
   

 

 

Buynevich, I.V., 2024. Tracking the largest land mammal: paleoichnological 

assessment, pedobarometry, and discovery potential of the Tertiary rhinoceros 

(Paraceratheriidae) footprints. Science and Society: Modern Trends in a 

Changing World, Proceedings of the 8th International Scientific and Practical 

Conference. MDPC Publishing, Vienna, Austria, 82-87. 

 

 

TRACKING THE LARGEST LAND MAMMAL: PALEOICHNOLOGICAL 

ASSESSMENT, PEDOBAROMETRY, AND DISCOVERY POTENTIAL OF THE 

TERTIARY RHINOCEROS (PARACERATHERIIDAE) FOOTPRINTS 

 

Buynevich Ilya Val 

PhD, Associate Professor 

Temple University, Philadelphia, USA 

 

Introduction: Vertebrate traces 

comprise a rich archive of behavioral and 

paleo-environmental information [1]. To 

date, no conclusive evidence exists of the 

footprints of the largest terrestrial 

mammal – the extinct Oligocene 

rhinoceros (Fig. 1A)[2]. These 

herbivores, previously known as 

indricotheres and baluchitheres, have 

been recently combined into a large 

family of paraceratheriids 

(Perissodactyla, Paraceratheriidae, 

Paraceratherium sp., Forster-Cooper, 

1911) [3-7]. They left a rich skeletal 

record, from crania to limb bones (some 

preserved as upright individuals were 

buried in situ) that have been described by 

early paleontologists [4-6], including the 

pioneer of taphonomy I.A. Efremov [8]. 

 

Despite much interest and 

ongoing research [3,7], the lack of 

photographic evidence or field 

description of paraceratheriid footprints is 

noteworthy [2]. Such information will add 

an important aspect to the paleoecological 

and paleoenvironmental context of these 

mammals. This paper proposes the 

general appearance and dimensions of 

potential footprints (paleoichnology), 

estimates the loading pressure based on 

the allometry of modern rhinocerotoids 

(pedobarometry), and assesses the 

preservation (taphonomy) and recognition 

(discovery) potential of paraceratheriid 

traces in Tertiary sedimentary formations. 
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Figure 1. Paraceratherium sp.: A) Some artistic 

reconstructions depict tracks with raised rims (image 

source: primeval.forumieren.de); B) Distribution of 

skeletal remains [7].   

 

Methodology: Considerations of 

footprint type, dimensions, and discovery 

potential are synthesized according to 

known paleontological research [4-7]. 

Quantification of foot loading pressures 

(pedobarometry) was based on previously 

published allometric information [9-

14](Fig. 2).  

Results and Summary: Based on 

their paleoecology and allometry, the 

potential for track discovery can be 

assessed by addressing the filtering 

effects of formation-preservation-

recognition biases [16]. For 

paraceratheriids, the lack of ichnological 

record is due to hard-packed nature of 

contemporary semi-arid scrubland 

substrates, logistically challenging 

accessibility to productive Eurasian sites 

(Fig. 1B), and finds of skeletal remains in 

coarse-grained fluvial strata. Favoring 

track preservation are wide 

home/migration ranges and presence of 

fine-grained and lime-rich facies in 
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fluvio-deltaic/lacustrine areas and 

watering holes.  

The typical rhinocerotoid digital 

structure predicts that paraceratheriids left 

large plantigrade tridactyl (digits II-III-

IV) footprints in Oligocene sedimentary 

formations (Figs. 1A and Fig. 2C). 

Following the pioneering vertebrate 

ichnotaxonomy of O.S. Vialov, the tracks 

can be classified as Rhinoceripeda isp. 

[17]. Based on fleshed limb dimensions of 

these perissodactyls, the prints should be 

at least 50-60 cm in width. Scaling to 

elephant and rhinoceros pedobarometry 

(mass ~ juvenile indricotheres; Fig 2B), 

planti-/digitiportal Paraceratherium sp. 

males with a conservative maximum 

weight of 15 tonnes likely exerted mid-

stance foot pressures of ~200 kPa (edge 

loading ~1,500 kPa; Fig. 2A).

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Pedobarometry: A) Approximate plantar foot pressure (non-

edge loading) of a slow-moving paraceratheriid; B) Pressure map of the 

left forelimb of an extant rhinoceros [14]; C) hind foot bones of  

P. transouralicum (AMNH). 

 

Once paleo-surfaces at the most 

favorable localities are constrained, 

search for naturally weathered traces can 

be complemented with high-frequency 

ground-penetrating radar (>500 MHz 

GPR) imaging for identifying traces and 

undertracks [19-22], especially in sand-

rich hyporelief. Efforts focused on 

mapping tracking surfaces, combined 

with GPR imaging of mammoth tracks 

and neoichnological experiments with 

modern megafaunal locomotion in 

varying substrates, should eventually lead 

to trackway discoveries, shedding light on 

the distribution, geomorphic impact, 

speed, and behavior of these extinct 

giants. 
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This study suggests that large 

tridactyl footprints of Paraceratherium 

sp. should be preserved under favorable 

conditions, with the greatest potential near 

Oligocene paleo-lake basins [2,7]. 

Neoichnological experiments with adult 

rhinoceroses will aid in improving the 

recognition potential usual visual 

[14,15,18] and subsurface imaging tools. 
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