communities after controlling for cli-
mate differences included in the fixed effects of the model. Areas 
with positive values have more different communities compared to 
areas with negative values than expected for climate alone. Sample 
sites in the model are shown by the hollow circles. Areas in black 
indicate areas belonging to the moist tropical forest biome which 
were not included in this model and hence not interpolated over. 
Site loadings values plotted without interpolation, are in the supple-
mentary materials (Supporting information).



Page 10 of 13

combination of dispersal limitations due to present-day bio-
geographic boundaries and biotic effects. Under this inter-
pretation, historically these barriers will have prevented 
population movement and gene flow between areas of con-
tiguous suitable habitat. This would enable genetic differ-
entiation and allopatric speciation. In the present day, these 
biogeographic barriers have partially disappeared (in the case 
of the savannah habitats covered by the open habitats model) 
but our model suggests that differences in community are 
maintained by differences in climate and by a combination 
of biotic effects and dispersal limitations. It is important to 
reiterate that the latent variables cannot be attributed auto-
matically to either biotic effects or dispersal limitations as 
they estimate all variation not explained by the fixed effects 
in the model. Therefore, they could equally represent unex-
plained environmental variation not captured by the fixed 
effects. Indeed, if the latent variables partly capture unex-
plained environmental variation, this could explain some of 
our findings.

Firstly, it may explain the distinctness of western Namibia 
from the rest of southern Africa in Fig. 4A– B. This region 
has a very different environment to the rest of southern 
Africa and accordingly has a different ungulate community. 
Ideally, the climatic variables we have chosen should con-
trol for the abiotic factors that influence communities, but 
they are unlikely to do so perfectly. Specifically, climate dif-
ferences alone may not fully account for the environmental 
differences between the Namib Desert in western Namibia, 
dominated by sand dunes, with the arid environments of the 
Kalahari that covers much of the rest of south-west Africa. 
We speculate that this is why this region appears distinct and 
may provide a good example of why latent variables must not 

be treated as straightforwardly representing biotic factors (or 
any other one single variable).

Second, if the latent variables represent environmental 
variables not included as fixed effects, it may also explain the 
weak association between residual association and ecological 
trait similarity (rather than dissimilarity) in the open habi-
tats model. In this case, we would expect that latent variables 
align with environmental filtering, leading to a positive asso-
ciation with trait similarity.

All in all, we conclude that – apart from capturing any 
environmental effects not explicitly modelled – the latent 
variables in this study most likely reflect dispersal limita-
tions rather than biotic interactions because we did not find 
any evidence of a negative association between trait similar-
ity and residual association (i.e. after controlling for climatic 
effects). A major role for dispersal limitations in the tropical 
forests model in particular would make sense, as the areas of 
moist tropical forest are highly fragmented in the Afrotropics 
whereas open habitats are broadly contiguous, with limited 
evidence existing for the effect of potential barriers such as 
the Great Rift Valley on ungulate dispersal. 

An alternative explanation for the unexpected relationship 
between residual association and similarity may be a func-
tion of how HMSC estimates values for residual association. 
HMSC does not estimate the residual association between 
each individual species pair, as in large species communities, 
this would lead to a prohibitively large number of parameters 
requiring estimation. Instead, HMSC uses latent variables 
which model residual associations for all species pairs simul-
taneously, effectively summarising the main axes of residual 
variation. This greatly reduces the number of parameters 
that need to be estimated but it introduces the limitation 

Figure 5. The site loadings values, or eta parameter, of the first latent variable from the tropical forests model for all points in the model 
interpolated across the entire moist tropical forest biome in the Afrotropics, using Kriging interpolation. These site loadings show differ-
ences in ungulate communities after controlling for climate differences included in the fixed effects of the model. Areas with positive values 
have more different communities compared to areas with negative values than expected for climate alone. Sample sites from the model used 
to produce this interpolation are shown by the hollow circles; note that to successfully interpolate, these points required thinning as some 
were very close together and therefore only 74 of the 300 used in the JSDM were used for Kriging interpolation. Areas in black indicate 
areas that do not belong to the moist tropical forest biome which were not included in this model and hence were not interpolated over. 
Site loadings values plotted without interpolation are in the supplementary materials (Supporting information).
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of necessarily simplifying the covariance matrix between all 
species in the model (Warton  et  al. 2015). This reduction 
in the number of parameters may introduce bias into the 
estimates of covariance between species by unintentionally 
forcing spurious associations between species whilst trying to 
approximate the overall structure of associations with fewer 
parameters than there are species pairs (Pichler and Hartig 
2021). In certain cases, this leads to clustering of species that 
may show limited co-occurrence in reality, which in turn 
will introduce noise that may explain why the relationships 
between association and similarity are so weak and not in 
the direction we predicted. For example, in both models, we 
see species with little or no overlap in their ranges, such as 
the mountain zebra Equus zebra and lesser kudu Tragelaphus 
imberbis in the open habitats model (found in the south-
west of Africa and in the Horn of Africa respectively), have 
a high omega value, indicating higher than expected residual 
association, despite no actual association in the data. This is 
because the residual association in these models are domi-
nated by a small number of latent variables; the first shows 
a gradient between west African savannahs and the majority 
of the rest of the biome (Fig. 5), effectively inducing residual 
associations among species that do not fall within either of 
these two regions, even if they have very different ranges. 

Conclusions

We found that climatic conditions were the primary driver 
of community assembly in Afrotropical ungulate communi-
ties, while dispersal and biotic effects (as interpreted from the 
latent variables estimated by HMSC) played a secondary role. 
These latter effects led to differences in community struc-
ture that closely match the conclusions of previous studies 
around the phylogeographic structure of African ungulates 
(Lorenzen et al. 2012). HMSC can identify ecoregions char-
acterised by more similar species communities than would be 
expected from the environment alone. In addition to offer-
ing an insight into the factors determining ungulate com-
munity composition, joint species distribution models such 
as the one presented here may be used to predict how those 
communities are likely to respond to anthropogenic climate 
change. HMSC compares very favourably both to SDMs and 
other joint species distribution models in terms of predictive 
power (Norberg et al. 2019). Moreover, our results show that 
the performance of both the tropical forests model and the 
open habitats model is relatively high in terms of explanatory 
and predictive power. The latent variable approach imple-
mented in HMSC therefore offers potential insights into fac-
tors affecting community assembly and exciting possibilities 
for making more powerful predictions about future distribu-
tions than we can from climatic effects alone. This is crucial at 
a time when anthropogenic effects are increasingly threaten-
ing ungulate populations across the African continent.
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