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Abstract

Unrelenting poaching to feed the illegal trafficking of rhinoceros (rhino) horn remains the

principle threat to the persistence of south-central black and southern white rhino that live

in the Kruger National Park (Kruger), South Africa. Other global environmental change

drivers, such as unpredictable climatic conditions, impose additional uncertainties on the

management and persistence of these species. The drought experienced in Kruger over

the 2015/2016 rainy season may have affected rhino population growth and thus added

an additional population pressure to the poaching pressure already occurring. Under

drought conditions, reduced grass biomass predicts increased natural deaths and a sub-

sequent decrease in birth rate for the grazing white rhino. Such variance in natural death

and birth rates for the browsing black rhino are not expected under these conditions. We

evaluated these predictions using rhino population survey data from 2013 to 2017. Com-

parisons of natural deaths and birth rates between pre- (2013/2014 and 2014/15), during-

(2015/2016) and post-drought (2016/2017) periods in Kruger showed increased natural

mortality and decreased births for white rhino, but no significant changes for black rhino,

supporting our predictions. As a result, despite reduced poaching rates, the total mortality

rate of white rhino remains significantly higher than the birth rate. Decreased poaching,

decreased natural deaths and no apparent drought effects in black rhino resulted in a

lower total mortality rate than the estimated birth rate in 2017. Active biological manage-

ment and traditional anti-poaching initiatives together therefore represent the most likely

way to buffer the impacts of decreased population growth through climate change and

wildlife crime on the persistence of rhinos.

Introduction

Overharvesting of biological resources is a key driver of global environmental change [1].

Overharvesting can occur within ecosystems, biomes, landscapes, individual species or popula-

tions. On a large scale, poachers extensively overharvest particular species to supply the ever-

increasing illegal wildlife trade [2]. As a result, wildlife trafficking is one of the key threats

to the persistence of many species [3], and reduces the legal benefits derived from wildlife
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commodities [4]. Poaching of African rhinoceroses (rhino) to supply the illegal wildlife trade

with rhino horn escalated within South Africa from 2008 [5], with at least 2936 rhinos killed

from 2011–2015 in the Kruger National Park (Kruger) alone [6].

Climate change is another driver of global environmental transformation [1] and have con-

sequences for species [7]. Changing environmental conditions can also influence rhino popu-

lation dynamics. For instance, white rhino calf survival is associated with rainfall experienced

in the previous two years [8]. Droughts are defined as climatic events or periods with signifi-

cantly less rainfall compared to the average rainfall in that area [9], and can significantly

impact animal survival [10]. Drought events typically have more rapid, intense impacts on

grasses and herbaceous vegetation, and less impact on trees and browse condition in the short-

term [11–13]. Increased animal mortalities during a drought are primarily associated with lim-

ited food availability rather than a lack of drinking water [14–16].

Increased mortality is, however, not the only potential population-level consequence of a

drought. Disruptions of population features such as age and sex structures, as well as birth

and recruitment rates, may also occur. For instance, African elephant (Loxodonta africana)

cows require good foraging to achieve and maintain body condition for conception and

pregnancy [17]. Consequently, across several African elephant populations, deviations in

population age structure are associated with rainfall in the preceding two years before birth

[18].

Kruger is a stronghold for both the south-central black rhino (Diceros bicornis minor;
hereafter black rhino) and southern white rhino (Ceratotherium simum simum, hereafter

white rhino). Poaching, however, has disrupted the dynamics of both species within the park

[8], resulting in no significant increase in population size for black or white rhino since 2011

[6]. In addition to the poaching onslaught, Kruger experienced a severe drought over the

2015/2016 rainy season [19]. This has raised concerns that the Kruger rhino populations suf-

fered two separate, intense population pressures in recent years–drought impacts as well as

poaching mortalities. Species-specific dietary requirements, however, suggest that the rela-

tive impact of drought pressure may differ between species. Given that the short-term

impact of drought is higher on grasses [11–13], the grazing white rhino [20] is likely to be

more susceptible to mortality under drought conditions than the browsing black rhino

[21,22]. In addition, because white rhino cows are likely to experience reduced body condi-

tion as a result of limited food availability during drought periods [22,23], they may also

have reduced conception rates during this time. If droughts do not result in browse availabil-

ity changes in the short-term, then black rhino cows should have relatively little change in

body condition and conception during a drought period and thus birth rates the following

year.

The 2015/2016 drought experienced in Kruger provided a unique opportunity to evaluate

predictions regarding the relative impact of drought on white and black rhino. We estimated

the population size of both rhino species in Kruger during September 2017. We also extract

proxies for birth and death rates for both rhino species from field surveys from 2013 to 2017.

We compare the birth and death rates before, during and after the 2015/16 drought. We

predict that the white rhino decline noted before the drought [6] will be accentuated, with

increased mortality and reduced fecundity, regardless of poaching rates. For black rhino, we

expect the impact of drought on fecundity and mortality to be negligible and therefore predict

that only poaching is likely to impact the population dynamics of this species. These differ-

ences would impose unique challenges to the management of white and black rhino, particu-

larly for authorities seeking to achieve species-specific conservation targets [24–25] in the face

of future climate change.

Drought impacts on rhinos
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Material and methods

Study area

The Kruger National Park (19485 km2, 24˚0041@S 31˚2907@E) is comprised of African savannas

in the Lowveld region of South Africa. Our study focused on the southern region of the park

where the majority of rhinos are found [6]. The southern area experienced the drought during

the 2015/2016 rainy period (293 mm, 73% of 11 stations in southern Kruger had rainfall below

station-specific 0.1 percentiles). Annual rainfall for 2013/2014 (693 mm) and 2014/2015 (425

mm) were within the range of the long-term mean (575 mm, 0.025 percentile = 318 mm, 0.975

percentile = 1017 mm, n = 24, rainfall data from 1982 to 2006; SANParks, unpublished data,

http://dataknp.sanparks.org/sanparks/), much higher than that recorded for 2015/2016. Dur-

ing the 2016/2017 rainy season, Kruger managers recorded rainfall within the range of the

long-term average again (625 mm, none of the stations had rainfall below station-specific 0.1

percentiles, while one station had rainfall above the station-specific 0.9 percentile).

Field surveys

The surveys during September 2017 followed the same approach as previous surveys [6, 8].

Observers counted both black and white rhinos on 489 randomly placed blocks of 3 km x 3

km in size within the southern region of Kruger. Counts conducted from a Jet Bell Ranger heli-

copter flown at 65 knots and an altitude of 45m allowed observers to note rhinos within a 200

m strip on each side of the flight path within a block. In addition to the pilot, there were three

observers, one of whom also served as a scribe. Cybertracker software (Cybertracker Software

(Pty) Ltd) using a Juno Trimble Unit (Trimble Navigation Limited) allowed the scribe to effi-

ciently record the number of individual rhino noted for each sighting. Observers also noted

the age and sex of each observed rhino using age-assignment criteria based on relative body

sizes [26–27].

Data analyses

We determined the number of rhinos that died in the year preceding each survey by collating

mortality data in a 12 month period (survey interval year) starting on 16 September and end-

ing on 15 September the following year. Mortality data (SANParks, unpublished data, http://

dataknp.sanparks.org/sanparks/) included the date at which a carcass was detected as well as

the age of the carcass estimated at the time of detection based on the level of decomposition

and scavenging. The cause of death, including natural (defined as when horns were still pres-

ent and forensic investigations found no evidence of poaching), poached or unknown, was

also recorded. This allowed us to estimate the date of the actual death of each individual, from

which we could then define the number of rhino that died within each defined survey interval

year. We included mortality data from 16 September 2012.

To define natural death rates, we included carcasses for which the cause of death was

recorded as natural. While both natural and poached deaths will be underestimates given the

effect of imperfect detection on fatality estimates [28], we assume carcass detection rate to be

the same irrespective of species or cause of death. Thus we use the recorded minimum counts

for both natural and poaching deaths as proxies. We extracted population estimates for both

black and white rhino during September each year for 2013 to 2016 [6]. Death rates were the

number of natural deaths in a survey year as a fraction of the population estimate at the start of

that year (
d�!t� 1;t
N̂ t� 1

, where d�!t� 1;t
is the number of natural deaths from 16 September in year t-1 to 15

September in year t, and N̂ t� 1 the population estimate during September of year t-1). The
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confidence intervals for population estimates allowed us to also define a confidence interval

for death rates during each year.

To define birth rates, we extracted the age and sex assignments for each of the surveys dur-

ing 2014 to 2017 (SANParks unpublished data, http://dataknp.sanparks.org/sanparks) [6]. We

determined population recruitment by calculating the fraction of rhino individuals in the A

and B age-class [26–27] in our sample each year. A (<6 months old) and B (6 months to 1 year

old) age-classes comprise individuals that were born and survived during the year since the

previous survey. Using the population estimate in year t, we could define the number of rhino

in the A and B age-class categories at the time of the survey in year t. The number of rhino esti-

mated during year t-1 (N̂ t� 1) produced the new rhino that we noted in year t. A proxy for birth

rates were thus the combined number of rhino in the A and B age-class categories noted in

year t (n(A+B),t) expressed as a fraction (
nðAþBÞ;t
N̂ t� 1

) of the estimated population during September in

year t-1. The confidence intervals for population estimates also allowed us to define a confi-

dence interval for birth rates during each year.

To test our predictions of drought effects on mortality, we defined survey interval years

2013–2014 and 2014–2015 as pre-drought conditions, and 2015–2016 as during drought con-

ditions. Because our pre-drought data include two survey years, we used Monte Carlo simula-

tion approaches [29] and drew 20000 values from the statistical distributions of estimated

death rates defined by their confidence intervals extracted for the 2013–2014 and 2014–2015

survey interval years. For iterations, we averaged the values for 2013–2014 and 2014–2015. We

then defined a statistical distribution of pre-drought death rates by counting the frequency of

estimates within 100 bins of equal sizes between the largest and smallest death rate within the

20000 randomly drawn estimates. A similar process for 2015–2016 allowed us to obtain a sta-

tistical distribution of death rates during drought conditions. In this case we did not need to

do averaging across two survey interval years.

We used the same approach as used for death rates, to define the statistical distribution of

birth rates for pre- and post-drought (2016–2017) conditions. Both rhino species have long

gestation periods (black rhino:�15 months; white rhino:�16 months) [30], and consequently

any changes in birth rate should be reflected 1–2 years following a drought. We concluded that

changes were significant if the 95% confidence intervals (defined by the range between the

0.025 and 0.975 percentiles) [31] of the birth and death rate distributions did not overlap

between the relevant periods defining drought conditions.

For the 2017 population estimate, we used the same analytical method as for the previ-

ously published 2013 to 2016 surveys [6,8]. These used Jolly’s estimator [32] to obtain land-

scape-specific and overall estimates. Analyses accounted for bias using estimated availability

bias defined by relationships [6] between rhino visibility [8], vegetation cover [33] and

Enhanced Vegetation Index (EVI) [34] on a block at the time. Observer bias came from esti-

mates made during a previous black rhinoceros survey [35]. Detectability bias was negligible

as the size of observation strips were narrower than those used by previous studies [36]. We

concluded significant changes if any of the 95% confidence intervals of the years in questions

did not overlap.

Results

The number of rhinos that were born and died due to natural causes varied across the five

years of our study. Poachers killed the fewest number of black (Table 1) and white (Table 2)

rhinos during the last survey interval year (2016–2017) in our study. In addition to deaths,

authorities removed a large number of white rhinos during the 2015–2016 survey interval year

(Table 2).
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Poaching rates for white rhino varied from 6.7% (CI: 6.1–7.2%) to 9.3% (CI: 8.7–10.0%),

with the highest rate noted during the 2014–2015 survey interval year (Fig 1). Natural death

rate varied from 1.1% (CI: 1.0–1.2%) to 1.6% (CI: 1.5–1.7%). The 95% confidence intervals for

natural white rhino deaths in pre-drought conditions did not overlap with those noted during

the drought, indicating that natural death rates were significantly higher during the drought

(Fig 2). Similarly, 95% confidence intervals of birth rates noted during pre-drought conditions

did not overlap with those noted after the drought; indicating that birth rates were significantly

lower after drought conditions (Fig 2). Thus despite the effectiveness of anti-poaching, the

change in vital rates in response to the drought resulted in the white rhino population estimate

in September 2017 (5142, 95% CI: 4759–5532; Fig 3) being significantly lower than the 7235

(CI: 6649–7830) estimated for the previous year.

The results for black rhino did not show the same patterns as white rhino. Poaching rates

for black rhino varied from 4.1% (CI: 3.5–4.6%) to 11.5% (CI: 9.5–13.5%), with the highest

poaching rate observed in the 2014–2015 survey interval year (Fig 1). Natural causes contrib-

uted 29% and 28% to deaths during 2013–2014 and 2014–2015 respectively, and only 21% and

23% during 2015–2016 and 2016–2017 respectively, when poaching rates were lower. For

black rhinos, confidence intervals for death rates and birth rates overlapped between the com-

parative pre-, during- and post-drought periods (Fig 2). Consequently, the black rhino popula-

tion estimate in September 2017 was 507 (CI: 427–586), significantly higher than the 310

estimated in 2014 (CI: 249–371). This suggests that the black rhino population has increased

over the last 3 years (Fig 3).

Table 1. Summary of population estimates [6,8] as well as the number of mortalities, management removals and births noted for black rhino in Kruger National

Park from September 2012. Values in brackets denote 95% confidence intervals.

BLACK RHINO Mortality Management Removal Fecundity

Year Estimate Survey year Poached Natural Unknown Lethal Non-lethal Born

2013 415

(343–487)

2012–2013 39 10 0 0 0 47

(39–55)

2014 310

(249–371)

2013–2014 29 12 1 0 7 22

(18–26)

2015 383

(313–453)

2014–2015 39 15 0 0 2 36

(29–42)

2016 407

(349–465)

2015–2016 41 11 3 1 0 28

(24–32)

2017 507

(427–586)

2016–2017 17 5 0 2 0 33

(28–38)

https://doi.org/10.1371/journal.pone.0209678.t001

Table 2. Summary of population estimates [6,8] as well as the number of mortalities, management removals and births noted for white rhino in Kruger National

Park from September 2012. Values in brackets denote 95% confidence intervals.

WHITE RHINO Mortality Management Removal Fecundity

Year Estimate Survey year Poached Natural Unknown Lethal Non-lethal Born

2013 8968

(8394–9564)

2012–2013 683 79 25 0 50 905

(847–966)

2014 8619

(8001–9290)

2013–2014 705 107 28 1 99 920

(822–954)

2015 8875

(8365–9337)

2014–2015 853 94 4 2 90 772

(728–812)

2016 7235

(6649–7830)

2015–2016 632 127 40 1 202 692

(636–749)

2017 5142

(4759–5532)

2016–2017 513 118 21 13 13 345

(319–371)

https://doi.org/10.1371/journal.pone.0209678.t002
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Fig 1. (A) White rhino natural death and poaching rates (left) and total mortality and birth rates (right); (B) Black

rhino natural death and poaching rates (left) and total mortality and birth rates (right).

https://doi.org/10.1371/journal.pone.0209678.g001

Fig 2. The distributions of the estimated proxies for birth rate and natural death rate for white and black rhino

before (broken line), during (solid line) and after (stippled line) drought conditions in southern Kruger National

Park. See text for details on estimation and definition of statistical distributions.

https://doi.org/10.1371/journal.pone.0209678.g002
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Discussion

The 2015/2016 drought in Kruger increased the natural death rate and decreased the birth

rate of white rhino. These drought effects disrupted white rhino population dynamics and we

noted a significant decline in population size despite constant poaching rates. Black rhino did

not exhibit drought-related population consequences, as expected given their browsing diet

and reproductive life-history [30]. Poaching thus remains the largest threat to the persistence

of black rhino in Kruger.

The grazing diet and reproductive life-history of white rhino [30] suggested that the species

may experience significant drought-related effects on birth and death rates. The detectable

decline of white rhino numbers during 2016 [6] continued with a further significant decrease

in 2017, despite the consistent poaching rate maintained over that period. Increased natural

deaths during the drought and reduced births in the post-drought periods suggest that the

drought impacts on white rhino negated the gains made by stabilising the poaching rate during

this time.

In contrast to white rhino, the black rhino population estimate for 2017 overlapped with

the previous 2015 and 2016 estimates. However, the 2017 estimate was significantly higher

than the 2014 estimate [6], suggesting a gradual population increase over those three years.

Black rhino experienced a reduction in poaching during 2015–2016, which decreased even

further during 2016–2017. A large fraction of black rhinos live in central areas within Kruger

further from boundaries [35], and with increased anti-poaching pressure, poachers may be

penetrating the central areas less frequently. Consequently, they would be more likely to

encounter white rhinos when entering Kruger across boundaries. Drought conditions did not

result in increased natural mortality or decreased birth rates in black rhino.

Density-dependent population responses may contribute to the decreasing natural death

trend seen for black rhino. Black rhino natural death rates did not increase in the drought

years. In fact, natural death rates may have decreased following the drought period although

we did not detect a statistically significant effect. Decreased death rates may result from addi-

tional factors such as reduced intra-specific density, rather than a direct consequence of the

drought. For instance, in some cases population growth rate is reduced as local black rhino

density increases [37]. Such density-dependence in population growth is often associated with

density-related mortalities for black rhinos [38]. The potential decline in natural death rate

that we observed in Kruger followed the peak in poaching of black rhinos. Localised reductions

in black rhino density as a result of high poaching may have resulted in decreased fighting

mortalities.

Several constraints, however, may influence the magnitude of our predictions and subse-

quent observations. For instance, water and food availability influence how white rhino use a

landscape. Rainfall across Kruger is not uniform [39] and thus neither is grass availability.

Fig 3. Population trends in white and black rhino in the Kruger National Park from 2013–2017.

https://doi.org/10.1371/journal.pone.0209678.g003
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Kruger management begun closing boreholes in the mid-1990’s while neighbouring properties

retained them [40], thus also creating spatial variation in water availability. Movements of

white rhino in response to drought-induced variance in food and water resources could thus

influence estimates of population size and hence also death and birth rates. Given the large

white rhino population size in Kruger, however, we anticipate that exceptionally large num-

bers of white rhino would have to move across large scales in or out of Kruger to significantly

affect our estimates of death and birth rates. This is unlikely, and as no movements of this scale

were recorded during the study period, spatial variance in resource availability most likely had

little effect on our estimates.

An additional limitation may exist with the assignment of black and white rhino calves to A

and B age-classes [26–27]. Error-induced high frequencies of A and B age-classes would inflate

the birth rate proxies. However, making errors when assigning individual rhino as A and B

classes is likely to be lower than for the C to F age-classes because of the reduced development

of horns in the A and B classes [26–27], and thus age assignment errors most likely have a neg-

ligible impact on our birth rate estimates. Density-dependent effects may also realize through

Allee effects [41], when population growth rates positively associate with density. When densi-

ties decrease, populations decline faster either because predation pressure increases due to

reduced vigilance [42], or reduced mating opportunities resulting in fewer births [43]. The

large population size of white rhinos recorded, however, negates reduced mating opportunities

and corresponding birth rates. For black rhinos, we recorded similar birth rates before and

after the drought which also means similar birth rates at different population densities. Allee

effects through reduced mating opportunities are thus negligible for both species.

The combined impact of poaching and drought effects on white rhino resulted in a substan-

tial difference between the 2016 and 2017 estimates. A contributing factor to this difference

may lie with carcass detection. Carcass detection is not perfect [28], and our observations of

dead rhinos are thus estimates of minimum poaching and natural death rates only. There may

also be additive effects associated with the death of dependant calves; detecting small, depen-

dent calves that die when their mothers are poached is difficult due to the small body size and

faster decomposition rate. In addition, when poachers kill a cow, all her future calves are also

lost. For large mammals, adult female survival and fecundity exhibit low and moderate annual

variation, respectively [44]. Rhino populations are thus likely to be sensitive to the cascading

consequences of increased variability in adult female survival as a function of poaching. These

hidden demographic risks may realize in substantial declines over time. As poaching has been

rampant since 2012, the substantial decline in white rhinos may be partly a result of these com-

pound effects.

The conservation implications for both rhino species are significant. The reduced poaching

rate of black rhino in 2017 and the absence of drought-related impacts have led to stable or

gradually increasing numbers in Kruger. With birth rate currently exceeding total mortality,

continued protection from poaching may be sufficient to support the population growth of

black rhino. Conversely, the drought during 2015/2016 imposed additional challenges on

white rhino conservation [6]. During the 2016–2017 survey interval year, birth rate did not

exceed total mortality or the poaching rate. The drought impact on mortality and birth rates,

combined with continued poaching, has reduced the white rhino population size to an extent

that the resilience of the population may be compromised. Recovery of the white rhino popula-

tion may now take much longer due to the additional consequences of the drought. Innovative

biological management initiatives that focus on increasing population growth would be benefi-

cial to both species–reducing natural mortalities where possible in black rhino and increasing

birth rate in white rhino. This will be particularly important for white rhino under changing

environmental conditions.
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Increased rhino protection initiatives have reduced the number of rhino poached across

South Africa and in Kruger since 2016. Poacher activity, however, continued to increase in

Kruger during the 2016–2017 survey year compared to previous years (SANParks, unpub-

lished data, http://dataknp.sanparks.org/sanparks/). Elsewhere, multi-pronged approaches

resulted in desirable rhino conservation outcomes [45]. Similarly, a combination of active

biological management [24–25] and traditional anti-poaching initiatives represents the most

likely way to buffer the impacts of decreased population growth through climate change and

wildlife crime on the persistence of rhinos in Kruger.
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