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Abstract
The worldwide loss of large animal species over the past 100,000 years is evident from the
fossil record, with climate and human impact as the most likely causes of megafauna
extinctions. To help distinguish between these two scenarios, we analysed whole-genome
sequence data of 142 species to infer their population size histories during the Quaternary. We
modelled differences in population dynamics among species using ecological factors,
paleoclimate and human presence as covariates. We report a significant population decline
towards the present time in more than 90% of species, with larger megafauna experiencing the
strongest decline. We find that population decline became ubiquitous approximately 100,000
years ago, with the majority of species experiencing their lowest population sizes during this
period. We assessed the relative impact of climate fluctuations and human presence on
megafauna dynamics and found that climate has limited explanatory power for late-Quaternary
shifts in megafauna population sizes, which are largely explained by Homo sapiens arrival
times. As a consequence of megafauna decline, total biomass and metabolic input provided by
these species has drastically reduced to less than 25% compared to 100,000 years ago. These
observations imply that the worldwide expansion of H. sapiens caused a major restructuring of
ecosystems at global scale.

Introduction
The late-Quaternary extinction event1,2 is characterised by selective extinctions of large-bodied
animals (megafauna) at a global scale. At the present date, a small fraction of the historically
speciose megafaunal groups persist in rapidly diminishing communities, many of which face
immediate threat of extinction3,4. The causes of megafauna decline have been subject to
long-standing debate, with paleoclimate fluctuations and human-related activities emerging as
the main explanatory factors5–17.
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Studies of past megafauna dynamics focus on fossil data to infer changes in species
distributions and extinction rates. While the fossil record provides valuable insight into species’
histories, the fragmentary nature of this data results in a limited resolution of past population
dynamics. Additionally, past population sizes are difficult to determine from such data. However,
inference of past population size dynamics using DNA sequence data is an established
approach in genomic studies18–20. These approaches are generally based on the sequentially
Markovian coalescent (SMC) framework21, allowing inference of times to the most recent
common ancestor at every nucleotide site along the genome. This information can in turn be
used to reconstruct the time-resolved trajectory for a species' population history from up to a
million or more years in the past22,23. Given the requirement of genome-wide determination of
nucleotide diversity, SMC-based methods initially focused on the inference of human population
size fluctuations18. However, the rapid increase in cost-effectiveness and quality of next
generation sequencing (NGS) technologies24–27 now allows for these methods to be applied to a
wide variety of animal and plant species.

High-quality reference genome assemblies and short read sequencing data have now
become available for a large fraction of terrestrial mammal megafauna. Consequently, studies of
SMC-derived histories across entire mammalian clades are becoming increasingly common28–38.
These studies have the potential to provide a complementary view to canonical fossil-based
studies of extinctions by ascertaining the driving factors of past population size dynamics in
extant megafauna, but a global overview of megafauna SMC histories in the context of past
climatic shifts and human impact is lacking.

In this study, we curate a dataset of DNA sequence data for 142 extant terrestrial
megafauna mammals and implement a common bioinformatic pipeline for inference of
SMC-based population histories. We study population dynamics of megafauna as a function of
species’ ecology, geographical distribution, climate and anthropogenic influence. We detect a
global, severe decline in megafauna population sizes over the past 100,000 years. These
observations are best explained by the influence of human worldwide expansion rather than
past climatic conditions.

Results

General decline of megafauna populations throughout the
Quaternary
We used a common bioinformatic pipeline to infer past population size changes of extant
megafauna from curated diploid genome sequences (Table S1), with the time frame of
population size estimates covering the Quaternary period (2.58 million years ago until present)
for the majority of studied species. The pairwise sequential Markovian coalescent (PSMC)18

curves in Figure 1A summarise population dynamics estimated from 142 megafauna genomes,
separated by ecological realm (Figure 1B). We estimate that the most severe decline in
population size occured in the Nilgiri tahr (Nilgiritragus hylocrius) with the 95% highest posterior
density interval (HPDI) for the slope of population size change in the range [-0.708, -0.467],
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while the springbok (Antidorcas marsupialis) experienced the strongest, yet non-significant,
increasing population trend (95% HPDI: [-0.125, 0.153]). Generally, megafauna population sizes
decrease towards present time, with the 95% HPDI for the slope of population size change
significantly below zero for 91% (129/142) of the species and a negative mean slope for 99%
(141/142) of the species.

Population declines varied across ecological realms (Figure 1A, B), with Australasia and
the Neotropics experiencing the least severe declines over the Quaternary period (95% HPDI:
[-0.244, 0.044] and [-0.228, -0.070], respectively), compared to Indomalaya and Nearctic (95%
HPDI: [-0.458, -0.299] and [-0.410, -0.227], respectively). Separation of species according to the
biome they occupy (Figure S1A) resulted in the largest discrepancy of population size decline
between polar (95% HPDI: [-0.317, 0.037]) and temperate-adapted species (95% HPDI: [-0.460,
-0.296]), while insectivores (95% HPDI: [-0.228, 0.201]) experienced a small and
non-significant decrease compared to hypercarnivores (95% HPDI: [-0.394, -0.223]; Figure
S1B).

Lastly, species with ranges overlapping regions where Homo sapiens was the first and
only hominin present, tend to have the lowest decline (95% HPDI: [-0.269, -0.155]), compared
to species in regions where archaic Homo species arrived early (95% HPDI: [-0.380, -0.290];
Figure S1C). Generally, non-African temperate regions with a relatively long history of hominin
activity experienced the largest decrease in megafauna population sizes. In contrast, and with
the exception of polar species, warmer biomes with only H. sapiens activity seem to have
declined the least. However, this observation is most likely driven by an increase of megafauna
population sizes in Neotropics and Australasia between 1.25 million and 100,000 years ago,
prior to human arrival (Figure 1A). Notably, population decline starting at approximately 100,000
years ago, and continuing towards the present, is ubiquitous across realms.
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Figure 1. Population size (Ne) dynamics of 142 extant megafauna species. A. Each step line represents changes in
Ne with respect to time (in years) for a single megafauna species, colored by a gradient based on average adult
mass. Panels separate species by ecological realms. The number of species within each realm is provided in
parentheses. The dashed lines are average loess regression lines for the relationship between Ne and time within a
realm. Both axes are log10-transformed. B. Slope of population size change given division of species with respect to
their biogeographic realm. C. Relationship between species' adult mass and the slope of population size change. The
x-axis is log10-transformed. D. Distribution of times since species experienced their highest population size (blue) and
lowest population size (red). E. Distribution of species’ decline severity. F. Coefficient values of explanatory variables
(species’ adult mass; tMIN: time since a species achieved the lowest population size, tMAX: time since a species
achieved the highest population size, Ne

MAX: highest population size achieved during the whole time span) for a
regression model with species’ decline severity as the response variable. The distribution for each coefficient is the
95% HPDI, with the point representing the median. The red dashed line represents no effect.

To test if the size selection bias observed for recently extinct species39 is reflected in
extant megafauna population dynamics, we considered the relationship between the slope of
population size change and species' adult mass. We observed a significantly negative
relationship between mass and slope (95% HPDI: [-0.152, -0.059]), indicating that larger
species experienced stronger declines during the Quaternary (Figure 1C). The majority of
species experienced the lowest population sizes closer to present time compared to their
highest past sizes (t = -7.777, p < 0.001; Figure 1D). Furthermore, the severity of decline,
defined as the percentage of population size decrease with respect to the highest past
population size, was exceptionally high, with 95% of species experiencing a population decline
between 84.3% and 99.9% (Figure 1E).

We then modelled decline severity as a function of species’ mass, time since species
experienced the highest and lowest population sizes, and the maximum population size
achieved in a history of a species (Figure 1F). We observed a significantly positive relationship
between decline severity and species’ mass, in line with the observed size selection bias
(Figure 1C). We also found a positive relationship for maximum population size, suggesting that
the population decline in species with larger past population sizes has been more severe during
the Quaternary, or that species with lower population sizes experienced a milder population
decline, indicative of an increased potential for decline in species with large population sizes.
Lastly, we observed a strong negative relationship between decline severity and time since a
species experienced a lowest past population size. This observation demonstrates that although
the majority of lowest megafauna population sizes are observed close to present time (Figure
1D), variation within these times is still informative for severity of decline. Moreover, this
negative relationship shows that population declines have become increasingly more extreme
towards the present time.

Climate-based models are unable to predict population decline
during the last 100,000 years
To better understand the recent population decline of megafauna, we focused our analysis on
population trends during the last 742,419 years (Figure 2A) for which we have high-quality
estimates of global temperature change40. Specifically, we were interested in whether past
climatic conditions predict the recent severe declines in megafauna population sizes. We
therefore divided the inferred population sizes across species into two time-dependent
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categories, before and after 100,000 years ago. This time-point was chosen as it includes the
time range during which population decline intensified - between 92,044 and 115,878 years ago,
as estimated by breakpoint analysis - and it facilitates subsequent division of the last
100,000-year period into discrete time windows. We used all estimates of population sizes
between 100,000 and 742,419 years ago to fit a model with climatic predictors, while population
size estimates younger than 100,000 years were predicted using the best-fitting model and
compared to the observed values. As predictors, we used the average temperature of the focal
time window for which we have an estimate of a species’ population size, as well as average
temperature of the preceding time window (i.e., temperature lag). Model fitting and prediction
were conducted separately for each species.

We fitted two models of the dependence between population size and climate. First, we
assumed a linear relationship between the population size response and the climate
explanatory variables. Secondly, we modelled a quadratic relationship between the variables,
thus assuming that a species may experience the highest population size at some optimal
temperature value, with a decline in size above or below the temperature optimum. We fit both
models with and without the inclusion of the temperature lag predictor and use leave-one-out
cross-validation to evaluate the predictive accuracy of the models (Figure 2B). We find that the
model with only a linear effect of average temperature has the lowest log-score from the
cross-validation scheme, and thus lowest predictive accuracy. On the other hand, the quadratic
models and the linear model with both the temperature and lag predictor have higher log-scores
and similar predictive accuracy.

Figure 2. Climate-based models of population size (Ne) change over the last 742,419 years. A. Each grey line in the
top panel represents an Ne trajectory (log10-transformed) with respect to time (in years) for a single megafauna
species. The inset shows the distribution of average population sizes for each species in the time periods prior and
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after 100,000 years ago (vertical red dashed line). The black dashed line with the blue ranges is the average
population size trend across all species. The bottom panel is past temperature change with warming periods
highlighted in red. B. Log-score of leave-one-out cross-validation for climate-based models, with the red dashed line
indicating the best-fitting model. C. Distributions of population size (top panel) and mean squared errors (MSE;
bottom panel) of the best-fitting model, for four time intervals during the last 100,000 years. Both y-axes are
log10-transformed.

Finally, we use the best-fitting model (with linear temperature and lag predictors) to
predict the population sizes of megafauna during the last 100,000 years. Figure 2C shows the
relationship between the observed and predicted population sizes for four consecutive
25,000-year time windows over the last 100,000 years. Notably, the difference between the
observed and predicted values is larger for time windows that are closer to the present. The
difference is non-significant for the oldest time window between 75,000 and 100,000 years ago
(t = -0.028, p = 0.977), but gets progressively more significant closer to the present
(50,000-75,000 years ago: t = -1.716, p = 0.087; 25,000-50,000 years ago: t = -4.436, p < 0.001;
0-25,000 years ago: t = -15.726, p < 0.001). This trend is also reflected in the increasing mean
squared error (MSE) of the model fit. In conclusion, we detect a time-dependency of model
performance indicating the inability of climate changes to predict population size shifts over the
past 75,000 years. Therefore, additional factors must be taken into consideration when
modelling megafauna dynamics. In the next section, we focus on anthropogenic predictors.

Models with human impact accurately capture recent population
size dynamics
Here, we were interested in assessing the relative impact of climate and anthropogenic
predictors on past megafauna dynamics. We use the full dataset of population size estimates to
fit the models and assess explanatory power for every predictor combination. The basic model
type only includes climate predictors from the previous section. For the second model type, we
introduce human impact predictors as a function of Homo sapiens arrival times to each
ecological realm16. We consider two arrival-informed models. Firstly, we consider the overlap
between the human arrival range and a focal time window for which we have an estimate of a
species’ population size. The extent of the overlap determines the probability of human
presence within the geographic range of the species, i.e., the likelihood of human-megafauna
interaction during a specific time period. We use this probability as a predictor in a linear model
with population size as the response variable. However, probability of human presence is likely
a conservative proxy for human impact, as the influence of H. sapiens likely continued to
increase post-arrival. We therefore introduce a second arrival-informed model where population
size is assumed to be constant prior to human arrival, after which population size follows either
a linear or a non-linear (logistic or exponential) trend. Both arrival-informed models are
combined with climate-informed predictors to construct the third model type which incorporates
the joint effect of humans and climate on megafauna dynamics. In total, we consider 24 models
(Table S6) with climate only (4 models), human only (4 models) or combined predictors (16
models), and use leave-one-out cross-validation to compare model performance (Figure S2).

Notably, models that include non-linear population size change after human arrival have
the highest predictive accuracy (Figure 3A). The model with the overall highest predictive
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accuracy includes only human arrival time as a predictor and assumes a logistic trend of
megafauna population change post-arrival. The 95% HPDI for the rate of change of the logistic
trend is below zero for 68% (97/142) of the species, with a median negative rate for all species,
indicating that the majority of megafauna species experienced a gradually accelerating decline
in population size after human arrival. This is consistent with cumulative human impacts on
megafauna populations post-arrival, as a consequence of gradual establishment of human
populations in a region. Correspondingly, the best-fitting models with combined predictors again
include the logistic trend of population change post-arrival. The human only model with an
exponential population size change is nested within models with combined predictors, likely
indicating that the exponential phase of the logistic trend dominates megafauna dynamics post
human arrival. The second best-fitting models are human only models that contain a linear
relationship between population size and human predictors. Lastly, the four climate only models
have lowest log-scores and therefore poorest predictive accuracy.

Figure 3. Climate and human arrival-informed models of population size (Ne) change over the last 742,419 years. A.
Log-scores of leave-one-out cross-validation for all climate and human only models, and four best-fitting models with
combined predictors. The red dashed line indicates the best-fitting model. B. Distributions of mean squared errors
(MSE) for the best-fitting model in each model class, for the whole time span (All: 0-742,419 years ago) or four time
intervals during the last 100,000 years. A single MSE value corresponds to one specific model and species. The
x-axis is log10-transformed. C. The top panels show the mean observed population size trend of megafauna and
per-species posterior predictive distributions of the best-fitting model in each model class. The solid black area is the
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mean observed population size trend, while the overlapping gray areas represent the 95% highest posterior density
interval (HPDI) ranges for all species and the colored areas are mean fitted population size trends based on mean
posterior values. The bottom panels show the corresponding MSE values. Both y-axes are log10-transformed.

In Figure 3B we show the distribution of per-species mean MSE values for the
best-fitting model in each class. Across the whole time span, the climate only model has a
significantly higher MSE compared to the human only (t = 24.225, p < 0.001) and combined
models (t = 25.438, p < 0.001), while the difference between MSE distributions of the human
only and combined models is non-significant (t = 1.517, p = 0.129). A similar trend is observed
for each of the four discrete time windows during the last 100,000 years. Furthermore, an
increase in MSE closer to present time is observed for all model classes. However, the
difference between MSE distributions of the two most recent time intervals is significant for the
climate only (t = -6.953, p < 0.001) and combined models (t = -2.305, p = 0.022), and
non-significant for the human only model (t = -0.849, p = 0.397), reflecting the time-dependency
of model performance for models with climatic predictors. Notably, the posterior predictive
distributions across the past 742,419 years show that the largest discrepancies between the
observed and predicted population sizes are present for time windows around the Last
Interglacial (Eemian) period (115,000-130,000 years ago), especially for the climate only model
(Figure 3C). This is likely caused by many species experiencing large population sizes during
the Eemian interglacial (Figure 2A, Table S1), which had similar climatic conditions as the
current warming period (Holocene; < 11,700 years ago), during which populations were
generally strongly reduced (Table S1). The climate only model therefore compensates between
highest and lowest past population sizes during the last two warming periods by
underestimating population sizes for the Eemian period, while overestimating them for the
Holocene period. Additionally, the inconsistency in the ranking of best-fitting climate-based
models when different time periods are considered (Figure 2B, 3A) again points to the
inadequacy of these models in explaining megafauna dynamics. In contrast, models that include
human arrival-informed predictors show a greater correspondence between mean observed and
predicted population trends, lower variance of posterior predictive distributions and lower MSE
across the whole time span (Figure 3C).

Consequences of megafauna decline
The stark decline of megafauna populations during the last 100,000 years is expected to
drastically change ecosystem composition and functioning41. To estimate the magnitude of these
effects, we calculated an average baseline for total effective population size, biomass, and
metabolic rate contributed by megafauna during the period prior to 100,000 years ago, and
compared it to time periods that are closer to the present (Figure 4A). Generally, total
megafauna population size and metabolic rate were highest between 75,000-100,000 years
ago, and even exceeded the baseline average size until 50,000 years ago. Similarly, total
megafauna biomass was higher than the corresponding baseline values until 75,000 years ago.
These observations can be explained by an expansion of megafauna during, and immediately
following, the Last Interglacial period (Figure 2A, Table S1). However, all three parameters show
a continuous decline towards the present, finally reducing to less than 25% of their average
baseline values in the youngest timeframe (0-25,000 years ago). Notably, total biomass had a
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larger decline compared to total population size, again illustrating the size selection bias in
decline dynamics (Figure 1C, F).

Figure 4. Consequences of recent megafauna decline. A. Change in total effective population size, biomass and
metabolic rate relative to the average baseline values calculated for the period between 100,000 to 742,719 years
ago (dashed line). B. Relationship between average effective size (Ne) calculated for the period between 100,000 to
742,719 years ago and present-day census size (Nc) for 66 megafauna species. Both axes are log10-transformed. The
dashed line is the 1:1 line. C. Posterior sample distributions of the sum across all species for total megafauna census
size, biomass and metabolic rate for the Eemian (115,000-130,000 years ago), Holocene (< 11,700 years ago) and
current period. Each distribution consists of 1,000 posterior samples.

We next explore the relationship between the average effective population sizes prior to
100,000 years ago, and current census sizes (Nc) of megafauna estimated by IUCN. Strikingly,
out of 67 species from our dataset for which census size estimates are available, 58% (39/67)
have a lower census size compared to the past effective size (Figure 4B), indicative of recent
and strong population bottlenecks in these species42,43. Furthermore, these species tend to have
higher adult mass (t = -3.003, p = 0.004), again signifying stronger population declines
experienced by larger megafauna.

A decrease in census population size of a species is expected to ultimately result in a
decrease in effective population size. Therefore, the two population size measures are expected
to track each other, as demonstrated by their positive correlation (Figure 4B; Spearman’s 𝜌 =
0.558, p < 0.001). This relationship can be utilised to predict megafauna abundance during
different periods of time. Specifically, we are interested in comparing megafauna census sizes
between the Eemian and Holocene periods, given their similarity in climatic conditions. To
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achieve this, we fit a linear model for the relationship between Ne values estimated for the
Holocene period and IUCN Nc estimates, while only considering species for which the Holocene
effective size does not exceed current census size (i.e., Ne/Nc < 1; Figure S4). In effect, this
model predicts megafauna census sizes that might be expected in the absence of severe
bottlenecks. We then generate posterior sample distributions for the total sum of megafauna
census size, biomass and metabolic rate across all species for both the Eemian and Holocene
period (Figure 4C). Additionally, we estimate posterior sample distributions for current time, by
scaling the Holocene estimates with a factor that takes into account the average decline severity
experienced by megafauna. On average, this factor scales down current census sizes to ~64%
of the estimated Holocene census sizes.

We estimate that the mean census size summed across the 142 species studied was
345 (median of 248) million individuals during the Eemian period, with Holocene and current
estimates of 108 (median of 84) and 70 (median of 54) million individuals, respectively. The
estimates have large variances with 95% HPDIs of [100, 761], [30, 235] and [20, 152] million
individuals for the Eemian, Holocene and current periods, respectively. On average, the Eemian
period was host to ~3-5× more megafauna individuals compared to the Holocene, with a similar
increase in total biomass and metabolic rate output. These results indicate that the climatic
conditions of the Holocene are likely suitable for accommodating a substantially greater number
of large animals than are present in existent ecosystems.

Discussion
Our results show that over the last 100,000 years, megafauna communities have been severely
decimated not just in species numbers through extinctions worldwide, but also through severe
reductions in population sizes of the surviving species. Further, analogous to the strong
size-selectivity of the extinctions, the population declines were most severe for the bigger
species. Our results hereby show that terrestrial mammal faunas worldwide have been even
more severely downsized across the late-Quaternary than indicated by the extinctions,
representing a major restructuring of ecosystems at a global scale. We also show that this
downsizing was unique relative to earlier in the Quaternary and that human presence was the
main driving factor, as opposed to fluctuating climatic conditions. The inability of climate to
predict the observed population decline of megafauna, especially during the past 75,000 years
(Figure 2C), implies that human impact became the main driver of megafauna dynamics around
this date. Importantly, given that we use human impact to predict trajectories of effective, rather
than census population sizes, we hypothesise that anthropogenic influence on megafauna
dynamics is likely underestimated in our models. In line with this proposition, we observe that
many megafauna species have higher effective population sizes compared to current census
sizes (Figure 4B).

The recent extinctions of a large number of megafauna species1,2,13 resulted in multiple
co-extinctions and reduction of diversity due to the loss of important ecological roles these
species performed across various ecosystems41. Although such events might have provided
opportunities for population expansion in surviving species through competitive release, the
observed decline of extant megafauna during this time indicates that such a scenario was never
realised. Moreover, the majority of extant megafauna are currently met with an unprecedented
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severity of extinction risk, casting further uncertainty on the survival of existing ecosystems. The
potential of the current epoch for species restoration can be glimpsed from the patterns of
megafauna abundance predicted for the Eemian interglacial (Figure 4C), given its climatological
similarity to the Holocene. Importantly, the fulfilment of this potential would require urgent
planning at a global scale and reinforcement of current conservation and restoration efforts3,4.
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Methods

Data curation
The latest available reference genome assemblies for each species were downloaded from
https://www.ncbi.nlm.nih.gov/. For short read mapping, we chose data from one representative
biosample per species, corresponding to the individual used for reference assembly or an
individual with the highest amount of short read data available. Temperature data were taken
from Augustin et al. (2004)40.

Mapping of short read data
The fastq files containing short read data were downloaded from https://www.ncbi.nlm.nih.gov/
and processed by picard tools (https://broadinstitute.github.io/picard/) to generate an unmapped
bam file (FastqToSam module) with marked adapter sequences (MarkIlluminaAdapters module).
The program bwa mem v0.7.1744 was used to map the reads to reference sequences. Only
reference contigs that were more than 1,000 base pairs in length were used for mapping of
reads. Secondary alignments and duplicates were removed using picard tools
MergeBamAlignment and MarkDuplicates modules. When short read data were spread across
multiple files, we merged the resulting files into the final bam file using the picard tools
MergeSamFiles module. The average coverage of genomic positions was calculated using the
samtools depth program45.

Demography inference
For demography inference, we used the pairwise sequentially Markovian coalescent (PSMC)
implementation (https://github.com/lh3/psmc)44. To account for potential inference biases
introduced by genomic regions with low mapping probability, we created a mappability filter for
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each reference genome using the snpable program
(http://lh3lh3.users.sourceforge.net/snpable.shtml), with the 90% stringency criterion as in
Palkopoulou et al. (2018)30. We used the bcftools mpileup and call modules to call genomic
variants from the produced bam files, only for sites within the mappable fraction of the reference
genome and on contigs at least 100 kb in length. We extracted the consensus fasta sequence
from the resulting vcf file using the vcf2fq module of samtools, using only sites with read
coverage of at least ⅓ of the average genomic coverage and no more than twice the average
coverage for a particular species. The PSMC input was created using the fq2psmcfa tool (-q20),
followed by demography inference with three different settings for the -p parameter
("4+25*2+4+6", "6*1+24*2+4+6" and "10*1+15*2"). We selected a single PSMC output per
species that maximises the number of recombination events used to estimate effective
population sizes (Ne) in each time interval18.

Conversion of the PSMC output into effective population sizes and time (measured in
years) was done following https://github.com/lh3/psmc44. The per generation mutation rate for
each species was obtained from literature or predicted using a regression model based on
known mutation rates and generation times of extant mammals (Bergeron et al., 2022
unpublished), as described  in Supplementary text 1.

Inference of ecological parameters
Each species was assigned to one ecological realm and biome. To do this, we considered the
overlap of the species’ geographic range, estimated using the PHYLACINE database46, with
each of these geographic classifications. If a species’ range overlapped multiple realms (or
biomes), the assignment was conducted by choosing the realm (or biome) with the largest
overlap. An analogous procedure was implemented when assigning species to human
biogeography regions, which were taken from Sandom et al. (2014)13. Assignment of species to
trophic guilds is based on the corresponding classification from PHYLACINE46. Species’ adult
mass and metabolic rate were also taken from PHYLACINE. The total biomass and metabolic
rates were calculated by multiplying mass and metabolic rate values with population sizes of the
corresponding species and then summing the resulting values across all species.

Statistical modelling
Statistical models used in this study are described in detail in Supplementary text 1. A list of
response and explanatory variables used in models, along with their description, is presented in
Table S2. All models were fitted using a Bayesian framework implemented in the probabilistic
programming package pyMC3 of the Python programming language47. All models were run
using four Markov chains, each with 2,000 tuning iterations followed by the same number of
sampling iterations. Leave-one-out cross-validation of the fitted models was conducted using
the Python-implemented ArviZ package48.

Breakpoint analysis used to determine the time range during the last 742,419 years for
which population size change became more severe was conducted using the “segmented”
library49 implemented for the R programming language. Both time and population size estimates
were log10-transformed prior to breakpoint analysis.
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Supplement

Supplementary Figures

Figure S1. Slope of population size change given division of species with respect to their A. biome, B. trophic guild
and C. human biogeography.
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Figure S2. Log-scores of leave-one-out cross validation for all 24 fitted models (Table S6), with the red dashed line
indicating the best-fitting model. The colours red, blue and green signify climate only, human only and combined
models, respectively.
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Figure S3. Linear regression model using mammalian trio data from Bergeron et al. (2021, unpublished) with per
generation mutation rate as the response variable. The points are the observed data and two different fits depict
linear models where the predictor (generation time) was untransformed (UN-T) or log-transformed (LOG-T),
respectively.

Figure S4. Relationship between Holocene effective size (Ne) calculated for the period between 0 to 11,700 years ago
and present-day census size (Nc) for 49 megafauna species with available IUCN Nc estimates and Ne/Nc < 1. Both
axes are log10-transformed. The dashed line is the 1:1 line with and the Spearman’s 𝜌 correlation value presented in
the bottom right corner.
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Supplementary Tables
Table S1. Species used in the study.

Species
Mass
(grams) Realm Biome Guild

Human
biogeography

Average
Eeman Ne
(115,000-130,0
00 years ago)

Average
Holocene Ne
(<11,700
years ago)

Acinonyx jubatus 46700 Afrotropic Arid Hypercarnivore
Homo
evolution 16806.74611

6557.96540
5

Addax
nasomaculatus 70000.3 Palearctic Arid Grazer

Homo
evolution 23081.50923

6202.55291
7

Aepyceros melampus 52500.1 Afrotropic
Tropic
al Mixed Feeder

Homo
evolution 18401.59223

9084.23852
4

Ailuropoda
melanoleuca 108400 Palearctic

Temp
erate Browser Archaic early 19632.56092

2141.12681
9

Alces alces gigas 356998 Palearctic Cold Browser
Archaic
peripheral 17389.97805

3632.56694
1

Alces alces shirasi 356998 Palearctic Cold Browser
Archaic
peripheral 14762.90208 1879.24075

Alces americanus 356998 Palearctic Cold Browser
Archaic
peripheral 18159.05003

2228.04837
5

Ammotragus lervia 48000 Palearctic Arid Mixed Feeder Archaic early 60913.02786
1843.74699
2

Antidorcas
marsupialis 31500 Afrotropic Arid Browser

Homo
evolution 243216.935

432558.257
6

Antilocapra
americana 46082.9 Nearctic Arid Browser

H. sapiens
only 58959.67934

1836.12044
6

Axis porcinus 34127.8
Indomala
ya

Temp
erate Grazer Archaic early 120378.5729 1946.89222

Babyrousa
celebensis 84327.5

Australasi
a

Tropic
al Omnivore

H. sapiens
only 370845.4007

1829.70263
4

Beatragus hunteri 80000 Afrotropic Arid Grazer
Homo
evolution 4160.226229

951.059331
3

Bison bison 579255.3 Nearctic Cold Mixed Feeder
H. sapiens
only 22577.92457

4976.74643
2

Bison bonasus 5.00E+05 Palearctic Cold Mixed Feeder
Archaic
peripheral 52737.76782

1833.22552
3

Bos gaurus 825000
Indomala
ya

Tropic
al Mixed Feeder Archaic early 49297.305

3268.18091
3

Bos grunniens 546250 Palearctic Arid Grazer Archaic late 52639.40435
3164.12317
3

Bos indicus 9.00E+05 Palearctic Arid Mixed Feeder Archaic early 141163.0705 3111.326364

Bos javanicus 7.00E+05
Indomala
ya

Tropic
al Mixed Feeder Archaic early 67364.01582

3800.87786
3
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Bos mutus 546250 Palearctic Arid Grazer Archaic late 46690.37783
8392.70170
4

Bos taurus 9.00E+05 Palearctic Arid Mixed Feeder Archaic early 24734.60126
2574.32738
2

Bubalus bubalis 725000
Indomala
ya

Tropic
al Mixed Feeder Archaic early 211383.256

3232.10996
6

Budorcas taxicolor 302000 Palearctic
Temp
erate Browser Archaic early 15656.15234 1079.81355

Camelus bactrianus 8.00E+05 Palearctic Arid Browser Archaic early 37885.50789
2941.32808
7

Camelus
dromedarius 8.00E+05 Palearctic Arid Browser Archaic early 21313.22603

2980.10352
7

Camelus ferus 690000 Palearctic Arid Browser Archaic late 36200.6255
2091.37942
8

Capra aegagrus 33500 Palearctic Arid Mixed Feeder Archaic early 45308.10813
12790.4393
5

Capra ibex 85166.5 Palearctic Cold Mixed Feeder Archaic early 83048.5674
8451.87004
3

Capra sibirica 130000 Palearctic Arid Mixed Feeder Archaic late 80277.38722
7136.82157
4

Catagonus wagneri 35566.4 Neotropic Arid Browser
H. sapiens
only 31370.01078

16078.5879
1

Ceratotherium simum
cottoni

2949986.
3 Afrotropic Arid Grazer

Homo
evolution 16278.82749

554.786401
3

Ceratotherium simum
simum

2949986.
3 Afrotropic Arid Grazer

Homo
evolution 14374.48309 1162.455947

Cervus canadensis 131250 Palearctic Cold Mixed Feeder Archaic late 83542.4642
9358.45824
3

Cervus elaphus
hippelaphus 131250 Palearctic Cold Mixed Feeder Archaic early 72690.77112

21328.5753
2

Cervus hanglu
yarkandensis 131250 Palearctic Cold Mixed Feeder Archaic early 75767.30407

4189.31388
1

Cervus nippon 53000 Palearctic
Temp
erate Mixed Feeder Archaic early 110460.559

5855.71999
6

Connochaetes
taurinus 179999 Afrotropic Arid Grazer

Homo
evolution 80401.29687

51963.4422
9

Crocuta crocuta 62999.9 Palearctic Arid Hypercarnivore Archaic early 42147.89609
3164.52881
9

Dicerorhinus
sumatrensis
sumatrensis 1266667

Indomala
ya

Temp
erate Browser Archaic early 13218.73741

772.978845
5

Diceros bicornis
1180510.
9 Afrotropic

Tropic
al Browser

Homo
evolution 20475.83544 2750.7701
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Diceros bicornis
minor

1180510.
9 Afrotropic

Tropic
al Browser

Homo
evolution 9836.811987

786.668798
1

Elaphurus davidianus 149000 Palearctic
Temp
erate Mixed Feeder Archaic early 87207.77663

805.517461
4

Elephas maximus 3160000
Indomala
ya

Temp
erate Mixed Feeder Archaic early 2161.573457

1646.81482
9

Equus asinus 275000 Palearctic Arid Mixed Feeder Archaic early 39671.94852
3890.40675
4

Equus asinus
somalicus 275000 Palearctic Arid Mixed Feeder Archaic early 16681.22187

1345.16069
5

Equus caballus 2.00E+05 Palearctic Cold Grazer
H. sapiens
only 111980.2174

1364.40680
5

Equus grevyi 350000 Afrotropic Arid Grazer
Homo
evolution 23676.5596

2044.23897
1

Equus hemionus 2.00E+05 Palearctic Arid Mixed Feeder Archaic early 82378.79186 2670.60889

Equus kiang 250000 Palearctic Polar Grazer Archaic late 12174.78022
58084.9738
1

Equus quagga 175000 Afrotropic Arid Grazer
Homo
evolution 125428.1614 2572.021189

Equus zebra 240000 Afrotropic Arid Grazer
Homo
evolution 25948.38433 3238.119735

Giraffa
camelopardalis 899994.8 Afrotropic Arid Browser

Homo
evolution 20624.0851

4497.43762
6

Giraffa
camelopardalis
antiquorum 899994.8 Afrotropic Arid Browser

Homo
evolution 26745.81177

8395.78336
8

Giraffa
camelopardalis
rothschildi 899994.8 Afrotropic Arid Browser

Homo
evolution 42748.03198

3999.81708
9

Giraffa tippelskirchi 899994.8 Afrotropic Arid Browser
Homo
evolution 26761.3364

4889.44367
4

Gorilla beringei
beringei 130000 Afrotropic

Tropic
al Omnivore

Homo
evolution 9126.850089

813.132505
5

Gorilla beringei
graueri 130000 Afrotropic

Tropic
al Omnivore

Homo
evolution 7986.245248

940.107590
1

Gorilla gorilla diehli 120950 Afrotropic
Tropic
al Omnivore

Homo
evolution 22582.76741

2568.52407
8

Gorilla gorilla gorilla 120950 Afrotropic
Tropic
al Omnivore

Homo
evolution 16299.87294

4615.55529
7

Helarctos malayanus 46500
Indomala
ya

Tropic
al Omnivore Archaic early 34714.35024

6737.90134
3

Hemitragus hylocrius 75000
Indomala
ya

Tropic
al Mixed Feeder Archaic early 5989.458897

519.637641
5
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Hexaprotodon
liberiensis 235001.2 Afrotropic

Tropic
al Browser

Homo
evolution 8403.38223

1001.13919
2

Hippopotamus
amphibius 1417490 Afrotropic Arid Grazer

Homo
evolution 31069.88226

3797.82905
7

Hippotragus niger
niger 227499.3 Afrotropic

Tropic
al Grazer

Homo
evolution 78400.43593

6059.59503
3

Hyaena hyaena 41705.1 Palearctic Arid Hypercarnivore Archaic early 21150.70978 3221.7566

Hydrochoerus
hydrochaeris 50000 Neotropic

Tropic
al Grazer

H. sapiens
only 48933.1198 4844.61846

Kobus ellipsiprymnus 210000.3 Afrotropic
Tropic
al Grazer

Homo
evolution 104102.6406

16265.3689
9

Kobus leche leche 110749 Afrotropic
Temp
erate Grazer

Homo
evolution 48845.4053 2004.76681

Lama glama 120000 Neotropic Arid Mixed Feeder
H. sapiens
only 187231.7801

4400.67691
8

Lama guanicoe
cacsilensis 120000 Neotropic Arid Mixed Feeder

H. sapiens
only 113351.1499

12343.6005
2

Lama guanicoe
guanicoe 120000 Neotropic Arid Mixed Feeder

H. sapiens
only 117695.1635 2605.113214

Litocranius walleri 37999.7 Afrotropic Arid Browser
Homo
evolution 35349.71658

13424.0835
3

Loxodonta africana 4400000 Afrotropic Arid Mixed Feeder
Homo
evolution 13119.94829

7530.40147
3

Loxodonta cyclotis 4400000 Afrotropic Arid Mixed Feeder
Homo
evolution 26284.5766

4234.57208
7

Macropus fuliginosus 22000
Australasi
a Arid Grazer

H. sapiens
only 91624.42799

3416.14301
3

Macropus giganteus 25875
Australasi
a Arid Mixed Feeder

H. sapiens
only 104953.7077 14836.1889

Macropus rufus 46250
Australasi
a Arid Mixed Feeder

H. sapiens
only 177823.1767

892.302716
1

Myrmecophaga
tridactyla 22333.2 Neotropic

Tropic
al Insectivore

H. sapiens
only 84044.65955

55864.7748
7

Nanger granti 54999.7 Afrotropic Arid Mixed Feeder
Homo
evolution 37204.97332

29681.5821
5

Odocoileus hemionus
hemionus 54212.6 Nearctic Cold Browser

H. sapiens
only 42431.10375

14854.3289
3

Odocoileus hemionus
sitkensis 54212.6 Nearctic Cold Browser

H. sapiens
only 72754.21378

1668.25203
9

Odocoileus
virginianus borealis 55508.6 Nearctic Cold Browser

H. sapiens
only 287311.5265

19189.4025
2

Odocoileus
virginianus 55508.6 Nearctic Cold Browser

H. sapiens
only 255011.4127 53408.11774
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Okapia johnstoni 230001.1 Afrotropic
Tropic
al Browser

Homo
evolution 67060.3457 7611.205743

Oreamnos
americanus 72500.3 Nearctic Cold Mixed Feeder

H. sapiens
only 17520.19271

1890.94421
8

Orycteropus afer 52350.4 Afrotropic
Tropic
al Insectivore

Homo
evolution 24036.40502

10686.2060
6

Oryx dammah 2.00E+05 Palearctic Arid Mixed Feeder
Homo
evolution 38921.60357

10056.5208
9

Oryx gazella 169001.3 Afrotropic Arid Mixed Feeder
Homo
evolution 88471.5904

5751.05518
9

Ovibos moschatus 340501.1 Palearctic Polar Mixed Feeder
Archaic
peripheral 18179.59374 603.1507911

Ovis ammon 180000 Palearctic Arid Mixed Feeder Archaic late 31753.72609 8578.73696

Ovis aries 60000 Palearctic Arid Mixed Feeder Archaic early 144994.1472
13742.6442
3

Ovis aries musimon 60000 Palearctic Arid Mixed Feeder Archaic early 141638.8483
1852.72948
9

Ovis canadensis 74644.9 Nearctic Arid Mixed Feeder
H. sapiens
only 35881.82009

2199.20861
8

Ovis dalli 55650.6 Nearctic Cold Grazer
H. sapiens
only 12527.21178

6241.09904
8

Ovis nivicola
lydekkeri 90000 Palearctic Cold Mixed Feeder

Archaic
peripheral 8376.495437 7467.388111

Ovis orientalis 60000 Palearctic Arid Mixed Feeder Archaic early 208815.4764
13447.5059
4

Ovis vignei 60000 Palearctic Arid Mixed Feeder Archaic early 192949.3529
48709.4875
8

Pan paniscus 34000.1 Afrotropic
Tropic
al Omnivore

Homo
evolution 31403.97684 443.297587

Pan troglodytes 42500 Afrotropic
Tropic
al Omnivore

Homo
evolution 49147.6003

3658.25466
9

Pan troglodytes ellioti 42500 Afrotropic
Tropic
al Omnivore

Homo
evolution 26414.59832

3356.16364
2

Pan troglodytes
schweinfurthii 42500 Afrotropic

Tropic
al Omnivore

Homo
evolution 25362.65468

16541.4783
6

Pan troglodytes
troglodytes 42500 Afrotropic

Tropic
al Omnivore

Homo
evolution 36896.72735

16125.5735
7

Pan troglodytes verus 42500 Afrotropic
Tropic
al Omnivore

Homo
evolution 38725.814 13083.05411

Panthera leo 161499.1 Afrotropic Arid Hypercarnivore
Homo
evolution 24131.57903

7302.73674
3

Panthera onca 1.00E+05 Neotropic
Tropic
al Hypercarnivore

H. sapiens
only 41621.41084

7332.20472
4
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Panthera pardus 54999.7 Palearctic Arid Hypercarnivore
Homo
evolution 23474.7646

2422.25592
4

Panthera tigris altaica 162564 Palearctic Cold Hypercarnivore Archaic early 27113.68921
1485.64663
4

Panthera tigris 162564 Palearctic Cold Hypercarnivore Archaic early 24818.09774 3117.535551

Panthera tigris
jacksoni 162564 Palearctic Cold Hypercarnivore Archaic early 28314.47468

2678.24875
3

Panthera uncia 44167 Palearctic Arid Hypercarnivore Archaic late 6393.511212
3070.15539
3

Parahyaena brunnea 32200.3 Afrotropic Arid Hypercarnivore
Homo
evolution 10118.34016

2561.96533
3

Phacochoerus
africanus 82500 Afrotropic

Tropic
al Grazer

Homo
evolution 27122.5866

57929.9549
1

Pongo abelii 56750
Indomala
ya

Temp
erate Omnivore Archaic early 32234.07308

1901.25326
8

Pongo pygmaeus 57150
Indomala
ya

Tropic
al Omnivore Archaic early 5823.58219

2660.90374
7

Pongo tapanuliensis 56750
Indomala
ya

Temp
erate Omnivore Archaic early 53515.24573

2816.22198
3

Pseudois nayaur 45000 Palearctic Polar Mixed Feeder Archaic late 101240.4618
16127.2714
5

Puma concolor 51600 Neotropic
Tropic
al Hypercarnivore

H. sapiens
only 64403.54156

1759.46162
6

Rangifer tarandus 86034 Palearctic Cold Mixed Feeder
Archaic
peripheral 641497.0701

2060.89938
3

Rangifer tarandus
caribou 86034 Palearctic Cold Mixed Feeder

Archaic
peripheral 449976.8428

24131.1638
6

Rangifer tarandus
sibiricus 86034 Palearctic Cold Mixed Feeder

Archaic
peripheral 989264.8561

6037.16979
1

Rangifer tarandus
tarandus 86034 Palearctic Cold Mixed Feeder

Archaic
peripheral 378864.9646

9134.54713
9

Redunca redunca 44050.4 Afrotropic
Tropic
al Mixed Feeder

Homo
evolution 69426.5671

7698.74917
8

Rhinoceros unicornis 1602333
Indomala
ya

Temp
erate Mixed Feeder Archaic early 4334.880351

801.919783
6

Sus scrofa scrofa 101052.1 Palearctic Arid Omnivore Archaic early 23907.12215
8240.16839
2

Syncerus caffer 580002.7 Afrotropic
Tropic
al Mixed Feeder

Homo
evolution 106957.6581

27991.4740
3

Tapirus indicus 296250
Indomala
ya

Tropic
al Browser Archaic early 23350.89207

2691.89514
3

Tapirus terrestris 207500.9 Neotropic
Tropic
al Browser

H. sapiens
only 85236.82475 11518.35778
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Tragelaphus
eurycerus 329003.1 Afrotropic

Tropic
al Mixed Feeder

Homo
evolution 66519.74953

2275.57220
3

Taurotragus oryx 569993.6 Afrotropic Arid Mixed Feeder
Homo
evolution 142937.1466

54232.9937
8

Tragelaphus scriptus 43250.4 Afrotropic
Tropic
al Browser

Homo
evolution 121101.7077

26602.0135
4

Tragelaphus spekii 77999.2 Afrotropic
Tropic
al Browser

Homo
evolution 91820.93225

3126.99266
3

Tragelaphus
strepsiceros 213501 Afrotropic Arid Browser

Homo
evolution 23800.41166

33001.6535
2

Tremarctos ornatus 140000.6 Neotropic
Tropic
al Omnivore

H. sapiens
only 12177.63225

2916.58580
7

Ursus americanus 99949.4 Nearctic Cold Omnivore
H. sapiens
only 33928.15755

1365.30410
5

Ursus arctos 180520.4 Palearctic Cold Omnivore
Archaic
peripheral 33242.93111

2393.32478
6

Ursus arctos horribilis 180520.4 Palearctic Cold Omnivore
Archaic
peripheral 45171.97176

3597.87382
6

Ursus maritimus 180520.4 Palearctic Cold Omnivore
Archaic
peripheral 7777.466418

14148.6046
1

Ursus thibetanus
japonicus 77500 Palearctic

Temp
erate Omnivore Archaic early 11190.60031

1493.93471
6

Ursus thibetanus
thibetanus 77500 Palearctic

Temp
erate Omnivore Archaic early 77067.17375

6300.04893
9

Vicugna pacos 47499.6 Neotropic Arid Mixed Feeder
H. sapiens
only 245996.7568

4224.67730
3

Vicugna vicugna
mensalis 47499.6 Neotropic Arid Mixed Feeder

H. sapiens
only 118163.2202

3918.70994
6

Vicugna vicugna
vicugna 47499.6 Neotropic Arid Mixed Feeder

H. sapiens
only 355834.9897

8141.76173
7
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Table S2. Response and explanatory variables used for modelling.

Variable Type Description

M Response Per generation mutation rate

𝑁
𝑒

Response,
explanatory

Average effective population size across the focal time interval

D Response Decline severity

𝑁
𝑐

Response Average census population size across the focal time interval

G Explanatory Generation time

𝑚 Explanatory Adult mass

𝑡 Explanatory Mid time-point of focal time interval

tMIN Explanatory Mid time-point of time interval when a species achieved the lowest population
size

tMAX Explanatory Mid time-point of time interval when a species achieved the highest population
size

Ne
MAX Explanatory Highest past effective population size achieved by a species

𝑇 Explanatory Average temperature of the focal time interval

∆𝑇 Explanatory Difference in temperature between focal and preceding time interval

𝐿 Explanatory Average temperature of the preceding time interval (temperature lag)

𝑝
𝐻

Explanatory Probability of human presence

𝐼
𝐻

Explanatory Indicator for overlap of time interval with human arrival range

Table S3. Climate-based predictive models of population size.

Name Description

𝑙𝑖𝑛𝑇 Linear effect of temperature

𝑞𝑢𝑎𝑑𝑇 Quadratic effect of temperature

𝑙𝑖𝑛𝑇 + 𝐿 Linear effect of temperature and temperature lag

𝑞𝑢𝑎𝑑𝑇 + 𝐿 Quadratic effect of temperature and temperature lag
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Table S4. Human arrival ranges.

Ecological realm al au

Afrotropics 130 kya 200 kya

Australasia 44 kya 65 kya

Indomalaya 44 kya 73 kya

Nearctic 12 kya 20 kya

Neotropics 8 kya 16 kya

Palearctic 40 kya 95 kya

Table S5. Example for the calculation of the probability of human presence pH.

al au tl tu pH

40 kya 95 kya 100 kya 125 kya 0

40 kya 95 kya 75 kya 100 kya 0.36

40 kya 95 kya 50 kya 75 kya 0.81

40 kya 95 kya 25 kya 50 kya 1

40 kya 95 kya 0 kya 25 kya 1
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Table S6. Climate-based, human-based and combined explanatory models of population size.

Abbreviation Class Type

𝑙𝑖𝑛𝑇 Temperature only Linear effect of temperature

𝑞𝑢𝑎𝑑𝑇 Temperature only Quadratic effect of temperature

𝑙𝑖𝑛𝑇 + 𝐿 Temperature only Linear effect of temperature and temperature lag

𝑞𝑢𝑎𝑑𝑇 + 𝐿 Temperature only Quadratic effect of temperature and temperature lag

𝑝𝐻 Human only Linear effect of probability of human presence

𝑙𝑖𝑛𝐻 Human only Linear effect of human impact post arrival

𝑒𝑥𝑝𝐻 Human only Exponential effect of human impact post arrival

𝑙𝑜𝑔𝐻 Human only Logistic effect of human impact post arrival

𝑙𝑖𝑛𝑇 + 𝑝𝐻 Combined Combination of above effects

𝑙𝑖𝑛𝑇 + 𝑙𝑖𝑛𝐻 Combined Combination of above effects

𝑙𝑖𝑛𝑇 + 𝑒𝑥𝑝𝐻 Combined Combination of above effects

𝑙𝑖𝑛𝑇 + 𝑙𝑜𝑔𝐻 Combined Combination of above effects

𝑞𝑢𝑎𝑑𝑇 + 𝑝𝐻 Combined Combination of above effects

𝑞𝑢𝑎𝑑𝑇 + 𝑙𝑖𝑛𝐻 Combined Combination of above effects

𝑞𝑢𝑎𝑑𝑇 + 𝑒𝑥𝑝𝐻 Combined Combination of above effects

𝑞𝑢𝑎𝑑𝑇 + 𝑙𝑜𝑔𝐻 Combined Combination of above effects

𝑙𝑖𝑛𝑇 + 𝐿 + 𝑝𝐻 Combined Combination of above effects

𝑙𝑖𝑛𝑇 + 𝐿 + 𝑙𝑖𝑛𝐻 Combined Combination of above effects

𝑙𝑖𝑛𝑇 + 𝐿 + 𝑒𝑥𝑝𝐻 Combined Combination of above effects

𝑙𝑖𝑛𝑇 + 𝐿 + 𝑙𝑜𝑔𝐻 Combined Combination of above effects

𝑞𝑢𝑎𝑑𝑇 + 𝐿 + 𝑝𝐻 Combined Combination of above effects

𝑞𝑢𝑎𝑑𝑇 + 𝐿 + 𝑙𝑖𝑛𝐻 Combined Combination of above effects

𝑞𝑢𝑎𝑑𝑇 + 𝐿 + 𝑒𝑥𝑝𝐻 Combined Combination of above effects

𝑞𝑢𝑎𝑑𝑇 + 𝐿 + 𝑙𝑜𝑔𝐻 Combined Combination of above effects
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Supplementary text 1: Statistical modelling of population size

Mutation rate and generation time model (Figure S3)
The conversion of the PSMC output to effective population sizes and time intervals in

years, requires knowledge of the per generation mutation rates and generation times. While
generation times are easily obtained from literature, mutation rates are generally not available
for the majority of species. However, we can use the known relationship between mutation rates
and generation times in mammals to predict the mutation rate for species where these data are
missing. To fit this model, we used the empirically estimated mutation rates and average
parental ages (generation times) from 61 sequenced mammalian families (Bergeron et al.,
2021; unpublished). The models is represented as follows:

𝑀 ∼ 𝑁(µ, σ)
µ = 𝑎 + 𝑏𝐺

𝑎 ∼ 𝑁(0, 0. 1)
𝑏 ∼ 𝑁(0, 0. 1)

,σ ∼ 𝑒𝑥𝑝(0. 001)

where M is the observed per generation mutation rate in a mammalian family and G is
generation time. The mutation rate M, as well as prior distributions for the intercept (a) and
slope (b) of the relationship are assumed to be normally (N) distributed, while the model error 𝜎
is assumed exponentially distributed (exp). We fit the model with the G predictor either on a
natural scale or log-transformed. Both models have similar predictive accuracy (Figure S3), as
demonstrated by the similarity of their leave-one-out cross validation log-score - 1125.94 ± 6.34
and 1124.24 ± 5.62 for the model with and without the log-transformation of G, respectively.
However, as the validation log-score is on average higher for the model with the log-transformed
G predictor, we use this model to predict mutation rates for species where these data are
unavailable. Specifically, we use the posterior distributions of the a and b coefficients to estimate
the M distributions for each species, and use the medians of these distributions when
transforming the PSMC output.

Category-based model across the full time span (Figure 1B)
Here, we model the change in effective population size (Ne) of megafauna species as a

function of time (t) while taking into account a hierarchical component that groups species into
discrete categories (prior to inference, both the Ne and t values were log10-transformed):

𝑦
𝑖

∼ 𝑁(µ
𝑖
, σ)

µ
𝑖

= α
𝑗[𝑖]

+ β
𝑗[𝑖]

𝑡
𝑖

α
𝑗
∼ 𝑁(γ

𝑗
, ζ)

β
𝑗

∼ 𝑁(δ
𝑗
, κ)

γ
𝑗

= 𝑔
0,𝑘
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δ
𝑗

= ℎ
0,𝑘

𝑔
0,𝑘

∼ 𝑁(5, 1)

ℎ
0,𝑘

∼ 𝑁(0, 1)

,(σ, ζ, κ) ∼ 𝑒𝑥𝑝(1)

where yi is an Ne value at a specific time in the past ti. The variable yi is modelled as normally
distributed with mean 𝜇i and standard deviation 𝜎. The second line describes the global linear
regression model of Ne as explained by ti, used to infer species-specific slopes (𝛼j) and
intercepts (𝛽j), where the subscript j indicates a specific megafauna species. Species-specific
slopes and intercepts were both modelled as response variables of a nested linear regression
representing category-specific effects on the coefficients of the global model. Specifically,
subscript k indicates a category that groups a number of species together. For example, a
categorization of species into ecological realms groups species into 6 categories (Afrotropic,
Australasia, Indomalaya, Nearctic, Neotropic and Palearctic species). We also considered three
other species categorizations with respect to biome (5 categories: arid, cold, polar, temperate,
tropical), trophic guild (6 categories: browser, grazer, hypercarnivore, insectivore, mixed feeder,
omnivore) and human biogeography (5 categories: archaic early, archaic late, archaic
peripheral, H. sapiens only, Homo evolution).

Mass-based model across the full time span (Figure 1C)
Here, we model the change in effective population size (Ne) of megafauna species as a function
of time (t) and species’ adult mass. Prior to inference, both the Ne and t values were
log10-transformed. The model allows for varying intercepts and slopes across species, and
incorporates the effect of species adult mass as follows:

𝑦
𝑖

∼ 𝑁(µ
𝑖
, σ)

µ
𝑖

= α
𝑗[𝑖]

+ β
𝑗[𝑖]

𝑡
𝑖

α
𝑗
∼ 𝑁(γ

𝑗
, ζ)

β
𝑗

∼ 𝑁(δ
𝑗
, κ)

γ
𝑗

= 𝑔
0

+ 𝑔
1
𝑚

𝑗

δ
𝑗

= ℎ
0

+ ℎ
1
𝑚

𝑗

𝑔
0

∼ 𝑁(5, 1)

(𝑔
1
, ℎ

0
, ℎ

1
) ∼ 𝑁(0, 1)

,(σ, ζ, κ) ∼ 𝑒𝑥𝑝(1)

where the global regression model is identical to the previous model, but species-specific slopes
and intercepts were both modelled as response variables of a nested linear regression with
adult mass as an explanatory variable (mj). A normal distribution with mean 𝛾j (𝛿j) and standard
deviation 𝜁 (𝜅) was assumed for the species-specific slope (intercept) of the nested models. The
coefficients of the nested models (g{0,1} and h{0,1}) were subscripted with 0 for intercepts and 1 for
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slopes, and assigned normal prior distributions. Standard deviations of variables (𝜎, 𝜁, 𝜅) were
assigned an exponentially distributed prior.

Decline severity model across the full time span (Figure 1F)
We define decline severity as

,𝐷 = 1 −
𝑁

𝑒
𝑀𝐼𝑁

𝑁
𝑒
𝑀𝐴𝑋  

where Ne
MIN and Ne

MAX are the minimum and maximum effective population sizes experienced by
a species during the full time interval for which we have Ne estimates, respectively. The
Bayesian framework of the generalised linear model is as follows:

𝐷 ∼ 𝐵 𝐿𝑜𝑔𝑖𝑡−1(µ), σ( )
µ = 𝑎 + 𝑏

1
𝑚 + 𝑏

2
𝑡𝑀𝐼𝑁 + 𝑏

3
𝑡𝑀𝐴𝑋 + 𝑏

4
𝑁

𝑒
𝑀𝐴𝑋

(𝑎,  𝑏
1
,  𝑏

2
 , 𝑏

3
,  𝑏

4
) ∼ 𝑁(0, 1)

,σ ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0. 1)

where the response variable D is assumed to be Beta-distributed (B) with mean value 𝜇 and
standard deviation 𝜎, and a logit link function. The predictors of D are species’ adult mass (m),
time when a species achieved the lowest population size (tMIN), time when a species achieved
the highest population size (tMAX) and the highest past population size achieved by a species
(Ne

MAX), with b1, b2, b3, b4 as the corresponding coefficients and a as the intercept of the
regression model. The predictive parameters were transformed to a scale between 0 and 1,
representing the minimum and maximum value observed across species, respectively. This was
done to simplify computation and achieve comparability between the estimated b coefficients.
We assume a normally distributed prior (N) for the intercept and coefficients, and a Half-Cauchy
(HalfCauchy) prior for 𝜎.

Climate-based predictive models (Figure 2)
Climate-based models assess the relationship between climatic variables and population size
for the period between the present and 742,419 years ago (the time span for which estimates of
the climatic variables are available). Here, we use Ne estimates from time intervals older than
100,000 years for fitting the models, while Ne values between the present and 100,000 years
ago were predicted using the fitted models, and compared to the observed Ne estimates. Prior
to prediction, we discretize this time frame into four equally-sized 25,000-year time windows to
account for between-species differences in sizes of time windows and facilitate the comparison
of model performance between time points. The goal of this modelling approach is to assess the
level at which the relationship between climate fluctuations and population size prior to 100,000
years ago, can explain population size fluctuations of the recent past.
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We modelled the relationship between temperature and population size using two
different models. Firstly, we implemented a basic linear regression

,𝑁
𝑒
(𝑇) = 𝑎 + 𝑏𝑇

where a and b represent the intercept and slope of the relationship, while T is the average
temperature over the focal time interval for which we have an estimate of population size Ne.
While simple, this model does not necessarily reflect biological reality due to the assumption of
a linearity between population size and temperature.

To implement a more biologically realistic model, we assume that each species has an
optimal temperature (Topt) at which Ne is maximised. As temperature deviates from Topt in either
direction, we expect a decrease in population size. Such a relationship can be described by a
quadratic function

,𝑁
𝑒
(𝑇) = 𝑎 − 𝑏(𝑇 − 𝑐)2 

with the requirement that b<0. Taking the first derivative and setting the function to 0, it can be
shown that the maximum of this function is c, i.e. Topt=c.

In addition to considering temperature of the focal interval, we also consider a
temperature lag parameter L, defined as the average temperature of the preceding time interval.

The Bayesian frameworks are as follows:

𝑦 ∼ 𝑁(µ, σ)
µ = 𝑎 + 𝑏𝑇
𝑎 ∼ 𝑁(5, 1)
𝑏 ∼ 𝑁(0, 1)

,σ ∼ 𝑒𝑥𝑝(1)

for the linear model ( );𝑙𝑖𝑛𝑇

𝑦 ∼ 𝑁(µ, σ)

µ = 𝑎 − 𝑏(𝑇 − 𝑐)2

𝑎 ∼ 𝑁(5, 1)
𝑏 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1)

𝑐 ∼ 𝑁(0, 1)
,σ ∼ 𝑒𝑥𝑝(1)

for the quadratic model ( );𝑞𝑢𝑎𝑑𝑇

𝑦 ∼ 𝑁(µ, σ)

µ = 𝑎 + 𝑏(𝑇 − 𝑐) − 𝑑 𝑒𝑏(𝑇−𝑐)

𝑎 ∼ 𝑁(5, 1)
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𝑏 ∼ 𝑁(0. 5, 1)
𝑐 ∼ 𝑁(0, 1)

𝑑 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1)
,σ ∼ 𝑒𝑥𝑝(1)

for the linear model with lag ( );𝑙𝑖𝑛𝑇 + 𝐿

𝑦 ∼ 𝑁(µ, σ)

µ = 𝑎 − 𝑏
𝑇
(𝑇 − 𝑐

𝑇
)2 − 𝑏

𝐿
(𝐿 − 𝑐

𝐿
)2

𝑎 ∼ 𝑁(5, 1)
(𝑏

𝑇
, 𝑏

𝐿
) ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1)

(𝑐
𝑇
, 𝑐

𝐿
) ∼ 𝑁(0, 1)

,σ ∼ 𝑒𝑥𝑝(1)

for the quadratic model with lag ( ). Priors are defined as normally (N), exponentially𝑞𝑢𝑎𝑑𝑇 + 𝐿
(exp) or Half-Cauchy (HalfCauchy) distributed. All model parameters were estimated for each
species separately apart from the model error 𝜎, which is a pooled estimate across species.

Climate and human-based explanatory models (Figure 3)
Here, we are interested in the explanatory power of climate and human impact on past
population sizes of megafauna. To model the impact of climate we consider the linear and
quadratic models from the previous section, in combination with human impact. The first human
impact parameter we consider is the probability of human presence (pH), which was constructed
in the following way. For each species, we consider the human arrival range based on the
ecological realm of that species, and assign a value of pH between 0 and 1 to each time window
for which we have an estimate of the species population size. Specifically, for time windows
prior to the human arrival range, pH is assigned the value of 0. Windows that overlap or
postcede the human arrival range are assigned a value larger than 0, depending on the span of
the human arrival range and overlap of this range with the focal time window

if𝑝
𝐻

=  0  𝑡
𝑙

> 𝑎
𝑢

if or𝑝
𝐻

 =  1  𝑡
𝑢

< 𝑎
𝑙

𝑡
𝑙

< 𝑎
𝑙

otherwise,𝑝
𝐻

 =  
𝑎

𝑢
−𝑡

𝑙

𝑎
𝑢
−𝑎

𝑙

where tl and tu are the lower and upper bounds of the focal time window, respectively, and al and
au are the lower and upper bounds of the human arrival range. Arrival time ranges for each
ecological realm are given in Table S4. For the Afrotropical realm, we used the time range
between 130 and 200 kya, as the time span of H. sapiens establishment throughout
sub-Saharan Africa, while the times from Andermann et al. (2020)16 were taken for the other
realms.
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The pH parameter can be thought of as cumulative human impact over time that reaches
its maximum value of 1 in the time window that overlaps the lower bound of the human arrival
range, and maintains this value throughout subsequent windows, towards present time. In that
way, it is a conservative estimate of human impact, which, in reality, continued to increase post
human arrival. Supplementary Table S5 shows an example calculation of pH for five consecutive
25-ky time windows given a human arrival range between 40 and 95 kya.

The Bayesian frameworks for these models are represented as:

𝑦 ∼ 𝑁(µ, σ)
µ = 𝑎 + 𝑏

𝑡
𝑡 + 𝑏

𝐻
𝑝

𝐻

𝑎 ∼ 𝑁(5, 1)
(𝑏

𝑡
, 𝑏

𝐻
) ∼ 𝑁(0, 1)

,σ ∼ 𝑒𝑥𝑝(1)

for the linear temperature and linear human impact model ( ), and𝑙𝑖𝑛𝑇 + 𝑝𝐻

𝑦 ∼ 𝑁(µ, σ)

µ = 𝑎 − 𝑏
𝑡
(𝑡 − 𝑐)2 + 𝑏

𝐻
𝑝

𝐻

𝑎 ∼ 𝑁(5, 1)
𝑏

𝑡
∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1)

𝑐 ∼ 𝑁(0, 1)
𝑏

𝐻
∼ 𝑁(0, 1)

,σ ∼ 𝑒𝑥𝑝(1)

for the quadratic temperature and linear human impact model ( ). For comparison,𝑞𝑢𝑎𝑑𝑇 + 𝑝𝐻
we also run the models with only the temperature or only the human predictor, as well as
models with the temperature lag parameter L.

We also consider a second type of human impact model, where humans are expected to
start affecting megafauna population size at some point after their earliest arrival date (au) to the
ecological realm (Table S4), while prior to human arrival, we assume a constant population size.
Such a model can be written as

,𝑁
𝑒
(𝑇) = (1 − 𝐼

𝐻
)𝑎 + 𝐼

𝐻
(𝑏 + 𝑐𝑡) 

where IH takes the value of 1 or 0, depending on whether or not there is overlap between human
arrival range and the focal time window, respectively. Additionally, IH takes the value of 1 for all
windows that postcede human arrival. Further, a is the constant population size prior to human
arrival, and the expression (b + ct) describes the time-dependent linear population size change
following human arrival. We also consider two models with a non-linear effect post-arrival.
Firstly, we consider a model with exponential impact
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,𝑁
𝑒
(𝑇) = (1 − 𝐼

𝐻
)𝑎 + 𝐼

𝐻
𝑘𝑒𝑟𝑡

with IH as in the previous model, k as the initial population size post arrival and r as the rate of
population size change following human arrival. Secondly, we consider a logistic impact model

,𝑁
𝑒
(𝑇) = (1 − 𝐼

𝐻
)𝑎 +

𝐼
𝐻

𝑘

1+𝑐𝑒𝑟𝑡

with IH as in the previous model and the expression describing the logistic change in𝑘

1+𝑐𝑒𝑟𝑇  

megafauna population size following human arrival. Specifically, k and c are constants
determining the intercept of the logistic expression and r is the rate of population size change.

The Bayesian frameworks for these models are represented as:

𝑦 ∼ 𝑁(µ, σ)
µ = (1 − 𝐼

𝐻
)𝑎 + 𝐼

𝐻
(𝑏 + 𝑐𝑡) 

(𝑎, 𝑏) ∼ 𝑁(5, 1)
𝑐 ∼ 𝑁(0, 1)

,σ ∼ 𝑒𝑥𝑝(1)

for the linear human impact model ( ),𝑙𝑖𝑛𝐻

𝑦 ∼ 𝑁(µ, σ)

µ = (1 − 𝐼
𝐻

)𝑎 + 𝐼
𝐻

𝑘𝑒𝑟𝑡

(𝑎, 𝑘) ∼ 𝑁(5, 1)
𝑟 ∼ 𝑁(0, 3)

,σ ∼ 𝑒𝑥𝑝(1)

for the exponential human impact model ( ), and𝑒𝑥𝑝𝐻

𝑦 ∼ 𝑁(µ, σ)

µ = (1 − 𝐼
𝐻

)𝑎 +
𝐼

𝐻
𝑘

1+𝑐𝑒𝑟𝑡

(𝑎, 𝑘) ∼ 𝑁(5, 1)
𝑐 ∼ 𝑁(0, 1)
𝑟 ∼ 𝑁(0, 3)

,σ ∼ 𝑒𝑥𝑝(1)

for the logistic human impact model ( ). Priors are defined as normally (N) or exponentially𝑙𝑜𝑔𝐻
(exp) distributed. We also ran these models in combination with linear or quadratic temperature
predictors. In total, we tested and compared 24 models (Table S6, Figure S2).
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Estimation of total megafauna census sizes (Figure 4C)
To estimate census sizes (Nc) of megafauna for different time periods we utilise the positive
relationship between effective and census population sizes. Specifically, we fit a linear model for
the dependence of IUCN Nc estimates (y) on Holocene Ne estimates

𝑦 ∼ 𝑁(µ, σ)
µ = 𝑎 + 𝑏𝑁

𝑒

𝑎 ∼ 𝑁(5, 1)
𝑏 ∼ 𝑁(0, 1)

,σ ∼ 𝑒𝑥𝑝(1)

assuming a normal distribution (N) for the y parameter and the priors of the intercept (a) and
slope (b) of the relationship, and an exponential (exp) prior for the model error 𝜎. Furthermore,
both Nc and Ne estimates were log10-transformed prior to model fitting, and only species with
Ne/Nc < 1 were used for fitting (Figure S4). The fitted model was used to infer posterior
distributions of Nc values for each species for both the Holocene and Eemian period (based on
the corresponding Ne values; Table S1). Each posterior distribution was randomly sampled
1,000 times to create posterior sample distributions for total megafauna census size, biomass
and metabolic input for each of the two periods. Posterior sample distributions for the current,
present-day period were generated in a similar way, by sampling posterior distributions of the
Holocene period and then multiplying them by a scaling factor

,𝑓 =  𝑖
∑𝑁

𝑐

𝑖
∑𝑁

𝑐
𝐸𝑆𝑇

where is the sum of IUCN census sizes across all species (including species with Ne/Nc >
𝑖

∑ 𝑁
𝑐

1) for which this estimate is available, while is the sum of the medians of the posterior 
𝑖

∑ 𝑁
𝑒
𝐸𝑆𝑇

distributions of census sizes across the corresponding species, estimated for the Holocene
period. The scaling factor f (= 0.64) reflects the difference in current IUCN census sizes and
model-predicted census sizes for the Holocene. The difference between the two sums used to
calculate f comes from the fact that the predictive model is based only on species with Ne/Nc < 1,
thus considering only less severely bottlenecked species. Consequently, the posterior prediction
of Holocene Nc for species with Ne/Nc > 1 is higher than the observed IUCN values. In effect, the
model predicts the Holocene census sizes that would be expected if severe bottlenecks did not
occur. Arguably, this is also a more realistic scenario for the Eemian period where Nc values
were predicted using the same model. Therefore, to obtain more realistic Nc values for the
current period, f serves as a correction factor for Nc values estimated for the Holocene, as it
reflects the average reduction between model-predicted Nc values, that are estimated under the
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assumption of lower bottleneck severities, and the observed IUCN Nc values, that include
estimates due to severe population bottlenecks.
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