

Cindy Harper, Lindsay Peppin, Anette Ludwig, Anandi Bierman

VETERINARY GENETICS LABORATORY

Faculty of Veterinary Science

University of Pretoria

Background

- Rhino primary target species for illegal hunting
 - Traditional Asian Medicine in Far East
 - Dagger handles in Yemen
- Wildlife DNA Forensic course in 2007 at VGL
 - Rhino priority for validated forensic test
- Individually identify horn and tissue from white rhino
 - Evidence in poaching cases
 - Identification for translocation purposes
 - Identify horn from stockpiles and dehorning operations
 - Genotype for permit applications?

DNA Test Format: Extraction

- DNA extraction from horn (0.5 to 1cm³)
- Horn contains cells = Nuclear DNA NOT a clump of hair
- DNA quality affected by sample age and exposure to UV light
- Horn samples SANParks
 - collected from various sites of the horn
 - did not affect DNA recovery

DNA Test Format: Genotyping

- Nuclear DNA
 - Microsatellite (STR) markers
- Set of 13 markers:
 - Ease of allele calling
 - Consistent amplification
 - Ability to multiplex in PCR
 - reduced cost
 - Increased throughput
 - Sex marker zinc finger protein
 - Forensic validation

Blood Sample

Blood Sample

Horn Sample

Conclusions

- DNA extraction method for horn developed
- STR based DNA fingerprinting test developed
- Forensically validated
- Identification of horn and tissue from white rhino
 - evidence
 - individual identification
 - traceability of horn stockpiles
 - genotypes for certification

